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Abstract
We present new U–Pb SHRIMP zircon geochronological data for basement rocks in Bangladesh, and discuss the relationship

with the formation of the Columbia supercontinent. Euhedral zircons from a diorite sample yield a concordia age of 1730 � 11 Ma,

which is interpreted as the crystallization age. The Palaeoproterozoic age of the examined basement rock and the common

occurrences of similar�1.7-Ga geologic units in the Central Indian Tectonic Zone and Meghalaya-Shillong Plateau in Indian Shield

suggest their apparent continuation. This, together with the occurrence of similar�1.7-Ga geologic units in the Albany-Fraser belt

in Australia and East Antarctica, are used to suggest that the basement rocks in Bangladesh formed towards the final stages of the

assembly of the Columbia supercontinent. To cite this article: I. Hossain et al., C. R. Geoscience 339 (2007).
# 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Résumé
Aˆge paléoprotérozoı̈que U–Pb (SHRIMP) sur zircon du socle du Bangladesh : un témoin possible du supercontinent
Columbia. De nouvelles mesures d’âges U–Pb sur des zircons provenant d’un socle situé au Bangladesh, réalisées à l’aide de la

microsonde ionique SHRIMP II (CAGS, Pékin, Chine), sont discutées, en relation avec la formation du supercontinent Columbia.

Des zircons automorphes provenant d’une diorite donnent un âge concordia de 1730 � 11 Ma, interprété comme âge de

cristallisation. L’âge paléoprotérozoı̈que de ce socle, ainsi que la présence commune d’unités géologiques d’âges comparables

(environ 1,7 Ga) dans la zone tectonique Centre-Indienne et le plateau Meghalaya-Shillong du bouclier Indien, suggèrent une

apparente continuité de toutes ces unités. Ces données, ainsi que l’existence de domaines d’âges comparables dans la ceinture

Albany-Fraser, en Australie, et dans l’Est de l’Antarctique, suggèrent que les roches du socle du Bangladesh se sont formées au

cours des stades terminaux du supercontinent Columbia. Pour citer cet article : I. Hossain et al., C. R. Geoscience 339 (2007).
# 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

Supercontinents containing most of the earth’s

continental crust are considered to have existed at least

twice in Proterozoic times. The younger one, Rodinia,

formed �1.0 Ga ago [17] by accretion and collision of

fragments produced by break-up of the older super-

continent, Columbia, which was assembled by global-

scale 2.0–1.8-Ga collisional events [30]. Based on the

distribution of U–Pb zircon ages, coupled with Nd and

Hf isotope data, Condie [7] recognized that there is a

major peak in juvenile crustal production rate at ca.

1.9 Ga (Fig. 1). The �2.1–1.7-Ga distribution in Fig. 1

probably corresponds to inboard manifestations of

subduction/collision/post-collision-related magmatism,

associated with the formation of the Columbia

supercontinent. As with the case of any supercontinent,

the exact configuration of the Columbia supercontinent

awaits more and precise geochronological information

from separated continental fragments, providing a

means to establish former linkages.

Basement rocks from Bangladesh were never

considered in the configuration of Columbia, partly

due to the lack of exposed igneous or metamorphic

rocks. The geology of Bangladesh is characterized by

extensive Tertiary and Quaternary successions, forming

part of one of the largest continental sedimentary

depositories in the world [8]. Drill-hole geological

investigations from the Maddhapara area (between

8980303000E to 8980405300E and 2583301500N to

2583401500N; Fig. 2), northwestern part of Bangladesh,

reveal that basement rocks occur at a shallow depth
Fig. 1. Frequency distribution of juvenile crustal production with

time. Juvenile crust ages are U–Pb zircon ages used in conjunction

with Nd and Hf isotope data (modified after [15]).

Fig. 1. Distribution en fréquence du volume de croûte juvénile créée

en fonction du temps. Les âges de la croûte juvénile sont des âges

zircon U–Pb, comparés aux données des isotopes Nd et Hf et des

associations lithologiques (d’après [15], modifié).
(�128 m; e.g., [19]). Ameen et al. [2] recently reported

a U–Pb SHRIMP age of 1722 � 6 Ma from a tonalitic

core sample from this area (obtained at a depth of

227.48 m in drill hole BH-2). They consider the buried

rocks at Maddhapara to represent a separate and discrete

microcontinental fragment that was trapped by the

northward migration of India during Gondwana

dispersal. Here we report a new U–Pb SHRIMP zircon

age for a dioritic sample (obtained from tunnel, at a

depth of 276 m), and based on a literature survey, we

attempt to evaluate the significance of basement rocks

from Bangladesh in a supercontinent framework. We

suggest the possibility of basement rocks in Bangladesh

forming the continuation of the Central Indian Tectonic

Zone and Meghalaya-Shillong Plateau in the Indian

Shield, based on available geochronological and

palaeogeographical information.

2. Geologic and petrographic information

The basement rocks in Bangladesh are dominantly

dioritic rocks, with minor granitoids. Amphibole and

biotite form the dominant mafic minerals in all the rock

types. Although late hydrothermal alteration is obser-

ved in some of the collected samples, the diorite sample

(SL1) from which zircons were extracted for geo-

chronology is fresh and shows no evidence of alteration.

The sample is medium to coarse-grained and composed

dominantly of plagioclase, hornblende, biotite, and

quartz (Fig. 3A). Light pink to colourless zircon crystals

(size range: 120 to 440 mm; length/width ratios: 3:2 to

4:1) are commonly included in large euhedral horn-

blende and subhedral to euhedral biotite. They exhibit

typical magmatic oscillatory zoning, as seen in

cathodoluminescence (CL) images (Fig. 3B). Some

coarse zircons have isolated cores mantled by concen-

tric zoning (e.g., grain SL1-6 in Fig. 3B). However, they

do not show obvious age differences, as illustrated

below. This suggests that all parts of the zircon grains

grew close and probably preserve the magmatic

crystallization age.

3. Geochronology methods

For U–Pb SHRIMP zircon dating, zircons were

separated from the diorite sample (SL1) using

conventional techniques. The zircon crystals were

mounted in an epoxy disc together with standard

zircon, and then polished to expose their cores. The

internal structure for analyzed zircons was observed

using CL images (e.g., Fig. 3B). Using guidance from

the CL images, zoned mantle parts of zircons were
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Fig. 2. Location map of the Maddhapara basement rocks in Bangladesh, showing tectonic elements and their relationship with CITZ (modified after

[1,19,27]). Abbreviations: BC, Bastar Craton; BN, Bundhelkhand Craton; BGB, Barapukuria Gondwana Basin; CGGC, Chotanagpur Granite

Gneiss Complex; CH, Chattisgarh; CIS, Central Indian Shear Zone; DGB, Damodar Gondwana Basins; DS, Darjeeling-Sikkim Himalaya; DT,

Deccan Trap; KG, Karimnagar Granulite Belt; M, Mohakoshal and equivalents; R, Rajmahal Trap; S, Sausar; SC, Singhbhum Craton; Si,

Singhbhum (Palaeoproterozoic); SMGB, Son Mahanadi Gondwana Basins; SONA, Son Narmada Lineament; V, Vindhyan.

Fig. 2. Carte de situation des roches du socle Maddhapara au Bangladesh, montrant les éléments tectoniques et leurs relations avec le CITZ (d’après

[1,19,27], modifié). Abréviations : BC, craton de Bastar ; BN, craton de Bundhelkhand ; BGB, bassin gondwanien de Barapukuria ; CGGC,

complexe granito-gneissique de Chotanagpur ; CH, Chattisgarh ; CIS, zone de cisaillement Centre-Indienne ; DGB, bassins gondwaniens de

Damodar ; DS, Himalaya de Darjeeling-Sikkim ; DT, trap du Deccan ; KG, ceinture granulitique de Karimnagar ; M, Mohakoshal et ses équivalents ;

R, trap de Rajmahal ; S, Sausar ; SC, craton de Singhbhum ; Si, Singhbhum (Paléoprotérozoı̈que) ; SMGB, bassins gondwaniens de Son Mahanadi ;

SONA, linéament de Son Narmada ; V, Vindhyan.
analyzed for U–Pb isotopes and U, Th and Pb

concentrations using a SHRIMP II ion microprobe at

the Institute of Geology, Chinese Academy of

Geological Sciences, Beijing. The analysis follows

the methods of Compston et al. [6] and Williams and

Claesson [38]. Measurements were corrected using

reference zircon standard Temora (417 Ma; [4]). The

common Pb was estimated from 204Pb counts, and the

data processing was carried out using Isoplot [20].

4. Results

The analytical results of zircons in sample SL1 are

listed in Table 1, and all analyzed zircons are shown in

Fig. 3B. Ages are weighted means with 1s errors. Eight

individual analyses were carried out for seven zircon

grains. The measurements have been done on large core

or mantle parts of the grains. Although the analyzed

spots have a wide range in concentrations of U (137–

1159 ppm), Th (79–479 ppm), and 206Pb (29.9–

307 ppm), there is no systematic correlation between
the estimated 207Pb/206Pb and U, Th and Pb contents,

and Th/U ratio (Table 1). Seven spots of zircons have a

consistent 206Pb/238U age between 1720 � 45 to

1791 � 44 Ma, yet spot SL1.6.1 yielded a younger
206Pb/238U age of 1440 � 37 Ma (Table 1). This is due

to recent Pb loss of the analyzed spot as shown in the

concordia diagram (Fig. 4A). None of the zircon

analyses showed any inheritance. All the analyzed

zircons gave 207Pb/206Pb ages of 1678 � 34 to

1737 � 7 Ma. Seven concordant data yielded a concor-

dia age of 1730 � 11 Ma (95% confidence limit,

MSWD = 0.6, probability of concordance = 0.24)

(Fig. 4A). As the MSWD is indistinguishable from

unity for this number of data points, it is not statistically

significant to attempt any editing of the analyses. The

concordia age is almost consistent with the weighted

mean 207Pb/206Pb age of 1728 � 11 Ma for all eight

spots (95% confidence limit, MSWD = 0.78, probabi-

lity of equivalence = 0.60) (Fig. 4B). Our U–Pb

SHRIMP age is consistent with the available SHRIMP

zircon age of 1722 � 6 Ma for a tonalite from the same
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Table 1

Summary of zircon U-Th-Pb analyses in sample SL1 from Maddhapara

Tableau 1

Résumé des analyses U-Th-Pb sur zircon dans l’échantillon SL1 (Maddhapara)

Spots U (ppm) Th (ppm) 206Pb* (ppm) 206Pbc (%) 232Th/238U Age (Ma)** Isotope ratios (�%)**

206Pb/238U 207Pb/206Pb* 208Pb/232Th 238U/206Pb 207Pb*/206Pb* 207Pb/235U 206Pb/238U

SL 1.6.1 137 79 29.9 1.22 0.59 1.440 � 37 1.723 � 48 1.455 � 74 4.000 � 2.9 0.1055 � 2.6 3.64 � 3.9 0.2502 � 2.9

SL1.6.2 208 130 57.9 0.88 0.65 1.791 � 44 1.678 � 34 1.799 � 65 3.122 � 2.8 0.1030 � 1.9 4.55 � 3.4 0.3203 � 2.8

SL1.5.1 318 238 86.0 0.35 0.77 1.759 � 42 1.708 � 21 1.753 � 53 3.188 � 2.7 0.1046 � 1.1 4.52 � 3.0 0.3137 � 2.7

SL 1.4.1 1159 479 307.0 0.10 0.43 1.729 � 41 1.737 � 07 1.677 � 51 3.250 � 2.7 0.1063 � 0.4 4.51 � 2.7 0.3077 � 2.7

SL1-3.1 258 192 69.8 0.70 0.77 1.754 � 44 1.722 � 25 1.786 � 66 3.198 � 2.9 0.1054 � 1.4 4.55 � 3.2 0.3127 � 2.9

SL 1-2.1 295 202 77.9 0.59 0.71 1.720 � 45 1.719 � 22 1.668 � 56 3.271 � 3.0 0.1053 � 1.2 4.44 � 3.2 0.3057 � 3.0

SL1-1.1 414 325 111.0 0.39 0.81 1.751 � 42 1.714 � 18 1.736 � 50 3.204 � 2.7 0.1050 � 1.0 4.52 � 2.9 0.3121 � 2.7

SL1-7.1 271 153 73.2 0.32 0.58 1.757 � 44 l.724 � 20 1.804 � 58 3.192 � 2.9 0.1056 � l.l 4.56 � 3.1 0.3133 � 2.9

Errors are 1 sigma; Pbt and Pb* indicate the common and radiogenic portions, respectively.

Error in standard calibration was 0.74% (not included in above errors, but required when comparing data from different mounts).

Spots SL1.1.1 and SL1.7.1 correspond to core, while other analyses have been done on zoned mantle parts of zircons.
** Common Pb corrected using measured 204Pb.
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Fig. 4. (A) Concordia diagram showing SHRIMP analyses of zircons

in sample SL1. (B) Diagram showing the weighted mean age for

zircons in sample SL1 from Maddhapara.

Fig. 4. (A) Diagramme concordia montrant les analyses SHRIMP des

zircons de l’échantillon SL1. (B) Diagramme donnant les âges moyens

pondérés des zircons de l’échantillon SL1 provenant de Maddhapara.
events on nearly every continent, including the

Transamazonian of South America, the Birimian of

West Africa, the Trans-Hudson and its age-equivalent of

North America, the Svecofennian and Kola-Karelia of

northern Europe, the Akitan and Central Aldan of

Siberia, the Capricorn of Western Australia, the

Transantarctic Mountains of Antarctica, the Trans-

North China in North China, the Central Indian

Tectonic Zone in India, etc., led geologists to consider

that they represent the fragments of a pre-Rodinia

supercontinent that formed in response to global-scale

collision at this time (e.g., [7,30,41,43]).

The two possible configurations of Columbia,

proposed by Rogers and Santosh [30] and Zhao et al.

[41], differ mainly in the position of the North China

Craton (NCC), with the former considering that NCC

was adjacent to the Baltic and Amazonian cratons, and
the latter placing the eastern margin of NCC against the

western margin of the Indian Shield. Recent studies

reported the occurrence of�1.8-Ga to�1.65-Ga mafic-

felsic intrusions, including anorthosite–mangereite–

charnockite–granite (AMCG) suites and rapakivi

granites, in NCC (e.g., [40,42]). Similar Palaeoprote-

rozoic AMCG and rapakivi magmatism is widespread

along the margin of Amazonia and Baltica [11]. No

such magmatism is reported from the western margin of

the Indian shield during the concerned time frame.

Hence, we follow the configuration of the Columbia

supercontinent given in Rogers and Santosh [31]

(Fig. 5), where NCC is placed adjacent to Baltica. If

Bangladesh was part of this configuration, it is most

likely to be placed between eastern India, East

Antarctica, and southwestern Australia. To evaluate

this, we review the Palaeoproterozoic rock record from

these continental fragments.

Although the geology of the ice-covered interior of

the East Antarctic shield is poorly known, recent

geological studies in the exposed basement of the

Transantarctic Mountains and Wilkes Land margin

suggest a correlation with Palaeoproterozoic granitoid

rocks and Mesoproterozoic mafic igneous rocks from

the Gawler and Curnamona cratons of Australia

[14,23,25,26]. Subduction-related batholiths between

approximately 1.7 and 1.6 Ga in the Albany-Fraser belt

in Australia [22] have similar counterparts in the

Windmill islands and Bunger Hills in Antarctica,

suggesting attachments in pre-drift configuration [16].

In eastern India, zircons with core ages of 1.7–1.6 Ga

from granulites (e.g., [33]) occurring along the flanks of

Palaeoproterozoic rift basins suggest new growth at this

time. These rift basins, which had matching rifts in the

Columbia region of western North America, were

instrumental in the configuration of Columbia proposed

by Roger and Santosh [30]. One of the prominent

features from the Indian shield, which figures in the

Columbia supercontinent configuration, is the Central

Indian Tectonic Zone (CITZ), considered as the

collision zone along which the North and South Indian

Blocks amalgamated during the Palaeoproterozoic

(Fig. 2) [18,21,39]. Although recent works showed

Mesoproterozoic (�1.5-Ga) reworking of some of the

Palaeoproterozoic lithologies from CITZ [3], the

available geochronological data [9,35] suggest that

the collision in central India progressed between 2100

and 1700 Ma. This is supported by the 2040–2090-Ma

age of the ultra-high temperature metamorphic event

[3], and a number of granitoid magmatic events,

bracketed between 2.0–1.7 Ga, from the CITZ

[1,28,29,32,34].
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Fig. 5. Schematic map showing the Columbia supercontinent with its remnant in Bangladesh, as a continuation of the CITZ (modified after [31]).

Abbreviations of orogens: Af, Albany-Fraser; Ad, Aravalli-Delhi; Ag, Angara; Ak, Akitkan; Ca, Capricorn; CITZ, Central Indian Tectonic Zone;

Eg, Eastern Ghats; Gf, Great Falls; Ke, Ketilidian; Kk, Kola-Karelia; Ma, Mazatzal; Mk, Makkovikian; Ng, Nagssugtoqidian; Pa, Pachemel; Pe,

Penokian; Ra, Rayner; Ri, Rinkian; Rj, Rio Negro-Juruena; Ro, Rondonian; Sv, Sveckofennian; Tb, Transamazonian–Birimian; Th, Trans-Hudson;

Tt, Thalston-Thelon; Vo, Volhyn; Wb, Windmill Islands–Bunger Hills; Wo, Wopmay; Yv, Yavapai.

Fig. 5. Carte schématique du supercontinent Columbia, indiquant ses reliques au Bangladesh, en tant que continuation de la CITZ (modifiée d’après

[24]). Abréviations des orogènes : Af, Albany-Fraser ; Ad, Aravelli-Delhi ; Ag, Angara ; Ak, Akitkan ; Ca, Capricorne ; CITZ, zone tectonique Centre-

Indienne ; Eg, Ghats orientaux ; Gf, Grerat Falls ; Ke, Ketilidian ; Kk, Kola-Karélie ; Ma, Mazatzal ; Mk, Makkovikian ; Ng, Nagssugtoqidian ; Pa,

Pachemel ; Pe, Penokien ; Ra, Rayner ; Ri, Rinkien ; Rj, rio Negro-Juruena ; Ro, Rondonien ; Sv, Svekofennien ; Te, Transamazonien–Éburnéen ; Th,

Trans-Hudson ; Tt, Thalston-Thelon ; Vo, Volhyn ; Wb, Windmill Islands–Bunger Hills ; Wo, Wopmay ; Yv, Yavapai.
Further north, extensive occurrence of �1.9-Ga-old

porphyritic granites is observed in the lesser Himalayas

[36,37]. DeCelles et al. [10] reported detrital zircon

ages of�2.0-to 1.8-Ga range from the Lesser Himalaya

of Nepal. Granitic gneiss dated at�1.7 Ga occurs in the

Darjeeling-Sikkhim Himalaya [24]. Towards the nor-

theast, Ghosh et al. [12,13] reported ages as old as

1.7 Ga for basement granitic gneisses from the

Meghalaya plateau, while Chatterjee et al. [5] reported

ages of 1.5 Ga from gneissic rocks within the Shillong

Plateau.

The above summary of geochronological information

gives ample justification to the consideration of basement

rocks in Bangladesh as being the apparent continuation of

the Central Indian Tectonic Zone with further extension

into the Meghalaya-Shillong Plateau. This differs from

the suggestion of Ameen et al. [2] that the basement rocks
in Bangladesh constitute a unique and separate entity,

with no meaningful comparison with the CITZ and/or

Meghalaya-Shillong Plateau. Finally, the common

occurrence of �1.7-Ga geologic units on nearly every

continent (e.g., [7,30,41,43]) warrants the consideration

of basement rocks of Bangladesh in the Columbia

supercontinent framework. Thus, U–Pb SHRIMP

zircon ages of diorite (1730 � 11 Ma; this study) and

tonalite (1722� 6 Ma; [2]) indicate that the basement

rocks in Bangladesh formed towards the final stages

of the assembly of the Columbia supercontinent

(�1.9–1.7 Ga).
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