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Abstract
In this work, we present a new mathematical method that allows recovering of the wells fluxes and hydraulic heads on a part of
the boundary where they are not known, for an aquifer domain having overspecified boundary data on another part of its boundary.
The method is based on the minimisation of an energy-like error functional of Andrieux and Ben Abda [Inverse Probl. 22 (2006)
115–133] for the missing-data recovering step and on the Reciprocity Gap principle of the same authors [Inverse Probl. 12 (1996)
553–564] for point sources identification. To cite this article: N.T. Hariga et al., C. R. Geoscience 340 (2008).
# 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Résumé
Identification des points sources et d’une condition aux limites sur une partie de la frontière d’un aquifère à partir de
conditions aux limites partielles surabondantes. Nous nous proposons dans ce travail de résoudre un problème de Cauchy, afin de
retrouver les débits des puits et la condition de charges imposées sur une partie de la frontière d’un aquifère, à partir de données
partielles surabondantes sur une autre partie de la frontière. La résolution se fait en deux étapes : on commence par minimiser la
fonctionnelle d’erreur d’énergie développée par Andrieux et Ben Abda [Inverse Probl. 22 (2006) 115–133] pour compléter les
données, puis on applique le principe de réciprocité introduit par les mêmes auteurs [Inverse Probl. 12 (1996) 553–564] pour
déterminer les débits. Pour citer cet article : N.T. Hariga et al., C. R. Geoscience 340 (2008).
# 2007 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Introduction

The leading inverse problem in hydrogeology deals
with estimating the hydrodynamical parameters of the
aquifer: permeabilities, transmissivities, and storage
coefficients. The most frequent problem and also the
by Elsevier Masson SAS. All rights reserved.

mailto:bouhlila.rachida@enit.rnu.tn
http://dx.doi.org/10.1016/j.crte.2007.11.006


N.T. Hariga et al. / C. R. Geoscience 340 (2008) 245–250246

Fig. 1. The mathematical domain with wells.

Fig. 1. Domaine du modèle mathématique avec les différents puits.
most studied in the literature is indeed that of the
determination of transmissivities from piezometric data
in a steady-state flow regime [9,10]. However, in many
real situations, uncertainties can be related to the aquifer
domain itself, its boundary conditions and also, usually,
on the external constraints, such as withdrawal rates in
wells, drillings, and recharge.

The knowledge of the aquifer withdrawal rates can
represent a largely unknown factor in real problems of
groundwater resources modelling. The acquisition of
these data is expensive and prone to great uncertainties.
The usual techniques of specific measurements or
estimation, using, e.g., surveys of power consumption
or crop surfaces, type and degree of growth of the
irrigated crops and also satellite images, provide only
orders of magnitude. Indeed, usually, this term of
external forcing constitutes data to be refined in a global
model calibration procedure.

The problem under consideration can be stated
mathematically as the recovery of unknown heads on a
part of the domain boundary and of the prescribed flux
for known point sources from Cauchy data. The
identification procedure relies on two steps:
� t
he recovery of the missing boundary data, which is
reduced to solving the Cauchy problem;

� t
he identification of the well fluxes.

The first step is the most difficult one, because, since
Hadamard [8], the Cauchy problem is known to be
severely ill posed. The most popular method known in
the hydrogeology community, as reported in the review
papers [9,10], consists, roughly speaking, in drawing
the flow streamlines. Even though this method is easy to
implement, it is very sensitive to measurement errors. It
is therefore usually exploited together with a regulariz-
ing procedure [4].

Our approach in solving the Cauchy problem is
borrowed to the solid mechanics community: it relies on
a method of minimizing a misfit energy-like function.
We adapt this energy-like error to the Darcy framework.

2. The model

We will focus, in this note, on extending the data
completion algorithm based on an energy error
functional, initially introduced for the Laplace equation
[3] to the Darcy framework [5]. The potential
application concerns the identification of well extrac-
tion in an aquifer with known transmissivities and
prescribed piezometric levels on a part of its boundary,
in steady-state conditions.
Using the notations shown in Fig. 1, a simplified
mathematical model is given by:

�DivðTgradðhÞÞ ¼
X

k

Qkdsk in V

h ¼ H on Gm

T
@h

@n
¼ f on Gm

8>>><
>>>:

(1)

where T is the transmissivity, which can be a scalar if the

medium is isotropic and homogenous, or a function in

case of heterogeneity, or a second-order tensor for the

anisotropic case. The hydraulic head is denoted by h, Qk

is the well abstraction, corresponding to a point source

located at Sk with coordinates (xk,yk), and d is the Dirac

distribution. Gm is the portion of the boundary of V

where both h and its normal derivative are known (i.e.

an overspecified condition) and Gu is the part of the

boundary where all information is lacking. This situa-

tion can correspond to an arbitrary boundary for an

aquifer known to extend over Gu, but where no informa-

tion is available. It is for example the case of a deep

aquifer continuing beyond the shoreline below the sea

bottom. Indeed, from a practical viewpoint, as the

known piezometric levels correspond to measured

values in boreholes and are presented as interpolated

isolines, it is easy to calculate their normal derivative,

even on an internal part of the domain, but close to the

boundary isopiezometric line, in order to obtain the

overspecified data. We propose, in this paper, to recon-

struct the missing data using an energy-like error func-

tional introduced in [3] and then to determine the point

source fluxes via the reciprocity gap principle [1,2,6].

3. Mathematical identification process

3.1. Data completion

Let us consider the above Cauchy problem
(equation 1). Provided the data H are compatible with
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the flux f, the data completion step is achieved in a
neighbourhood of the boundary of the domain where
there is no well. A fictitious inner boundary GF is
therefore introduced. Then the energy-like error
functional is constructed on the fictitious domain VF

with @VF = Gm [ Gu [ GF and GH = Gu [ GF. Extending
the data means finding (f,f) such that we obtain
equation. (2):

�DivðTgradðhÞÞ ¼ 0 in VF

h ¼ H; T
@h

@n
¼ f on Gm

h ¼ f ; T
@h

@n
¼ ’ on GH

8>>>><
>>>>:

(2)

The approach in the energy-like error functional
method developed in [3] follows two steps. First, we
consider, for a given pair (h,t), the two following mixed
well-posed problems (equations (3a) and (3b)):

�DivðTgradðh1ÞÞ ¼ 0 in VF

h1 ¼ H on Gm

T
@h1

@n
¼ h on GH

8>><
>>: (3a)

�DivðTgradðh2ÞÞ ¼ 0 in VF

h2 ¼ tonGH

T
@h2

@n
¼ f on Gm

8>><
>>: (3b)

The second step is to build an energy-like error
functional on the pair (h,t), using an energy norm,
denoted E. Indeed, these fields are obviously equal only
when the pair (h,t) meets the real data (f,f) on the
boundary GH = Gu [ GF. We propose then to solve the
data completion problem via the following minimiza-
tion algorithm (equation (4)):

ð’; f Þ ¼ arg min Eðh; tÞ (4)

Eðh; tÞ ¼ 1
2

Z
VF

ðT gradðh1Þ � T gradðh2ÞÞ2 dV (5)

3.2. The reciprocity gap principle

After the first step of reconstructing the missing
boundary data, we deal with recovering the unknown
well fluxes via the Reciprocity Gap functional. This
functional has been introduced in [2] in the context of
planar cracks identification from overspecified bound-
ary data. It relies on the well-known Mawell–Betti
reciprocity principle. As introduced in [2], it relates the
overdetermined boundary data to the unknown quan-
tities (here the well fluxes).

We multiply the first equation of the system (1) by a
virtual field v satisfying Div(gradm) = 0, then we
integrate it over the whole domain V; we use Green’s
second formula, we find:

RðvÞ ¼
X

k

QkvðSkÞ (6)

where

RðvÞ ¼
Z

@V

T

�
@h

@n
v� @v

@n
h

�
dG (7)

Notice that the left-hand side of the equality (6) or (7) is

totally known: (f, H) are the overdetermined boundary

data and we can select v.

More precisely, for k wells with unknown fluxes, we
evaluate R(zj), where z is the complex variable, such that
the real and imaginary parts of zj are harmonic:

Rðz jÞ ¼
X

k

Qkz j
k (8)

where zk = xk + i yk is the affix of the point source Sk.

Then we exploit the reciprocity gap functional with
various particular fields m.

Therefore, the determination of the fluxes of a
collection of wells amounts to solving a linear system:

A Q ¼ b (9)

where A ¼ ðzi
jÞ is the Wandermonde matrix, Q = (Qj)

and b = (R(zi)).

To clarify this step, we carry out an example in the
case of two wells located at the points M1(x1,y1) and
M2(x2,y2) with fluxes Q1 and Q2. The particular
harmonic v chosen are:

v1 ¼ 1 rv1n ¼ 0

v2 ¼ xþ i y rv2n ¼ 1þ i

Then we apply equations (6) and (7) for each v:

Rðv1Þ ¼
X

k

Qkv1ðSkÞ ¼ Q1 þ Q2 ¼
Z
@V

T
@h

@n
dG

Rðv2Þ ¼
X

k

Qkv2ðSkÞ ¼ Q1ðx1 þ iy1Þ þ Q2ðx2 þ iy2Þ

Rðv2Þ ¼
Z
@V

T
@h

@n
ðxþ iyÞ � Th ðnx þ inyÞ dG
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Table 1
Position (X,Y) and rates (Qk) of the five tested wells

Tableau 1
Position (X,Y) et débit Qk des cinq puits testés

X (km) 2 5 10 15 18

Y (km) 3 7 5 6 4
Qk (l s�1) �50 �70 150 �30 80
Finally, we have to solve one of the equivalent linear
systems, corresponding to the real and imaginary parts
of system (8), with k = 2:

Q1 Q2½ � ¼
1 x1

1 x2

� �

¼
Z
@V

T
@h

@n
dG

Z
@V

T
@h

@n
x� hnx

� �
dG

" #

or

Q1 Q2½ �
1 y1

1 y2

� �

¼
Z
@V

T
@h

@n
dG

Z
@V

T
@h

@n
y� hny

� �
dG

" #

so that we obtain directly Q1 and Q2.

4. Numerical trials

The resolution of the problem given by equation (2)
was carried out using the finite-element method (FEM).
First, we complete the boundary data via an optimisa-
tion problem, then we determine the wells fluxes via the
resolution of a linear problem.

For minimizing the energy functional E (equation
(4)), we have to compute the gradient of E with respect
to all the components of the unknown field h (here equal
to the number of nodes of the mesh). Therefore, we have
chosen the adjoint state method because it does not
depend on the number of components, and it makes it
possible to evaluate the gradient in any direction using
only the determination of two adjoint fields.

All the computations have been run on FemLab [7].
The numerical tests are performed on the following

geometry (Fig. 2), corresponding to a rectangular
domain of 20 km � 10 km, with a homogeneous
transmissivity T = 0.001 m2 s�1 with overspecified data
Fig. 2. The studied domain with the five wells.

Fig. 2. Domaine étudié avec cinq puits.
on the upper side and missing data on the lower one. The
overspecified data are extracted from the exact solution
h(x,y) of the direct problem given by equation (1) with
point sources coordinates (xk,yk) and intensity Qk:

hðx; yÞ ¼
X

k

Qk

2pT
log

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� xkÞ2 þ ðy� ykÞ2

q �

(10)

The domain is meshed with a regular mesh of triangular

elements with linear interpolation, characterized by

1100 nodes and 348 elements. To test the efficiency

of the proposed reconstruction processes, different

cases have been studied.

4.1. The case of multiple wells

We consider in this case a collection of five wells
with positive and negative fluxes. Well locations and
fluxes are shown in Table 1, whereas Table 2 sums up
the calculated fluxes and the relative errors compared to
the exact values. These last values correspond to the
exact solution of the forward problem given by equation
(10). On Tables 3 and 4, we consider the same five wells
with fluxes values 10 and 100 times less than those of
Table 2. As the piezometric levels are linear with
respect to the fluxes (as shown in equation (10)), the
error remains almost identical for the three cases.

Fig. 3a shows the reconstructed data (the hydraulic
head and its normal derivative) over the boundary where
data are missing, the lower one, in the case of these five
wells. Fig. 3b represents the hydraulic head over the
Table 2
Exact values of fluxes (Qk exact) and computed ones (Qk calc) in the case
of five wells

Tableau 2
Valeurs exactes des debits (Qk exact) et valeurs calculées (Qk calc) dans
le cas de cinq puits

Qk exact (l s�1) �50 �70 150 �30 80

Qk calc. (l s�1) �57 �68.1 152.1 �33.3 85.1
Relative error (%) 14 2.7 1.4 11 6.25
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Table 3
Exact values of fluxes (Qk exact) and computed ones (Qk calc) in the case
of five wells, where flux are a tenth of those of Table 2

Tableau 3
Valeurs exactes des débits (Qk exact) et valeurs calculées (Qk calc) dans
le cas de cinq puits, avec des flux 10 fois plus petits que ceux du
Tableau 2

Qk exact (l s�1) �5 �7 15 �3 8

Qk calc. (l s�1) �5.7 �6.8 15.2 �3.3 8.5
Relative error (%) 14 2.8 1.3 10 6.25

Table 4
Exact values of fluxes (Qk exact) and computed ones (Qk calc) in the case
of five wells, where flux are a hundredth of those of Table 2

Tableau 4
Valeurs exactes des débits (Qk exact) et valeurs calculées (Qk calc) dans
le cas de cinq puits, avec des flux 100 fois plus petits que ceux du
Tableau 2

Qk exact (l s�1) �0.5 �0.7 1.5 �0.3 0.8

Qk calc. (l s�1) �0.57 �0.68 1.52 �0.33 0.85
Relative error (%) 14 2.8 1.3 10 6.25

Table 5
Various noise levels: single well located at x0 = 2 km and y0 = 5 km
with a flux Q0 = �100 l s�1

Tableau 5
Différents bruits dans le cas d’un puits situé à x0 = 2 km et y0 = 5 km,
avec un débit Q0 = �100 l s�1

Noise level (%) 0 2 4 8

Relative error (%) 0.3 3 4 6

Table 6
Sensitivity to the relative location of two wells with Q1 = �100 l s�1

and Q2 = �50 l s�1

Tableau 6
Influence de la distance relative entre les puits, dans le cas de deux
puits avec Q1 = �100 l s�1 et Q2 = �50 l s�1

Distance d (km) 16 10 6 3 2 1.5

Relative error (%) 2 6 8 9 15 17
entire domain in the case of five wells. We note that the
completion results match very well the exact ones.

4.2. Sensitivity to noisy data

To take into account the sensitivity of the recovered
well fluxes to noisy data, a uniform white noise (with
zero mean), is applied to the Dirichlet data on Gm in the
case of a single well located at x = 2 km and y = 5 km,
with a rate Q = �100 l s�1. Table 5 shows the errors for
a noise level up to 8%. One can see that, despite the
Fig. 3. (a) Hydraulic head and its normal derivative over Gu; (b) isovalue

Fig. 3. (a) Charge hydraulique et sa dérivée normale sur Gu ; (b) isovaleur
noise, the data recovering error remains acceptable, for
a noise level less then 6%.

4.3. Sensitivity to the relative position

In the third case, we test the sensitivity to the relative
position of two wells. We consider two wells with
fluxes: Q1 = –100 l s�1 and Q2 = �50 l s�1, separated
by a variable distance d, and we compute the relative
error on recovered fluxes for each distance (see Table 6).
One can observe that if the wells are well separated (far
from each other), the fluxes are well identified, but when
the distance between the wells decreases, the identifica-
tion procedure is less accurate.
of the hydraulic head in the case of five wells.

de la charge hydraulique, dans le cas de cinq puits.
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5. Conclusion

The presented identification procedure of aquifer
point sources from partially overspecified boundary
data appears satisfactory in all the tested cases:
multiplicity of wells, noisy data, and relative position
of wells.

In the general context of aquifer modelling, this point
sources’ identification procedure could be carried out,
for each transmissivity field identification by whatever
inverse method, as well as iterations between the two
identification problems, transmissivities on the one
hand, and well fluxes and partially unknown boundary
conditions on the other one.

A natural extension of this work will deal with
heterogeneous domains (for hydrodynamical proper-
ties) and real aquifer data.
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