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A B S T R A C T

Measurements of the atmosphere by satellite were first collected in the 1960s. However, it

was not until the mid-1990s that these observations were translated into systematic

improvements of numerical weather forecasts. We present here the data and methodology

of data assimilation that enabled this achievement. Data assimilation is essentially a

filtering processing that exploits the (assumed) known error statistical properties of the

observations and of the underlying numerical model in which data are assimilated. It is

also a process which corrects the state of the numerical model with physical observations

of the real world. This part relies on (assumed) known physical laws to relate

meteorological quantities (such as temperature, humidity, pressure, and wind) to

observables. Atmospheric data collected by satellite all come from the interaction of

electromagnetic waves with the atmosphere. Satellite data assimilation has greatly

supported the progress in numerical weather prediction and holds promises for climate

studies, for example via reanalysis.

� 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Les premières mesures de l’atmosphère par satellite remontent aux années 1960.

Cependant, ce n’est que depuis le milieu des années 1990 que ces observations se sont

traduites par des améliorations systématiques dans les prévisions numériques du temps.

Cet article présente les données et les méthodes d’assimilation de données qui ont permis

d’arriver à ce résultat. L’assimilation de données est essentiellement un filtre qui exploite

les propriétés (supposées) connues des erreurs des observations et du modèle numérique

dans lequel ces observations sont assimilées. L’assimilation est aussi un processus qui

contraint le modèle numérique à reproduire les observations physiques du monde réel.

Cette partie repose sur des lois physiques (supposées) connues reliant les différents

paramètres météorologiques (tels que température, humidité, pression et vent) aux

observables. Les données météorologiques collectées par les satellites résultent toutes de

l’exploitation d’interactions entre l’atmosphère et les ondes électromagnétiques.

L’assimilation des données satellite a beaucoup contribué aux progrès en prévision

numérique du temps et pourrait contribuer de manière significative aux études sur le

changement climatique, par exemple via la réanalyse.

� 2009 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

The first measurements of the atmosphere from space
were collected in the 1960s. The potential of these data
for observing the atmosphere and improving weather
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forecasts was recognized immediately. The first television
images confirmed the atmospheric general circulation
theories. The collected imagery was also rapidly used daily
by human forecasters to adjust the timing and location of
synoptic forecasts obtained by other means, and increas-
ingly by numerical forecasting. In the early 1990s, the
quantitative impact of satellite data on numerical weather
prediction was still unclear (Smith, 1991). It was not until
the mid 1990s that this impact was fully realized. This
happening owed heavily to the advent of data assimilation
techniques capable of extracting automatically informa-
tion from the satellite measurements to perform weather
analyses.

The need for creating weather analyses became obvious
in the early days of Numerical Weather Prediction (NWP)
when observations had to be digitized onto model grids in
order to provide initial conditions to a deterministic
prediction model integration. The analysis subsequently
evolved from a simple interpolation from observations to a
more complex process called data assimilation where
observations are blend or merged with an a priori (or
background) estimate of the atmosphere. In this process,
observation and background errors are taken into account
to separate noise from signal. Models of the atmospheric
circulation and of the observation process provide physical
constraints so as to ensure a physically consistent
representation of the atmosphere as a result.

The science of data assimilation sits at the intersection
of applied mathematics and physics. Depending on one’s
background, data assimilation may be seen slightly
differently. It is a mathematical filtering process, by which
one separates signal from noise, assuming that the
signature (or properties) of that noise is (are) properly
known. It is also a process, by which one forces a model to
reproduce physical observations. Both approaches are
right if taken together, but can lead to suboptimal results if
considered in shear ignorance of each other.

Data assimilation represents now a research field of its
own. The reader is invited to consult the following sources
for more information: Refs. (Daley, 1991) and (Kalnay,
2003), the proceedings of the WMO International Sympo-
sia on Assimilation of Observations in Meteorology and
Oceanography (for example, Ref. (Ghil et al., 1997) and the
special issue of the Quarterly Journal of the Royal

Meteorological Society, vol. 131, no. 613, 2005), and the
proceedings of the Adjoint Workshops (for example, see
the special issue of Meteorologische Zeitschrift, vol. 16,
no. 6, 2007). In the present paper, we take the angle of
summarizing what satellite data assimilation is about,
what has made its success, what its impact is, and what
challenges lie ahead. Furthermore, efforts have been made
to separate the particular aspects of meteorological
satellite data assimilation from the general problem of
data assimilation. This separation should be of interest to
the general reader, not necessarily interested in meteo-
rology. The particularity of meteorology is that the
modeling capabilities today allow good propagation of
information in time; as a result, meteorological data
assimilation focuses on improving, with the help of
observations, an initial estimate provided by a model
forecast.
As a brief introduction to the problem, as of 2008,
operational NWP (simply written NWP in the rest of this
article) global models are routinely fed with about 19
million observations per day. Less than 1 million of these
observations come from so-called conventional measure-
ments. More than half of these conventional data come
from aircraft, while the in situ surface and radiosonde
observations only represent a fraction of the total. The
bulk of the observations (about 18 million) are raw or
more or less processed forms of measurements collected
by satellite-borne instruments. Keeping such operations
in a timely, efficient, and smooth fashion represents
significant costs for the organizations that run them, from
getting the data processed in time to meteorological
centers to the assimilation. As will be shown in this paper,
this comes to great, clearly proven, benefits through data
assimilation.

The present article is organized as follows. Section 2 is a
brief primer on the first application of satellite data
assimilation: NWP modeling. Sections 3 and 4 present
(respectively) the physical and statistical considerations in
data assimilation methodology. Sections 5 and 6 present
the implementation and the impact of data assimilation in
NWP today. Section 7 contains a discussion on the future
challenges and Section 8 presents concluding remarks.

2. Numerical models of the atmosphere

In Bjerknes’ 1904 visionary paper (Bjerknes, 1904),
weather prediction was introduced as an initial-boundary
problem to be solved with a deterministic numerical
model. This justified the effort to collect atmospheric
observations in order to improve subsequent weather
forecast. Data assimilation in meteorology emerged from
this need to apply the observations to initialize determin-
istic numerical models. Richardson, 1922 envisioned that
numerical forecasts would be initialized with maps
obtained by hand-performed interpolations from man-
made observations. With the advent of the first computers,
it became quickly obvious that this process as well should
be automated (Charney, 1951). It is hence useful to first
present the concepts relevant to the application which first
drove the need for data assimilation in meteorology.

We denote Mi a deterministic model built to propagate
the information describing the atmosphere at some time ti

to a later time ti+1. The information handled by that model
(i.e., the representation of the atmosphere at a time ti) is
described in a so-called state vector, noted x(ti). Because
that vector controls the state of the system, it is said to be
in control variable space. The control variable space
encompasses different physical variables discretized
spatially.

2.1. State vector

The physical variables in the state vector include at
least the surface pressure, the temperature, the water
vapor content, and the wind, or an equivalent set of
variables. The wind vertical component is not explicitly
represented in the state vectors of models that assume
hydrostatic equilibrium. This assumption, common in
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global models, is valid to describe horizontal scales larger
than 5–10 km.

Chemically reactive constituents are also becoming
represented in model state vectors. One such example is
the ozone, whose large variability strongly influences the
radiative equilibrium in the stratosphere. Aerosol size
distributions are also typically not fully modeled but
assumed to follow climatology. Like for chemical consti-
tuents, aerosols are coming under focus and may soon be
part of meteorological model state vectors. Finally, the
prognostic variables in today’s atmospheric prediction
models also typically include cloud liquid water, rain,
cloud ice, snow, and graupel (supercooled water that
condenses on snow). However, these variables are not yet
routinely included in the state vector for analysis (this is
still an ongoing research topic).

The deterministic model also requires additional
information on boundary conditions at the top and at
the bottom of the atmosphere (e.g., land, sea, sea-ice).
Limited-area models further need lateral boundary con-
ditions. Most of these conditions do not belong in the state
vector because they are either invariant, or provided as a
forcing, or considered to be unaffected by the deterministic
atmospheric model during the integration time.

The numerical discretization of the physical variables
horizontally and vertically depends on the target applica-
tion of the prediction scheme. A common choice is a
regular grid in physical space (latitude and longitude, or
more complex). Global models may rely on a basis of
spherical harmonics, owing to the near-spherical shape of
the Earth. Limited-area models may instead be described
in spectral space (by wavenumber). The vertical discreti-
zation reverts to either fixed-pressure levels, or sigma- or
eta-levels (terrain-following formulations).

Operational global models today achieve horizontal
resolutions that are on the order of 50 km with up to about
100 levels in the vertical. Operational limited-area models
attempt to describe scale as small as 1–2 km but over
smaller domains (surface areas of a few million km2

maximum).
Consequently, depending on the model’s resolution and

the total number of prognostic variables, the size of x in
today’s global NWP models is close to 107–109. All these
elements must be specified every time a new forecast is
carried out.

2.2. Forecast cycle and forecast error growth

Lorenz, 1963 demonstrated the existence of limits to
atmospheric predictability with a simplified convection
scheme (known as the Lorenz attractor, whose solutions in
phase space look like the wings of a butterfly). In his
example, Lorenz observed that small errors in the initial
conditions could grow exponentially very rapidly. In the
most general case, the forecast error grows also because of
errors in the model. Consequently, even if the initial
conditions (model state x) were to be known perfectly at
some time ti (so-called truth, noted xt(ti)), the subsequent
state of the model (x(ti+1)) could not be known properly
because the deterministic forecast model (Mi) is not perfect
and generates errors (h(ti), called model error, in data
assimilation) as compared to the true evolution of the
atmosphere:

xt tiþ1ð Þ ¼ Mi xt tið Þ
� �

þ h tið Þ (1)

This justifies further the need to bring in observations
regularly, in order to reduce the errors on the latest
available estimate and obtain an analysis (noted xa(ti)) that
will instead be used as the initial condition for the next
forecast:

xa tið Þ ¼ Gi x f tið Þ; y0
i

h i
(2)

x f tiþ1ð Þ ¼ Mi xa tið Þ½ � (3)

where Gi denotes the data assimilation process that
combines all the observations available at time ti (noted
y0

i). Consequently, the approach of bringing in observa-
tions in order to determine initial conditions attempts to
solve for two distinct problems at the same time: an
unknown atmospheric state at a given time, and an
imperfect numerical weather model. As will be seen below,
only the first problem has been addressed operationally so
far. Although theoretical solutions exist for the second
problem (e.g., Kalman filter, Kalman, 1960), their practical
implementations are still lagging behind.

The time period of the cycle above (Eqs. (2) and (3), i.e.,
data assimilation and forecast) is application-dependent. It
varies from 6–12 hours for global models to 1–3 hours for
non-hydrostatic limited-area meso-scale models whose
focus includes the prediction of severe weather events that
tend to develop rapidly.

The pace of increase in model state vector size (related
to refined model resolution) follows that allowed by the
increase in computing power at a fixed price (dubbed
Moore’s Law). Although the forecast (background) reflects
information extracted from past observations, the only
external source of information at every analysis cycle is
brought by actual observations. So there is a need to ensure
that increasingly finer scales in the model can be corrected
by increasingly finer-scale observations. Fortunately, the
number of satellite observations increases over time with
new satellite launches involving instruments increasingly
complex and accurate (refined imaging resolution for
example). These improvements in data acquisition and
processing are also to some extent allowed by Moore’s
Law. So, at least until Moore’s Law breaks down per lack of
industry funding or fundamental technological changes,
one can expect parallel growth in the number of
observations collected daily and the number of state
vector elements that need daily updating.

In the rest of the paper, an attempt has been made to
separate the physical and statistical considerations in data
assimilation, starting with the physical aspects.

3. Physical considerations in data assimilation
methodology: observation operators

We initially restrict our discussion to the simple, linear
form of sequential data assimilation (an extension to
weakly non-linear cases is discussed later). The analysis
vector state at time ti (xa(ti)) is updated sequentially as the
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sum of a previous estimate valid at the same time (called
background, noted xb(ti)) and a correction which scales
linearly as the departure between the observation vector
(y0

i) and the projection of the state vector in observation
space (Hi[x

f(ti)]):

xa tið Þ ¼ xb tið Þ þ Ki � y0
i � Hi xb tið Þ

h i� �
(4)

In meteorology, the background vector xb(ti) may
simply be the forecast xf(ti), or the result of a reversible
transform operation applied to xf(ti). For simplicity, we will
assume here the former, so that xb(ti) = xf(ti).

The scaling factor Ki above is known as the Kalman gain
matrix and will be described hereafter. It is based on
physical and statistical properties of the observations and
the background. We first focus our discussion on the
description of the projection operator Hi, called observa-
tion (or forward) operator. This is also referred to as the
direct problem in remote sensing jargon (Stephens, 1994).
This operator relates the estimation problem to the
measurement physical process.

The observation operator is observation-dependent: it
depends on observation meta-data, such as data location,
time, geometry, and observable type. At the very least, the
observation operator involves an interpolation of a few
variables from the state vector to the observation location.
The observation operator can also incorporate a model to
simulate the observation physics, which is particular to
each observation type. The following discussion attempts
to separate between the measurement and the inversion
processes on the one hand, and the simulation process
achieved by the corresponding observation (or forward)
operator on the other hand.

All satellite measurements of the atmosphere today
result, in one form or another, from the interaction of
electromagnetic (EM) fields with the atmosphere. Conse-
quently, observation operators for satellite data assimila-
tion incorporate, in one form or another, models of EM
wave propagation (and interaction) in (and with) the
atmosphere.

To separate between the various types of observation
operators, we consider here the four basic forms of
EM/medium interactions: absorption and emission (relat-
ed by Kirchoff’s Law of radiation), scattering, refraction,
and diffraction. We actually leave out the fourth form of
interaction given that there is no generalized satellite
remote sensing of the atmosphere that makes use of that
interaction alone. However, as will be seen below, that
interaction can play a role in the other interactions.

The first form of interaction, absorption and emission,
helps collect most of today’s satellite measurements. This
technique relies on the measurement of the intensity
collected in a given bandwidth of the EM spectrum either
by the observation of an obvious source (sun or stars)
through extinction by absorption by the atmosphere or
by the observation of the (passive) radiation emitted by
the atmosphere (emission). The raw measurements
(radiances) are then the result of photon counting.
Ideally, this process only counts the photons that arrive
directly from the atmosphere into the instrument
telescope and that feature a wavelength in a certain
range. In practice, as in every experimental apparatus,
the instrument can interact with its direct environment
(e.g., other instruments on-board the satellite or the
satellite itself) so that it is difficult to determine before
flight the corresponding contamination of the signal
reaching the instrument. The calibration of the detectors
in amplitude (photon counting) and in frequency (or
wavelength) is then of prime importance. This is achieved
at processing level using models determined before
flight and refined in the early days of the mission thanks
to observation campaigns and cross-comparison with
other observations (such as in situ measurements).
The final observables derived afterwards are considered
to be properly calibrated using possibly data collected
on-board the spacecraft to keep track of calibration
changes. The ramifications of the calibration aspect for
long-term measurement stability are now being investi-
gated by various groups, and the drifts in instrument
behavior are the subjects of active research (Grody et al.,
2004).

The instruments may feature the ability to observe
various bandwidths (channels), so that the wavelength
ranges are chosen in regions of the EM spectrum for
which the interactions with the atmosphere are stronger.
These regions may be right in the middle of, or on the
edge of, rotation or vibration lines of air molecules or its
constituents in the infrared or in the microwave. All
radiance measurements contain information on the
atmospheric temperature. Those measurements sitting
in absorption regions of specific constituents also contain
information on the amount of these constituents in the
atmosphere.

3.1. Infrared radiances

A subset of instruments operating in the thermal
infrared (3–18 microns) is shown in Fig. 1. The first
example presented here is the Vertical Temperature Profile
Radiometer (VTPR) which flew on the early National
Oceanic and Atmospheric Administration (NOAA) polar-
orbiting satellite series. The figure shows the typical
brightness temperature that would be observed for
mid-latitude conditions for all VTPR channels, with an
indication of the molecules sensed by spectral region. Note
that water vapor lines are all over the spectrum in the
thermal infrared region, so only a selection of H2O lines
appears in the figure. The figure also shows the vertical
region (in pressure levels) from which most of the signal
originates. This is defined here as the region where the
weighting function (vertical derivative of the transmit-
tance) reaches its peak (see, for example, Ref. Smith et al.,
1972). At the time the VTPR instruments were flown, the
data collected were not assimilated by operational NWP as
brightness temperature radiances, but as atmospheric
retrievals: the observation operator simply consisted of an
interpolation, while the retrieval process upstream of the
assimilation consisted in a reconstruction of an atmo-
spheric vertical profile.

Later, on the same satellite series, came the High
resolution Infrared Radiation Sounder (HIRS) and the
Stratospheric Sounding Unit (SSU) as parts of the TIROS



Fig. 1. Selection of infrared radiometers whose data are or have been assimilated in NWP or in reanalyses. The satellites names are listed below the

instrument names and the channels can be located by channel number (in red), wavelength, or wavenumber. Changes in channel positions between

instruments from different generations are indicated by blue or green bullets next to the satellite name. Each plot shows for each channel the typical

brightness temperature (right vertical axis) and the location in pressure level of the weigthing function peak (left vertical axis) for a mid-latitude

atmospheric profile.

Fig. 1. Sélection de radiomètres infra-rouge dont les données sont ou ont été assimilées en prévision numérique du temps ou dans des réanalyses. En

dessous du nom de chaque instrument sont listés les noms des satellites sur lesquels une version de l’instrument a été embarquée. Les canaux peuvent être

repérés, ou bien par numéro de canal (en rouge), ou bien par longueur d’ondes, ou bien par nombre d’ondes. Pour un instrument et un canal donnés, les

éventuels changements dans la position spectrale du canal entre différentes générations de l’instrument sont indiqués par des points bleus ou verts à côté

du nom du satellite affecté par le changement. Chaque figure montre, pour chaque canal, la température de brillance (axe vertical de droite) et le niveau

pression où se situe le pic de la fonction poids (axe vertical de gauche), pour un profil atmosphérique représentatif des moyennes latitudes.
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Operational Vertical Sounder (TOVS), featuring more
channels covering the whole vertical range from the
surface up to the 1 hPa pressure level, and enabling a better
sounding of the atmosphere. With these instruments, the
assimilation of passive infrared data moved to the direct
assimilation of brightness temperature radiances. From
then, the observation operator involved a more complete
physical representation of the measurement process. At
the same time, steps upstream of the assimilation were
removed so that the assimilated data were closer to the
raw measurement. The importance of this point will be
discussed later on.

Other instruments shown in Fig. 1 are the Atmospher-
ic InfraRed Sounder (AIRS) onboard the National Aero-
nautics and Space Administration (NASA) Earth
Observing System (EOS) Aqua satellite and the Infrared
Atmospheric Sounding Interferometer (IASI) onboard the
Eumetsat Polar System operational satellite MetOp.
These last two instruments feature several thousand
channels with high spectral resolution, and are assimi-
lated in NWP today. Note the overall increase in
complexity between the generations of instruments:
VTPR, HIRS, AIRS, IASI.

The major limitation of infrared measurements is that
they interact with particulates of sizes close to the infrared
wavelengths (i.e., clouds and aerosols). These complex
interactions rely heavily on the characteristics of the
clouds and aerosols, which are still largely un-observed
with significant accuracy, resolution, and coverage, and
hence, to a large extent, unknown on a systematic basis. It
then becomes practically impossible to exploit all the
cloud-affected measurements without significant model-
ing efforts, which are today out of reach of operational
data assimilation schemes. Consequently, raw infrared
measurements today are deemed useless in cloudy regions
(except above the clouds) for assimilation purposes.
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This limits seriously the ability of infrared emission
measurements to observe severe weather deep inside
cloud formations. As a result, only the clear infrared data
(less than 10% of the total) are assimilated. This limitation
and the near-real time dissemination of only a subset of the
channels from AIRS and IASI mean that the full potential of
these instruments remains to be realized.

Fig. 1 also shows IR instruments on geostationary
satellites: the Spinning Enhanced Visible and InfraRed
Imager (SEVIRI) onboard Eumetsat Meteosat second-
generation satellites and the imager onboard the NOAA
Geostationary Operational Environmental Satellite (GOES)
series. These data offer a high repeat frequency of
observation for fixed locations.

The observation operators to simulate atmospheric
infrared radiances are derived as follows. Line-by-line
radiative transfer models are first applied to various types
of simulated atmospheres discretized along the vertical.
Each vertical slab of atmosphere emits monochromatic
radiation (Planck’s Law) that is then propagated in the
vertical (Lambert’s Law), taking into account the absorp-
tion of each successive slab between the emitting layer and
the top of the atmosphere. Emission by the surface is also
accounted for. The resulting spectral radiances are then
convolved with the instrument/channel response function
to obtain an equivalent modeled radiance for each
instrument and channel. Because this approach is too
slow for practical, repeated computations, fast radiative
transfer models are then derived using sets of well-chosen
predictors from these exact computations. Examples of
such model are the Radiative Transfer model for TOVS
(RTTOV, Saunders et al., 1999) and the Community
Radiative Transfer Model (CRTM, Chen et al., 2008).

3.2. Microwave brightness temperatures

In a similar fashion, as for infrared measurements,
brightness temperatures in the microwave region collect
information on atmospheric temperature and constitu-
ents. Such observations from space are available, for
example from the Advanced Microwave Sounding Unit-A
and -B (AMSU-A, and -B, earlier satellites carried MSU), the
Microwave Humidity Sounder (MHS), and the Defense
Meteorological Satellite Program (DMSP) series carrying
the Special Sensor Microwave Imager (SSM/I). From nadir
geometry, the vertical resolution of these measurements is
coarser than that of infrared measurements.

Though insensitive to clouds, microwave measure-
ments can be affected by rain as the EM wavelengths under
consideration get closer to the size of rain droplets. To
circumvent this problem, one approach has been to
perform retrievals before the assimilation so that the
quantity to be assimilated is closer to the numerical model
(for example, total precipitable water, Baüer et al., 2006).
However, like for earlier infrared data, this intermediate
step between measurement and assimilation comes to the
cost of increased complexity in the error patterns of the
assimilated data. Note that microwave data are especially
sensitive to surface emissivity properties. Efforts are
underway to benefit from these data over land (Karbou
et al., 2006).
3.3. Atmospheric Motion Vectors from imagery

Another application of the first form of EM-atmosphere
interaction is the derivation of atmospheric motion vectors
(AMVs) from features tracked by satellite imagery.
Originally, this technique was only applied from geosta-
tionary orbit because the geometry of the imagery remains
nearly identical from one image to the next. But with
recent improvements in computing power, it has become
possible to apply a similar technique to images of the Polar
Regions observed under different geometries by successive
passes of polar-orbiting satellites. Examples include winds
generated from GOES, Meteosat, and MTSAT (Japan)
satellite imagery, as well as from the Moderate Resolution
Imaging Spectroradiometer (MODIS) imagery collected by
the NASA EOS Aqua and Terra satellites. The observation
operator simply interpolates the model wind at the
atmospheric motion vector location.

3.4. Scattering measurements

The second type of interaction is scattering (includes
back-scattering). Except in situations of multiple scatter-
ing when photons can actually be added along a certain
direction, scattering is usually associated with the removal
of photons from radiation that is incident along the line-of-
sight of the instrument (Beer’s Law). The received intensity
gives an indication on the (back) scattering coefficient.

The source of radiation may be either solar or man-
made. In the latter case, the EM waves may be either in the
radio range (radar) or in the near-infrared to ultraviolet
(lidar). Also, the response time of an encoded signal can
give an estimate of the distance of the target.

The interpretation of scattering measurements typical-
ly applies simplified results from molecular scattering
(Rayleigh) or from aerosols scattering (Mie) theory, or from
laboratory or campaign measurements to relate the
backscatter coefficient to the target properties.

In the case of scattering measurements from space, the
observation operator may simply interpolate from the
state vector to assess the meteorological parameter as
inferred by retrieval (for example, ozone or aerosol
content) from the raw measurements.

Examples of scattering measurements are as follows.
The Solar Back-scatter Ultra-Violet (SBUV) instruments
onboard NOAA polar-orbiting satellites yield ozone con-
tent measurements. The Precipitation Radar (PR) onboard
the Tropical Rainfall Measuring Mission (TRMM) and the
Cloud Profiling Radar (CPR) onboard Cloudsat yield
estimates of rain rates. Lidar backscatter measurements
(e.g., Cloud Aerosol Lidar and Infrared Pathfinder Satellite
Observations, CALIPSO) yield retrievals of aerosols con-
tents. Also, although they do not remotely sense the
atmospheric backscatter but the ocean surface backscatter,
the European Remote Sensing satellite-1 and –2, the
Seawinds instrument onbard the Quikscat satellite, and the
Advanced scatterometer ASCAT onboard MetOp yield wind
retrievals above the sea surface. Only the first and last
examples (SBUV and ocean scatterometers) have matured
to operational assimilation. Efforts are underway to start
assimilating data from the other two examples, using a
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retrieval step before assimilation (Benedetti et al., 2005) or
comparing the performance of today’s atmospheric models
with radar data (Marchand et al., 2009).

Another application of scattering measurements is to
detect the motion of sensed particulates, by measuring the
Doppler shift of the backscattered wave. The observation
operator may then simply reproduce the projection of the
wind along the line-of-the-sight of the instrument from
the state vector wind information interpolated at the
observation location. One example is the Atmospheric
Dynamics Mission-Aeolus currently under development
by the European Space Agency (Tan et al., 2008).

3.5. Refraction measurements

Astronomers and geodesists have so far always
regarded the third type of interaction, refraction, as a
source of error for locating the position of celestial stars. In
meteorology, it has emerged lately as a robust source of
observations.

The atmospheric refraction measurements assimilated
today in NWP are collected thanks to the U.S. Global
Positioning System (GPS). The EM waves carrying GPS
signals undergo refraction as they propagate from their
entry in the atmosphere to the receiver. The transmitters
are orbiting at about 20000 km altitude while the receivers
may be either on the ground (fixed stations) or in a satellite
in orbit (GPS radio occultation, e.g., Kursinski et al., 1995).
Note that in the latter application, as the scales of the
gradients being sensed can sometimes be close to a few
times the wavelength considered, phenomena of diffrac-
tion can appear. Their effect on the amplitude and phase
data collected can be corrected by ad hoc algorithms.

The observation operator in both cases simulates first
the radio refractive index from meteorological variables
(temperature, pressure, water vapor). A second step
reproduces the observation geometry and integrates this
index or its vertical derivative in order to yield measure-
ments of bending angle for GPS radio occultation and of
Zenith Total Delay (ZTD) for ground-based GPS. Data
collected by these methods have been assimilated in global
NWP since 2006 (respectively: Healy et al., 2005; Poli et al.,
2007).

4. Statistical considerations in Data Assimilation
methodology: Kalman gain matrix

The Kalman gain matrix mentioned earlier is the
cornerstone of data assimilation. This matrix controls
the extraction of signal from (error-contaminated) obser-
vations in order to improve the (error-contaminated)
background and form the analysis.

As an aside note, it is useful to remind that one of the
first applications of the Kalman filter (Kalman, 1960) was
trajectory determination, in the early days of the U.S. lunar
exploration program. Since then, this algorithm has been
applied to great benefits in other fields.

We now provide a few keys to help understand the
origins of the Kalman gain matrix in atmospheric satellite
data assimilation. Let us first assume that we are only given
two observations T1 and T2 to estimate the state of a one-
variable ‘‘toy system’’. T1 and T2 being interchangeable and
unbiased we choose T1 as our initial (background)
estimate. We seek the unbiased analysis Ta in the following
form:

Ta ¼ T1 þ a T2 � T1ð Þ (5)

The problem can be approached from two ends. One
option is to determine the state of the system that best fits
the truth (minimum-variance problem). Another option is
to determine the most likely state of the system given the
observations (maximum likelihood problem), assuming a
probability density function for the errors. In fact, it can
easily be shown that both views lead to the same solution
provided that the observation errors in T1 and T2 present
zero means, are uncorrelated with each other, and follow
Gaussian distributions with variances s1

2 and s2
2:

a ¼ s1
2 � s1

2 þ s2
2

� ��1
(6)

The solution found under the hypotheses above is the
best linear unbiased estimate (BLUE) and turns out to
minimize the sum of the distances between the analyzed
state and the two observations, given their respective
errors:

J Ta� �
¼ Ta � T1

s1

� 	2

þ Ta � T2

s2

� 	2

(7)

The quantity J above is a cost function (other cost
functions could be constructed using different norms).
Note that Ta can thus be found as the solution to a
variational problem where one seeks the argument that
minimizes J. Another interesting result of the toy system
discussed here is that the standard deviation of the error of
the analyzed state (noted sa) is smaller than s1 (and s2)

sað Þ2 ¼ 1� s1
2

s1
2 þ s2

2


 �
s1

2 (8)

In other terms, the information in the analyzed state is
systematically more accessible (or less contaminated by
error) than the information contained in either individual
source of information, taken separately.

This simple example contains nearly all there is to know
in order for a data assimilation scheme to approach
real-life problems assuming a static atmospheric state.
Basically, the error biases need to be known (so that they
can be removed and the observations treated as non-
biased), and the errors need to be Gaussian and of known
variances. Note also the hypothesis of linearity from the
very beginning.

The problem above can be generalized to meteorological
analysis as follows. The sources of information that are
available are a forecast (of error covariance matrix Pf(ti)) and
a set of observations (of error covariance matrix Ri). Note
that all the covariance matrices are assumed to be
symmetric positive-definite (i.e., all eigenvalues are greater
than zero). In fact, the problem is similar to the two-
observation system introduced earlier, namely the problem
is over-determined, except that we deal with error
covariance matrices instead of error variances. We also
need the observation operator Hi in order to map variables
from the control variable space to the observation space and
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write Hi its tangent linear model. The notation HT
i refers in

fact to the adjoint of the tangent linear model of Hi, which
can be different from a simple matrix transpose if the
operator Hi is non-linear. We cite directly the result (e.g., as
derived in Ref. Kalnay, 2003), which is an approximation in
the non-linear case:

Ki ¼ P f tið ÞHT
i HiP

f tið ÞHT
i þ Ri

h i�1
(9)

The analysis errors are described by the following error
covariance matrix, in the linear case approximation:

Pa tið Þ ¼ I� KiHi½ �P f tið Þ (10)

where I denotes the identity matrix in the state vector
space. Note that we find again that the analyzed state
should feature smaller errors than both the observations
and the a priori, as long as the underlying hypotheses are
verified. The analysis solution minimizes the cost function:

J x tið Þ½ � ¼ x tið Þ � x f tið Þ
h iT

P�1
f x tið Þ � x f tið Þ
h i

þ y0
i � Hi x tið Þ½ �

� �T
R�1 y0

i � Hi x tið Þ½ �
� �

(11)

An iterative process (to find the minimum) allows then
addressing weakly non-linear cases. Given the role of the
Kalman gain matrix in Eq. (4), it is of utmost importance to
specify properly the observation and background error
covariance matrices or their realizations. Regarding the
observations, the closer they are to the raw measurements,
the more likely they follow distributions that reflect the
known physics in the data collection mechanism (e.g.,
Gaussian or Poisson Laws). This makes the case for
assimilating raw data instead of retrievals. Regarding the
background, several methods including weather-depen-
dent ensembles have been proposed to sample this matrix.
So far, the methods that seem to work best are still derived
from the so-called NMC method (Parrish and Derber,
1992), which considers the differences between two sets of
forecasts of different lead times but valid at the same time.

5. Implementations of Data Assimilation in NWP

Today’s data assimilation systems implement the
equations above with various levels of approximation.

5.1. Optimal interpolation

The optimal interpolation framework makes the
assumption that the influence of each observation is
limited to a surrounding region (i.e., affects only a few
elements of the state vector). This hypothesis is practical
because it means that Eq. (4) can be seen as a succession of
independent scalar equations. The realization of the matrix
Ki for each scalar equation only relates to a subset of the
total set of observations, thus reducing greatly the
dimension of the matrix whose inversion is needed to
obtain Ki.

However, the main drawback is related to the fact that
the problem is transformed from global to local. It becomes
very difficult to ensure consistency between the large-
scale (global) waves and the small-scale (local) waves.
Also, the disparity in observation coverage results in
analyses with inhomogeneous and discontinuous statisti-
cal properties. For these reasons, this system is usually not
used any more for global NWP.

5.2. Three- and four-dimensional variational assimilation

(3DVAR and 4DVAR)

These two algorithms are the most popular in today’s
global NWP assimilation systems. The 3DVAR approach
avoids the assumption that observations influence only a
subset of the estimation problem (or some of the state
vector’s variables) while removing also the costly compu-
tation of the matrix Ki. However, another hypothesis is
introduced. The analysis solution, believed to be fairly
close to the initial a priori estimate, is found via an iterative
method. To achieve this, the cost function, its gradient, and
the derivative of the gradient (so-called Hessian) are
estimated successively and used in a conjugate gradient
method (or the like, e.g., quasi-Newton or Lanczos):

rJ x tið Þ½ � ¼ 2P�1
f x tið Þ � x f tið Þ
h i

� 2HT
i R�1 y0

i � Hi x tið Þ½ �
� �

(12)

rrJ x tið Þ½ � ¼ 2P�1
f þ 2HT

i R�1Hi (13)

It is important to ensure the convergence of the cost
function and the conditioning of the Hessian (the ratio
between the largest and the smallest eigenvalues). Also,
the method is only optimal for as long as the cost function
is convex, i.e. there is one and only one local minimum in
the vicinity. To improve the preconditioning of the
problem it can be useful to change the state vector
variable, e.g.: x tið Þ ¼ L�1x tið Þwhere P f

i ¼ LLT .
In three-dimensional variational assimilation (3DVAR),

the observation operator neglects the time of the
observations. All observations falling within a certain
window (so-called analysis time window), for example +/–
3 hours or +/– 1 hour around the analysis time, are
assumed to be valid at the same time as the background.
The First-Guess at Appropriate Time (FGAT) refines this
approach by actually considering the background infor-
mation propagated by the forecast model to the observa-
tion time.

The four-dimensional variational data assimilation
(4DVAR) extends this approach to incorporating the
forecast model (and its tangent linear and adjoint) in Hi

(and its tangent linear and adjoint). A major difference
with the 3DVAR FGAT is that the 4DVAR uses the model
dynamics and physics to create a dynamically and
physically consistent four-dimensional meteorological
state in the 6–12 hour-long analysis time window. As a
result, the 4DVAR is able to extract more information from
the observations by differentiating better between real
signal (e.g., changing weather at fixed stations for
example) and noise. To achieve this, a 4DVAR system
requires that a tangent linear model of the forecast model
and its adjoint be available. Usually, these are derived
using simplifications in the forecast model (e.g., simplified
physics). Today, 4DVAR schemes bear the reputation of
being the most advanced in operations.



Fig. 2. Degrees of Freedom for Signal (DFS) of the observing systems assimilated in Meteo-France global 4DVAR operational NWP system as of mid-2008.

The results are binned by latitude and altitude bands (from bottom to top: troposphere, upper troposphere, lower stratosphere (UTLS), stratosphere).

Observations from surface, aircraft, radiosonde, and wind profiler are typically referred to as ‘‘conventional’’, SATWIND refers to Atmospheric Motion

Vectors from satellite, BRIGHT. TEMP. refers to the brightness temperature radiances from HIRS, AMSU-A, AMSU–B, MHS, and SSM/I, HS.IR refers to

hyperspectral infra-red brightness temperature radiances (AIRS and IASI), and GPSRO refers to GPS radio occultation.

Fig. 2. Degrés de liberté du signal des différents systèmes d’observation assimilés dans le 4DVAR global opérationnel à Météo-France mi-2008. Les résultats

sont groupés par bandes de latitudes et par bandes d’altitudes (de bas en haut : troposphère, troposphère supérieure et basse stratosphère, et stratosphère).

Les observations depuis la surface, les avions, les radiosondes et les profileurs de vents sont données conventionnelles, ‘SATWIND’ désigne les vecteurs vents

déduits depuis les satellites, ‘BRIGHT. TEMP.’ désigne les températures de brillance des instruments HIRS, AMSU-A, AMSU–B, MHS et SSM/I, ‘HS.IR’ désigne

les températures de brillance des instruments infra-rouge hyperspectraux (AIRS et IASI), et ‘GPSRO’ désigne la radio-occultation GPS.
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The 4DVAR accounts implicitly for the component of
forecast error caused by propagation of errors in initial
conditions (Pires et al., 1996). However, the formulations
discussed so far neglect the second contribution to forecast
error growth, the model error h(ti) mentioned in Eq. (1).
This omission (perfect model assumption) is said to
represent a strong constraint. Practically, this imposes a
limitation on the length of the analysis time window. One
proposed formulation is the weak-constraint 4DVAR
(Sasaki, 1970). It allows for the existence of model error,
thus permitting to extend the time window to analyze
observations over several days, for example. Weak-
constraint 4DVAR is still an ongoing research topic
(Trémolet, 2007).

6. Impact of Satellite Data Assimilation

Various measures of impact of data have been devised
over the years to help assess the impact of new data. We
present here two measures. First, the quantity defined as
Degrees of Freedom for Signal (DFS) quantifies the amount
of information brought in by observations. It indicates the
total number of pieces of information resolved by a given
observation system (Cardinali et al., 2004). Fig. 2 shows the
DFS in Meteo-France operational NWP system as of mid-
2008. The first source of information in the Northern mid-
latitudes (in terms of DFS) is the radiosonde network. Note
the importance of satellite data in the Southern Hemi-
sphere.

Operational NWP systems routinely upgrade their
numerical models and assimilation models while adding
on new sources of satellite observations. This results in
improved forecast performance such as shown in Fig. 3
(left panel). It is however very difficult to separate in this
improvement the contribution of model changes (e.g.,
resolution) and that of data assimilation.

For that purpose, we extend our discussion to the
European Reanalysis Projects, ERA-40 (Uppala et al., 2005)
and ERA-Interim (Simmons et al., 2007). In each reanalysis,
a fixed atmospheric model was used throughout the time
period studied (1957–2002, and 1989–present, respec-
tively). The only changes over time are (rare changes) in
the sources of sea surface temperatures and the evolutions
of the observing system over the whole time period.
Assuming that the atmospheric predictability did not
change significantly (though it has variations of its own),



Fig. 3. Timeseries of forecast error anomaly correlations (in percents) of 3-, 5-, and 7-day forecasts (labeled D+3, D+5, D+7, respectively), in the Northern

Hemisphere (thick line) and the Southern Hemisphere (thin line) for ECMWF operations (left plot) and two generations of ECMWF reanalyses (right plot),

ERA-40 and ERA-Interim. Each reanalysis uses a fixed forecast model throughout the whole reanalyzed time period. Figure courtesy of A. Simmons, ECMWF.

Fig. 3. Séries temporelles des corrélations d’anomalies d’erreurs de prévisions (en pourcents) des prévisions à 3, 5 et 7 jours (marquées D+3, D+5, D+7,

respectivement), dans l’Hémisphère Nord (traits épais) et l’Hémisphère Sud (traits fins), pour le système de prévision numérique du temps opérationnel au

Centre européen de prévisions météorologiques à moyen terme (CEPMMT, figure de gauche) et deux générations de réanalyses (figure de droite), ERA-40 et

ERA-Interim. Chaque réanalyse utilise un modèle de prévision à configuration figée pendant la période réanalysée. Figure fournie par A. Simmons, CEPMMT.
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the time evolutions of forecast scores in reanalysis shown
in Fig. 3 (right panel) may be interpreted to assess the
impact of changes in the observing system. During the
satellite-data rich era (post 1989), the improvement in
forecast score in ERA-Interim are small (they appear to
be more obvious after the introduction of AMSU-A,
Fig. 4. Variational bias corrections (radiance brightness temperature, in K) ca

assimilated in that reanalysis. Refer to Fig. 1 for the correspondence between c

www.ecmwf.int/research/era to access ERA-Interim products.

Fig. 4. Corrections de biais variationnelles (températures de brillance, en K), ca

assimilés dans cette même réanalyse. Se référer à la Fig. 1 pour la correspondan

Consulter le site http://www.ecmwf.int/research/era pour accéder aux produit
mid-1998). However, a similar figure (not shown here)
but covering a longer time period, from conventional data
only to modern times (1957–2002), shows that introduc-
ing VTPR data in 1972, and AMV and TOVS data in 1979,
made clear marked impacts in ERA-40. Overall, with the
NWP system used in ERA-40, the introduction of satellite
lculated by the ERA-Interim reanalysis for a selection of HIRS channels

hannels/satellites and vertical and spectral sounding regions. See http://

lculées par la réanalyse ERA-Interim pour une sélection de canaux HIRS

ce entre canaux/satellites et les régions verticales et spectrales sondées.

s ERA-Interim.

http://www.ecmwf.int/research/era
http://www.ecmwf.int/research/era
http://www.ecmwf.int/research/era
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data helped gain as much as three days of predictability in
the useful forecast range (when scores fall below 60%
correlation) as compared to the 1960s.

This quantitative improvement allowed by the intro-
duction of new instruments is impressive but it should be
emphasized that such improvement did not happen at
once. It is only through long iterative loops of research,
development, and trial (comparison with observations)
that NWP systems have matured to the state where they
can effectively assimilate all these data (with benefits for
reanalysis, several decades after original data collection).
The accomplishments of data assimilation have not only
been to improve the quantitative forecasts through the
provision of better conditions, but also to accompany the
developments in NWP and bridge the gap between models
and observations. This loop does not stop here as will be
seen below.

7. Ongoing developments and future prospects

This section discusses the developments ongoing in data
assimilation and the challenges ahead. On the methodology
side, the first topic that is of immediate relevance to satellite
data assimilation is the recent implementation in several
systems of methods that correct for systematic differences
(biases) between background and observations. Derber and
Wu (Derber and Wu, 1998) applied early on concepts now
known as variational bias correction. The idea is to solve for
bias correction coefficients in the variational analysis, by
introducing these coefficients as part of the state vector. The
advantage of this method is that all the data contribute to
determining the bias of a particular instrument. From an
information point of view, this approach should be superior
to any independent bias correction method alone, provided
all the assumptions are satisfied. So far, this method has only
been applied to the assimilation of passive infrared and
microwave radiances, but other data could soon benefit
from this approach.

A second topic of relevance is the development of
methods to evaluate the impact of observations and the
sensitivity of analyses to observations (Cardinali et al.,
2004). This is especially important when it comes to
understanding the sources of information feeding today’s
NWP systems. Another active topic of research is the
automatic specification of observation and background
errors (Desroziers et al., 2005). Another potential prospect
is the refinement of observation operators to reproduce the
slanted geometry of so-called nadir sounders. Out of all
these topics, only the first one has reached the operational
stage in various NWP systems.

There are also new approaches to data assimilation,
such as weak-constraint 4DVAR discussed earlier. Another
is the development of various filters to approximate the
full Kalman filter, which is too expensive because it
requires many model integrations in order to propagate
the analysis error covariance matrix in time. Among these
filters are the Extended Kalman Filtering (EKF), the
Ensemble Kalman Filtering (EnKF), and the Ensemble
Adjustment Kalman Filtering (EAKF) (see Ref. (Thomas
et al., 2009) and references therein for a recent update).
Also, Wang and Li (Wang and Li, 2009) recently proposed
to extract the analysis information via a four-dimensional
singular value decomposition.

On the satellite data side, one area of rapid current
development is the assimilation of cloud and precipitation
data. So far, the only cloud-affected data assimilated
operationally are in the microwave range. The challenges
before moving toward direct assimilation for all passive
(microwave and infrared) data have to do with the large
gap that separates today’s NWP models from reality when
it comes to the representation of cloud and precipitation
microphysics. Reproducing the processes involved in the
measurement process (scattering) requires complex
modeling and (ideally) a good knowledge of the micro-
physical environment. As a result, the corresponding
observation operators capable of carrying out such
modeling are strongly non-linear. Another issue is the
departure of the error distributions from Gaussian
distributions. To the first order, this is related to the
variability of water vapor, which cannot take on either
negative values or values beyond saturation. Beyond that,
the transitions between water phases represent discontin-
uous limits that translate themselves into non-continuous
modeling processes. Overall, there are still several issues
before the assimilation of such data becomes a research
area of the past (Errico et al., 2007), but it is only through
data assimilation and the iterative loop research-develop-
ment-validation that this will become reality.

Furthermore, data assimilation offers a framework to
extract value from past observations, even for decommis-
sioned weather satellites whose data never got used in
real-time. This framework is the reanalysis process (e.g.,
Uppala et al., 2005). It enables to make use of data (re-
)processed with the latest science and algorithms. The
apparently unchallenging exercises of data reprocessing
and reanalysis enable one to learn new lessons from old
data, by helping isolate and (ultimately) understand the
sources of drift in satellite measurements. For example,
Fig. 4 shows the HIRS bias corrections calculated by the
now 20-year-long ERA-Interim reanalysis. The bias varia-
tions are usually found to be consistent with each other,
with offsets between them. This could reflect differences
between the satellites in the absolute calibration of the
observations, or in the measurement modeling processes
that are not fully understood. Note that HIRS NOAA-18,
HIRS NOAA-19 and HIRS METOP-A stand out as compared
to the other HIRS (see for example channel 2); they happen
to be of a new generation (HIRS/4). Atmospheric reanalysis
enables to improve our knowledge of the past weather for
climatological or commercial purposes (e.g., insurance risk
modeling). This is also a means to generate high-resolution
datasets based on consolidated, quality-controlled obser-
vations and that can serve to improve today’s seasonal
forecast models. Ultimately, this will help better under-
stand the discrepancies between what we think we know
of the atmosphere (theory and modeling) and what
observations actually tell us (reality and experiment).

Satellite data reprocessing may bring about new
products especially useful in a reanalysis framework. One
example is the reprocessing of the long record of Advanced
Very High Resolution Radiometer (AVHRR, onboard the
NOAA satellites) imagery. This would enable to derive AMVs
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over the Polar Regions in a fashion similar to MODIS AMVs.
Another promising area of research is the extraction and
assimilation of objects, such as vortex anomalies (Michel
and Bouttier, 2006). An extension of this work to general
imagery could enable using the large amounts of Earth
image data (dating back to the 1960s), which have so far
been largely ignored for quantitative atmospheric studies.

Overall, all the satellite observations of the atmosphere
assimilated today originate from fundamental interactions
of the electromagnetic waves with the atmosphere. Other
Earth sciences already make use of a different form of
fundamental interaction (gravity) with the Earth elements.
For example, space geodesy measures gravity fields in order
to retrieve information about the repartition of masses in
the Earth system. The monitoring of precise satellite
altimetry results from gravitational interaction of the
gravity field with the satellite carrying the instrument. This
enables to measure accurately the ocean height above a
reference surface, but also to remotely sense groundwater
storage. Both applications are relevant to meteorology since
NWP requires boundary conditions over ocean and land. As
the various Earth sciences are integrated into more
sophisticated Earth system models, the importance of these
different types of interactions (electromagnetic, gravita-
tional) may bring complementary pieces of information.

8. Conclusions

Forty years after the first satellite measurements of the
Earth’s atmosphere, the prediction of the weather by
numerical weather prediction has gained several days of
improvement that can be attributed to the assimilation of
satellite data. This measurable, objective impact must not
hide that this improvement was gradual as numerical
models and data assimilation schemes were upgraded in
line with each other to benefit from these global data.

All the satellite observations of the atmosphere rely on
the interaction of electromagnetic waves with matter. In
data assimilation, so-called observation operators model
these interaction mechanisms, reviewed in the present
paper. Data assimilation forces the four-dimensional
atmospheric representation to reproduce the observation
data within bounds that are observation-error dependent.

As an ever-increasing number of observations of the
atmosphere are collected, the challenges of data assimila-
tion are now not only to keep up with this increase but also
to expand towards so far rather unknown (poorly observed)
quantities, such as aerosols and chemical species. Besides
this forward-looking view, data assimilation also offers
Earth scientists with a framework for integrating past data
while benefiting from today’s advanced modelling and
computational facilities. Although comprehensive Earth-
system models are still a long way in the future, atmospheric
reanalyses already provide very complete environments for
bringing together diverse data sources and understanding
discrepancies between theory and reality. Briefly summa-
rized, reanalyses enable to account for the aliasing problems
inherent to the interpretation of climate trends from
individual observing system data records affected by
changes in observation practice (such as location, local
time, and spectral sampling).
So far, data assimilation in meteorology (and now
atmospheric studies in general) has greatly contributed by
showing the way to the other Earth sciences. It may not be
surprising if the years to come saw other areas of
geophysical research, such as space weather, oceanogra-
phy, and geodesy come up with new concepts in data
assimilation, only waiting to be embraced by meteorology.
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