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A B S T R A C T

The present article reports studies to develop a univariate model to forecast the summer

monsoon (June–August) rainfall over India. Based on the data pertaining to the period

1871–1999, the trend and stationarity within the time series have been investigated. After

revealing the randomness and non-stationarity within the time series, the autoregressive

integrated moving average (ARIMA) models have been attempted and the ARIMA(0,1,1)

has been identified as a suitable representative model. Consequently, an autoregressive

neural network (ARNN) model has been attempted and the neural network has been

trained as a multilayer perceptron with the extensive variable selection procedure.

Sigmoid non-linearity has been used while training the network. Finally, a three-three-one

architecture of the ARNN model has been obtained and after thorough statistical analysis

the supremacy of ARNN has been established over ARIMA(0,1,1). The usefulness of

ARIMA(0,1,1) has also been described.

� 2009 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Le présent article rapporte les études pour développer un modèle univarié susceptible de

prédire la pluviosité de mousson (juin–août) sur l’Inde. Basées sur les données se

rapportant à la période 1871–1999, tendance et stationnarité ont été recherchées au sein

de séries temporelles. Après avoir révélé le caractère aléatoire et non stationnaire au sein

de celles-ci, les modèles autorégressifs (ARIMA) à moyenne mouvante intégrée ont été

explorés et le modèle ARIMA (0,1,1) a été identifié comme un modèle représentatif

approprié. En conséquence, un modèle autorégressif à réseau neuronal (ARNN) a été

exploré et le réseau neuronal a été essayé en tant que perceptron multicouche avec

processus de sélection extensive variable. Finalement, une architecture 3-3-1 du modèle

ARNN a été obtenue et après analyse statistique approfondie, la suprématie du modèle

ARNN sur le modèle ARIMA (0,1,1) a été établie. L’utilité d’ARIMA (0,1,1) a aussi été décrite.

� 2009 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

In an agricultural country like India, the success or failure
of crops and water scarcity in any year is a matter of greatest
concern and these problems are highly associated with the
behaviour of the summer monsoon rainfall. Mean monsoon
rainfall over India, as a whole during June–September, is
88 cm with a coefficient of variation of 10% (Rajeevan, 2001).
Accurate, long lead prediction of monsoon rainfall can
improve planning to mitigate the adverse impacts of
monsoon variability and to take advantage of favorable
conditions (Reddy and Salvekar, 2003). The summer
monsoon precipitation over India is dominated by the
semi-permanent monsoon trough, which extends from
West Pakistan to the North Bay of Bengal across Northwest
India and the Westward moving synoptic disturbances
developing over the North Bay of Bengal (Mohanty and
Mohapatra, 2007). In the paper by Rajeevan (2001), the
status and future prospects of long-range forecasts of Indian
summer monsoon have been reviewed. In another work,
Krishnamurthy and Shukla (2000) studied the interseasonal
and interannual variability of summer monsoon rainfall
over India. In the following paragraphs, we present a survey
of the studies on rainfall time series over different parts of
the world. Subsequently, we have mentioned the newness
in our study with respect to the studies available on
monsoon rainfall forecasting over India.

The study of rainfall time series is a topic of great
interest in the field of climatology and hydrology. Some
significant examples in such areas include Delleur and
Kavvas (1978), Shin et al. (1990), Singh (1998). Both
univariate (e.g. Soltani et al., 2007) and multivariate
(Grimaldi et al., 2005) approaches have been attempted to
model the rainfall time series. Impact of other atmospheric
variables on rainfall has been discussed in various
literatures (e.g. Cracknell and Varotsos, 2007; Varotsos,
2005; Chattopadhyay, 2007b). The association between
rainfall and agrometeorological processes is well discussed
(e.g. Jhajharia et al., 2009; Chattopadhyay et al., 2009).
Several stochastic models were attempted to forecast the
occurrence of rainfall, to investigate its seasonal variability
and to forecast monthly/yearly rainfall over some given
geographical area. Study of the rainfall is interesting
because of the associated problems, such as forecasting,
corrosion effects and climate variability and various
literatures have discussed these issues (e.g. Kondratyev
et al., 1995; Kondratyev and Varotsos, 2002; Ferm et al.,
2005, 2006; Tzanis and Varotsos, 2008). In a study by Chin
(1977), where daily precipitation records for 25 years at
more than 100 stations in the conterminous United States
were analyzed, it was proved that the proper Markov order
describing the daily precipitation process has to be
determined and cannot be assumed a priori. Gregory
et al. (1993) applied a Markov chain model to investigate
interannual variability of area averaged total precipitation.
Wilks (1998) applied mixed exponential distribution to
simulate precipitation amount at multiple sites exhibiting
realistic spatial correlation. Chaotic features associated
with the atmospheric phenomena have attracted the
attention of modern scientists (e.g., Varotsos et al., 2007,
Varotsos and Krik-Davidoff, 2006, Khan et al., 2005;
Bandyopadhyay and Chattopadhyay, 2007). In recent
times, the study of the possible presence of chaotic
behavior in rainfall time series has been of much interest
(Sivakumar, 2001). Mathematical tools based on the
theoretical concepts underlying the methodologies for
detection and modelling of dynamical and chaotic
components within a hydrological time series have been
studied extensively by various scientists like Islam and
Sivakumar (2002); Khan et al. (2005) and Jayawardena and
Lai (1994). The existence of deterministic chaos within
rainfall time series is well documented in the literature
(e.g. Rodriguez-Iturbe et al., 1989; Sharifi et al., 1990).
Phase space reconstruction and artificial neural networks
(ANN) are non-linear predictive tools that have been
proposed in the modern literature as effective mathemati-
cal methodologies to be useful to hydrological time series
characterized by chaotic features (Chattopadhyay and
Chattopadhyay, 2008a; Elsner and Tsonis, 1992; Khan
et al., 2005). The suitability of ANN over conventional
statistical approaches has been demonstrated in many
research papers dealing with hydrological processes (e.g.
Chattopadhyay, 2007a ; Chattopadhyay and Chattopad-
hyay, 2008a). Applicability of ANN to rainfall time series is
well documented in the literature. In recent times, the
competence of ANN (Rojas, 1996) in forecasting chaotic time
series has been established by several authors (e.g. Principe
et al., 1992; Oliveira et al., 2000; Silverman and Dracup,
2000). Prediction of atmospheric events, especially rainfall,
has benefited significantly by voluminous developments in
the application field of ANN and rainfall events and
quantities have been predicted statistically (e.g. DelSole
and Shukla, 2002; Mohanty and Mohapatra, 2007). The
advantages of ANN over traditional statistical and numerical
weather prediction approaches have been discussed by
McCann (1992), Kuligowski and Barros (1998) and Silver-
man and Dracup (2000). Several research papers are
available where the suitability of the ANN approach has
been established quantitatively over conventional statisti-
cal rainfall prediction procedures (e.g. Chattopadhyay,
2007a; Hastenrath, 1995; Toth et al., 2000; Ramirez et al.,
2005; Chattopadhyay, 2007b; Chattopadhyay and Chatto-
padhyay, 2008b). Guhathakurata (2008) generated an ANN-
based model that captured the input-output non-linear
relationship and predicted the monsoon rainfall in India
quite accurately. The purpose of the present article is to
investigate the stationarity within the average monsoon
rainfall time series in India and subsequently to model this
time series through autoregressive approach.

The Asian monsoon circulation influences most of the
tropics and subtropics of the Eastern Hemisphere and a
major portion of the Earth’s population (Chattopadhyay,
2007b). The southwest (summer) and the northeast
(winter) monsoons influence weather and climate be-
tween 30N and 30S over the African, Indian and Asian land
masses (Reddy and Salvekar, 2003, Chattopadhyay,
2007b). The variability in the monsoon rainfall depends
heavily upon the sea surface temperature anomaly over
the Indian Ocean (Clark et al., 2000). As the extra tropical
circulation anomalies display energy dispersion away from
the region of anomalous tropical convection, they have
been taken to mean a Rossby wave response to the latent



Fig. 1. Autocorrelation function of the time series of the summer-

monsoon rainfall amount over India.

Fig. 1. Fonction d’autocorrélation des séries temporelles de quantité de

pluie de mousson d’été sur l’Inde.
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heat release associated with the tropical convection
(Ferranti et al., 1990). In regions of anomalous tropical
heating, there is a dynamical response with anomalous
large-scale ascent and upper tropospheric divergence,
which acts as a Rossby wave source (Sardeshmukh and
Hoskins, 1988) for extratropical waves. The summer
monsoon (June–August) is the most productive period in
India with respect to its agricultural practices. Moreover,
the conserved rainwater for this period is used for future
irrigation purposes in this country. Therefore, forecasting
of average summer monsoon rainfall is necessary for
future agricultural and irrigation modelling over this
country. A plethora of literature is available where the
summer-monsoon rainfall over this country has been
predicted through multivariate approach (e.g. Chattopad-
hyay, 2007a, 2007b; Chattopadhyay and Chattopadhyay,
2008a, 2008b and references therein). However, the
multivariate approach requires various other parameters
which themselves are characterized by chaotic properties.
The autoregressive approach, which is a univariate
approach, depends solely upon the concerned variable
and therefore is free from the effect of other variables.
Dahale and Singh (1993) adopted autoregressive approach
to monsoon rainfall time series over India and identified
third order autoregressive model as the best fit. In the
present paper, we have viewed the autocorrelation
structure of the monsoon rainfall time series and
consequently adopted autoregressive integrated moving
average (ARIMA) approach instead of tradition autore-
gressive (AR) approach. Finally, we have implemented
ANN in autoregressive manner and compared its perfor-
mance statistically with the ARIMA-based model. The
methodology and implementation procedure are de-
scribed in the subsequent sections.

2. Methodology

2.1. Generation of autoregressive process

The data used in the present article consists of the
average summer monsoon rainfall over India during the
period from 1871 to 1999. The data are collected from
http://www.tropmet.res.in. Firstly, the autocorrelation
structure has been investigated in Fig. 1. It is apparent
from the figure that the time series has no significant serial
dependence. Moreover, there are very small positive as
well as negative spikes in the autocorrelation function. It
should be noted that computing up to lag 60, the
autocorrelation function is not gradually decaying to zero.
However, at some points the autocorrelation almost
vanishes. In some other points, the autocorrelation is
becoming positive or negative. This indicates that the time
series is not stationary. Moreover, randomness is discern-
ible in the autocorrelation structure. Similar pattern of
autocorrelation is available in the time series of levels of
seasonal Nile flood obtained by El-Fandy et al. (1994). In
the said work, the authors adopted ARIMA to model the
said time series. Following their approach, ARIMA would
be adopted in the present time series-modeling problem.

In the next step, it is examined whether there is any
linear trend within the time series. A basic approach in
testing for trends is the regression approach (Woodward
and Gray, 1993, 1995). In the present problem, the months
(t) constitute the independent variable and maximum
temperature (Yt) the dependent variable. Thus, the model
is Yt = a + bt + Et, where Et are the residuals, a is the
regression constant, b is the regression parameter and t

varies from 1 to 129. The estimates for b and a are given by

b̂ ¼

Xn

t¼1

t � t̄ð ÞYt

Xn

t¼1

t � t̄ð Þ2
(1)

â ¼ Ȳ� b̂t̄ (2)

In the present paper, the values of the estimates for b

and a are 0.0036 and 203.26. Under the assumption that
the residuals are independent and normally distributed
with zero mean, the estimated standard error for the
estimate of b is (Woodward and Gray, 1993, 1995)

SE 1ð Þ b̂
� �

¼
12
Xn

t¼1

Yt � â� b̂t
� �2

n� 2ð Þn n2 � 1ð Þ

2
66664

3
77775

1
2

(3)

The null hypothesis of no linear trend is based on the
assumption that b̂=SE 1ð Þ b̂

� �
is distributed as student’s t

with (n-2) degrees of freedom. In the present article, its
value is 0.6922. Thus, the null hypothesis is accepted and it
is concluded that there is no linear trend within the time
series.

A time series can be modeled by an autoregressive
[AR(p)], a moving average [MA(q)], an autoregressive
moving average [ARMA(p,q)], or an ARIMA(p,d,q) model.
The ARIMA, popularized by Box and Jenkins (1976), is used
for describing a wide variety of time series behaviour. This
model is either stationary or non-stationary in the
boundary of the stationary region (Woodward and Gray,

http://www.tropmet.res.in/
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1993). A detailed description of the ARIMA process and its
theoretical background is available in (Box et al., 2007). An
ARIMA(p,d,q) process is given by the equation (Box et al.,
2007):

f Bð Þrdzt ¼ u0 þ u Bð Þat (4)

Here, B is the backward shift operator and

f Bð Þ ¼ 1�
Xp

k¼1

fkBk (5)

u Bð Þ ¼ 1�
Xq

k¼1

ukBk (6)

Some examples of application of ARIMA in the non-
stationary meteorological time series include El-Fandy
et al. (1994), Woodward and Gray (1993,1995) and Visser
and Molenaar (1995). Three ARIMA(p,d,q) models namely
ARIMA(0,1,1), ARIMA(0,2,2) and ARIMA(1,1,1) are now
developed. Outcomes of the models are judged statistical-
ly. The three ARIMA models can be presented as:

ARIMA(0,1,1) process

rzt ¼ 1� u1Bð Þat (7)

ARIMA(0,2,2) process

r2zt ¼ 1� u1B� u2B2
� �

at (8)

ARIMA(1,1,1) process

rzt � f1rzt�1 ¼ 1� u1Bð Þat (9)

Since the time series under consideration does not have
any seasonal pattern, it is not required to take p,d and q

greater than 2. The results will be discussed in subsequent
sections.

2.2. Generation of autoregressive neural network

In the last section of the present paper, the non-
linearity and non-stationarity of the time series have been
established and non-stationary time series models have
been generated. In the present section, ANN would be
adopted to model the same time series. The ANN has been
generated in autoregressive manner and consequently the
model has been named as autoregressive neural network
(ARNN) model. An ordinary autoregressive model of order
p is written as

z tð Þ ¼
Xp

i¼1

fiz t � ið Þ þ 2 tð Þ (10)

In Eq. (10), a linear function FL can be introduced, in
which case the equivalent form of (10) would be (Dorffner,
1996)

z tð Þ ¼ FL z t � 1ð Þ; z t � 2ð Þ; . . . ; z t � pð Þð Þ þ 2 tð Þ (11)

Replacing L by an ANN model leads to the ARNN model.
A few examples of ARNN studies include Temizel and Caset
(2005), Sallehuddin et al. (2007) and Trapletti et al. (2000).
An ARNN application to the modeling of geophysical time
series is available in Chattopadhyay and Chattopadhyay
(2009). The ARNN model can be written as (Dorffner, 1996)

z tð Þ ¼ FARNN z t � 1ð Þ; z t � 2ð Þ; . . . ; z t � pð Þð Þ þ 2 tð Þ (12)

At this juncture, it is necessary to decide the number of
predictors in the ARNN model. This is done by fitting
autoregressive (AR(p)) models to the time series. Testing
AR models for p equals 1, 2, 3 and 4 and computing the
Akaike’s information criterion (AIC) statistics for all the
time models the AR(4) model is identified as the best and
consequently four predictors are used to generate the
ARNN model. It should be noted that AIC is a screening
statistic whose minimization implies best predictive
model. The AIC is given by (Storch and Zwiers, 1999)

AIC ¼ nlog 2pŝE
2

� �
þ

SSE l1 ;...;l pf g
ŝE

2
þ 2 p (13)

Details of the symbols used in the above expression are
given in page 167, of Storch and Zwiers (1999). The neural
network model adopted here belongs to the category of
multilayer perceptron (MLP) (Gardner and Dorling, 1998 ;
Gardner and Dorling, 1999). The theoretical details of MLP
are available in various texts on ANN (e.g. Rojas, 1996 and
Pal and Mitra, 1999); its suitability in hydrological
modelling is well established in literature (Chattopadhyay
and Chattopadhyay (2008a, 2008b) and references there-
in). Maier and Dandy (2000) presented an extensive review
of the application of ANN in predicting water resource
variables. In MLP, each network consists of several simple
processors called neurons, or cells, which are highly
interconnected and arranged in several layers. There are
three basic types of layers: input layer, hidden layer(s) and
output layer. Input and output layers are connected
through hidden layer(s). There may be one to several
hidden layers in between input and output layer. In
mathematical form, the adaptive procedure of a feed
forward MLP can be presented as

wkþ1 ¼ wk þ hdk (14)

dk ¼ �rE wkð Þ (15)

The above equation represents an iteration process that
finds the optimal weight vector by adapting the initial
weight vector w0. This adaptation is performed by
sequential introduction of a set of input and target vectors
to the network. The positive constant h is called the
learning rate. The direction vector dk is the negative
gradient of the output error function E.

In the present problem, the dataset (i.e. the time series)
consists of 129 data points. Since there are four predictors
in autoregressive manner, the proposed model can be
written as:

z tð Þpredicted ¼ FARNN z t � 1ð Þ; z t � 2ð Þ; z t � 3ð Þ; z t � 4ð Þð Þ
þ 2 tð Þ (16)

In this model, the neural network is trained through
Kalman Filtering with sigmoid non-linearity in both
hidden and output layer. From the entire dataset, 70% of
the data are chosen randomly to train the ARNN and the
remaining 30% are chosen as the test data. The entire
dataset is used as the validation set. The minimization of



Fig. 2. Scatter plots showing the association between actual summer

monsoon rainfall and predictions from ARIMA(0,1,1) (a), ARIMA(0,2,2) (b)

and ARIMA(1,1,1) (c).

Fig. 2. Diagramme de dispersion des points montrant l’association des

points entre pluie de mousson d’été actuelle et prédictions à partir

d’ARIMA (0,1,1) (a), ARIMA(0,2,2) (b) et ARIMA (1,1,1) (c).

Fig. 3. Scatter plots showing the positive linear association between

actual summer monsoon rainfall and predictions from autoregressive

neural network (ARNN) model.

Fig. 3. Diagramme de dispersion des points montrant l’association

positive linéaire entre pluie de mousson d’été actuelle et prédiction à

partir du modèle autorégressif à réseau neuronal (ARNN).
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the root mean squared error is chosen as the stopping
criterion. Genetic Algorithm trains the network through
extensive variable selection. The maximum number of
hidden nodes is chosen as 24 using the method proposed
Table 1

Measures of Willmott’s indices and Pearson correlation for the

Tableau 1

Mesures des indices de Willmott et corrélation de Pearson pou

Statistics ARIMA(0,1,1) ARI

Willmott’s index 0.972 0.81

Pearson correlation �0.427 0.76
by Perez et al. (2000). After training through extensive
variable selection, the final architecture (i.e. input nodes–
hidden nodes–output node) combination comes out to be
3-3-1. Performance of the model would be discussed
statically in the subsequent section.

3. Discussion

The first part of the discussion is to present a scatter
plots for the (actual-predicted) pairs pertaining to all of the
five models. In Fig. 2a, the scatter plot for ARIMA(0,1,1)
shows that there is a negative association between actual
and predicted rainfall. A linear regression line has been fit
to the plot and it is seen that there is a tendency towards
linearity but there are significant deviations from the
linear regression line. The Fig. 2b, which corresponds to
ARIMA(0,2,2) model, shows a good positive linear associa-
tion between actual and predicted values and the
regression line has a significant closeness with the data
cloud. This indicates the presence of a good positive
correlation between actual and predicted values. Fig. 2c,
which corresponds to ARIMA(1,1,1), has a widely spread
data points having little closeness to the linear regression
fit. Thus, it is apparently felt that ARIMA(1,1,1) has less
ability than ARIMA(0,1,1) and ARIMA(0,2,2) to represent
the time series under consideration. The Pearson correla-
tion coefficients are calculated for each of the three cases
and Table 1 shows that ARIMA(0,2,2) has the largest
positive correlation; ARIMA(0,1,1) has negative correlation
which is less in magnitude than the ARIMA(0,2,2);
ARIMA(1,1,1) has very small positive correlation. Thus,
models under study.

r les modèles étudiés.

MA(0,2,2) ARIMA(1,1,1) ARNN

5 0.837 0.990

6 0.196 0.987



Fig. 4. Line diagram showing the association between actual summer monsoon rainfall and predictions from autoregressive neural network (ARNN) model.

Fig. 4. Diagramme linéaire montrant l’association entre pluie de mousson d’été actuelle et prédictions à partir du modèle autorégressif à réseau neuronal

(ARNN).
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from the figures and the correlation values, the third
ARIMA model seems to have the least prediction capability.
Willmott (1982) raised some vital questions regarding the
usefulness of Pearson correlation coefficients and the
scatter plots as measures of goodness of fit of a model.
According to Willmott (1982), the main problem associat-
ed with the Pearson correlation coefficients is that the
magnitudes of such correlations are not consistently
related to the accuracy of prediction, where accuracy is
defined as the degree to which model-predicted observa-
tions approach the magnitudes of their observed counter-
parts. Willmott (1982) proposed an ‘index of agreement’ d

as a measure of goodness of fit of a model to the observed
data. This index is given by

d ¼ 1�
X

i

Pi � Oij j2
" # X

i

Pi � Ō
�� ��þ Oi � Ō

�� ��� �2

" #�1

(17)

Here, Pi and Oi denote the predicted and actual values of
the ith observation of the time series. The values of the said
statistic for the three models are presented in Table 1. It is
observed from Table 1 that ARIMA(0,1,1) produces the
maximum values of d. This means that the ARIMA(0,1,1)
fits the best to the monsoon rainfall time series under
consideration. As a further support to this observation, the
Akaike Information Criteria (AIC) are calculated for the
three models. It is found that the ARIMA(0,1,1) produces
minimum AIC (1228.99), whereas, ARIMA(0,2,2) and
ARIMA(1,1,1) produce AIC of 1256.96 and 1243.78
respectively. Since the minimization of AIC indicates
better model, goodness of ARIMA(0,1,1) over the other
models is further supported. The Pearson correlation and
Willmott’s index are calculated also for the ARNN model. It
is found that the values are 0.987 and 0.99 respectively
(Table 1). Thus, it is understood that ARNN outperforms
ARIMA(0,1,1), which produced the maximum Willmott’s
index of agreement (0.972) among the competitive ARIMA
models. However, ARIMA(0,1,1) can be considered as an
alternative to ARNN because of its high Willmott’s index,
which is a little distant from that produced by ARNN
model. A scatter plot is presented in Fig. 3, which
corresponds to the actual versus predicted monsoon
rainfall for the ARNN model. A very prominent positive
and linear association is discernible from this figure. The
data points are so close to the regression line that in some
cases it seem that they are almost coincident with the
regression line. To make the presentation more under-
standable, we have prepared a line diagram in Fig. 4, which
shows that the actual and predicted summer monsoon
rainfall amounts are very close to each other in the case of
ARNN.

4. Concluding remarks

The present article has aimed at developing a univariate
model for the monsoon rainfall time series over India.
Rainfall is an essential component of the hydrological cycle
and the monsoon season (June–August) of India is the most
productive period for agricultural practices in this country.
In some parts of this country, the monsoon rainfall is stored
for future cultivation purposes. Several multivariate
models have been attempted for the said time series.
However, univariate modelling is not very frequent in this
field. Authors of the present paper felt that a univariate
model might be of more importance for predicting the said
time series because it would not require the data for any
other meteorological parameters. It was also felt that a
univariate approach would be more acceptable in areas
where some decisions need to be taken in light of the
limited data availability. Prior to generating the represen-
tative models for the said time series, the serial correlation
pattern of the time series was studied and the absence of
any persistence within the time series was revealed.
Simultaneously, absence of any cyclic pattern was also
perceptible. From this study, it could be understood that
the time series was not characterized by any stationarity.
Instead, the time series was characterized by randomness.
The presence of any linear trend within the time series was
also investigated and it was detected that there was no
linear trend within the time series. Subsequently, a non-
linear time series approach in the form of ARIMA has been
generated for the time series. After judging the three
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ARIMA models statistically, the ARIMA(0,1,1) was identi-
fied as the best model. Finally, an ARNN model was
generated, where the number of predictors was decided on
the basis of an autoregressive approach. Four predictors
were required for the ARNN modelling, where the neural
network was trained as multilayer perceptron with
sigmoid non-linearity. After training through extensive
variable selection by genetic algorithm, it was revealed
that three nodes in the hidden layer with three nodes in
input layer of the final model would be the best network
architecture. Performance of the ARNN was judged
statistically by means of scatter plot presentation and
Willmott’s index computation and it was revealed that the
ARNN model performed better than ARIMA(0,1,1). How-
ever, from the high value of Willmott’s index, it could be
said that ARIMA(0,1,1) was not a negligible model and it
might be an alternative model for forecasting the monsoon
rainfall time series over India if there were no scope for
neural network modelling.
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