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A B S T R A C T

Travel time estimation and reflector imaging can be carried out using the cross

correlations of signals generated by ambient noise sources and recorded at sensor arrays.

We study here the mean and variance of the estimated quantities both with respect to the

distribution of the noise sources and with respect to the distribution of the randomly

scattering medium. In particular, we discuss the trade-off between resolution enhance-

ment due to illumination diversification by scattering and the associated signal-to-noise

ratio reduction, also due to scattering.

� 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Il est possible d’estimer des temps de trajet et d’imager des réflecteurs, en utilisant les

corrélations croisées de signaux émis par des sources de bruit ambiant et enregistrés par

des réseaux de capteurs. Dans cette note, on étudie la moyenne et la variance de ces

estimations vis-à-vis de la distribution des sources de bruit et vis-à-vis de la distribution

du milieu aléatoire diffusant. En particulier on discute du compromis entre l’amélioration

de la résolution et la réduction du rapport signal-sur-bruit, dues à la diffusion.

� 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
1. Introduction

The Green’s function of the wave equation in an
inhomogeneous medium can be estimated by cross
correlating signals emitted by ambient noise sources
and recorded by a passive sensor array (Bardos et al.,
2008; Colin de Verdière, 2009; Shapiro et al., 2005;
Wapenaar and Fokkema, 2006; Weaver and Lobkis,
2001). The main result is that the cross correlation
CT t; x1; x2ð Þ of the signals u (t,x1) and u (t,x2), recorded at
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two sensors x1 and x2 defined by:

CTðt; x1; x2Þ ¼
1

T

Z T

0
uðt; x1Þuðt þ t; x2Þdt; (1)

is related to the Green’s function G(t,x1,x2) between x1 and
x2. In a homogeneous medium and when the source of the
waves is a space-time stationary random field that is delta
correlated in space and time, it has been shown (Roux et al.,
2005; Snieder, 2004) that the t� derivative of the cross
correlation of the recorded signals is proportional to the
symmetrized Green’s function between the sensors:

@tCTðt; x1; x2Þ/ � ½Gðt; x1; x2Þ � Gð�t; x1; x2Þ�: (2)

In an inhomogeneous medium and when the sources
completely surround the region of the sensors the
lsevier Masson SAS. All rights reserved.
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approximate identity (2) is still valid and it can be shown
using the Helmholtz-Kirchhoff theorem (Garnier and
Papanicolaou, 2009; Schuster, 2009; Wapenaar and
Fokkema, 2006). This is true even with spatially localized
noise source distributions provided the waves propagate
within an ergodic cavity (Bardos et al., 2008). To
summarize, when the ambient noise sources are well
distributed around the sensors, the cross correlation as a
function of the lag time t has a peak at plus or minus the
inter-sensor travel time tx1;x2

. However, when the ambient
noise sources have spatially limited support, the recorded
signals are generated by wave energy flux coming from the
direction of the noise sources, which results in an
azimuthal dependence of travel time estimation process
(Stehly et al., 2006). In general, travel time estimation by
cross correlation of noise signals is possible when the line
between the sensors is along the direction of the energy
flux and difficult or impossible when it is perpendicular to
it. This can be explained using a stationary phase analysis
(Garnier and Papanicolaou, 2009; Godin, 2009; Snieder,
2004) and we present this result in Section 3.1. It is,
however, possible to enhance the quality of travel time
estimation by exploiting the enhanced directional diversi-
ty provided by the scattering of waves in a randomly
scattering medium (Garnier and Papanicolaou, 2009;
Stehly et al., 2008). We present and analyze this idea in
Section 3.3.

Cross correlations of signals emitted by ambient noise
sources and recorded by a passive sensor array can also be
used for imaging of reflectors imbedded in the medium
(Garnier and Papanicolaou, 2009, 2010; Gouédard et al.,
2008). The data that is used for imaging is the cross
correlation matrix ðCðt; x j; xlÞÞ j;l¼1;...;N

between pairs of
sensors of the passive array (xj)j = 1,...,N. In Section 4 we
consider imaging functionals that use the cross correlation
matrix to image the reflectors. The forms of these
functionals are motivated by the analysis of the cross
correlation matrix in the asymptotic regime where the
coherence time of the sources is smaller than the typical
travel times to be estimated and used. The imaging
functionals can then be applied in general, in a smooth or
randomly scattering medium.

For travel time estimation and reflector imaging we pay
particular attention to the statistical stability of the
estimation. There are two types of statistical stability in
these problems:
� F
irst there is the issue of statistical stability with respect
to the distribution of the noise sources. This means that
the empirical cross correlation CT depends on the
realizations of the signals generated by the ambient
noise sources. However CT is self-averaging (or statisti-
cally stable) in the sense that the time average in (1) over
an interval of duration T tends to a statistical average
when T is large enough, as shown in Section 2. Therefore,
statistical stability relative to the distribution of the
noise sources can be controlled through the choice of a
long enough recording time-window or by stacking
techniques;

� S
econd there is the issue of statistical stability with

respect to the distribution of the scattering medium. This
means that the cross correlation depends on the
realization of the randomly scattering medium. It is
not in general a self-averaging quantity. Indeed we will
see in this note that fluctuations of the cross correlation
due to the randomly scattering medium can have a large
standard deviation that depends on the spectrum of the
noise sources and on statistical properties of the
scattering medium. Furthermore, statistical stability
with respect to the distribution of the random medium
cannot be controlled in general. In Sections 3.2 and 4.3
we analyze the trade-off between resolution enhance-
ment and signal-to-noise ratio (SNR) reduction due to
scattering by a random medium. We show in Section 3.3
and 4.4 that the use of iterated cross correlations can
improve the SNR. We also carry out some simple
numerical simulations to illustrate the results. They
confirm that the theoretical predictions obtained by
asymptotic analysis can be seen in realistic configura-
tions.

2. Stability with respect to the noise source distribution

We consider the solution u of the scalar wave equation
in a three-dimensional smooth medium with speed of
propagation c(x):

1

c2ðxÞ
@2

u

@t2
�Dxu ¼ nðt; xÞ: (3)

The term n(t,x) models a random field of noise sources. It is
a zero-mean stationary (in time) random process with
autocorrelation function

<nðt1; y1Þnðt2; y2Þ> ¼ Fðt2 � t1ÞKðy1Þdðy1 � y2Þ: (4)

Here <> stands for statistical average with respect to the
distribution of the noise sources. For simplicity we
consider that the process n has Gaussian statistics.

The time distribution of the noise sources is character-
ized by the correlation function F(t2–t1), which is a function
of t2–t1 only by time stationarity. The Fourier transform
F̂ðvÞ of the time correlation function F(t) is a nonnegative,
even, real-valued function proportional to the power
spectral density of the sources (Bochner’s theorem):

F̂ðvÞ ¼
Z

FðtÞeivtdt: (5)

The spatial distribution of the noise sources is
characterized by the autocovariance function
d(y1� y2)K(y1). The process n is delta-correlated in space
and K characterizes the spatial support of the sources. It is
possible to consider a more general form for the spatial
autocovariance function (Bardos et al., 2008). The analysis
then requires the use of semi-classical methods but the
results do not change qualitatively.

We denote by G(t,x,y) the time-dependent outgoing
Green’s function. It is the fundamental solution of the wave
equation

1

c2ðxÞ
@2

G

@t2
�DxG ¼ dðtÞdðx� yÞ; (6)
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starting from G(0, x, y) = @tG(0, x, y) = 0 (and continued on the
negative time axis by G(t, x, y) = 0,8t� 0). When the medium
is homogeneous with speed of propagation c0, the time-
dependent Green’s function G(t, x, y) = Ax,yd(t� Tx,y) where
Ax,y = 1/(4p|x� y|) and Tx,y = |x� y|/c0 is the travel time.

The empirical cross correlation of the signals
recorded at x1 and x2 for an integration time T is defined
by (1). It is a statistically stable quantity, in the sense
that for a large integration time T, the empirical cross
correlation CT is independent of the realization of the
noise sources. We have the following results (the first
two items are proved in Garnier and Papanicolaou,
2009):
� T
he expectation of the empirical cross correlation CT

(with respect to the distribution of the sources) is
independent of T:

<CTðt; x1; x2Þ> ¼ Cð1Þðt; x1; x2Þ; (7)

where the statistical cross correlation C(1) is given by

Cð1Þðt; x1; x2Þ ¼
1

2p

Z
½
Z

Ĝðv; x1; yÞ Ĝðv; x2; yÞKðyÞdy�

� F̂ðvÞe�ivtdv; (8)

and Ĝðv; x; yÞ is the time-harmonic Green’s function (i.e.
the Fourier transform of G(t, x, y)).
� T
he empirical cross correlation CT is a self-averaging
quantity:

CTðt; x1; x2Þ !
T!1

Cð1Þðt; x1; x2Þ; (9)

in probability with respect to the distribution of the
sources.
� T
he covariance of the empirical cross correlation CT is:

CovðCTðt; x1; x2Þ;CTðt þDt; x1; x2ÞÞ

¼ 1

2pT

Z
½
Z

Ĝðv; x1; yÞ Ĝðv; x2; yÞKðyÞdy�2

� F̂ðvÞ2e�ivð2tþDtÞdvþ 1

2pT

Z
½
Z
jĜðv; x1; yÞj2KðyÞdy�

� ½
Z
jĜðv; x2; yÞj2KðyÞdy�F̂ðvÞ2e�ivDtdv; (10)

when BT� 1 (here B is the bandwidth of the noise sources).
The first term in the right-hand side of (10) is of the same
form as the square of the expectation, but the second term
of the right-hand side is different. When the medium is
homogeneous with speed of propagation c0 and the
distance from the source region (assumed here to be
localized) to the sensors is L, then the variance of the
fluctuations can be approximated by

VarðCTðt; x1; x2ÞÞ �
1

29p5TL4

Z
KðyÞdy

� �2 Z
F̂ðvÞ2dv:

(11)
This shows that:
� a
ll noise sources participate in the fluctuations of the
empirical cross correlation (since the volume integral of
the source function K appears in (11));

� t
he standard deviation of the fluctuations decays as

(BT)–1/2 (the square root of the integration time T times
the noise bandwidth B) and as L–2 (the square distance
from the sources to the sensors).

Therefore errors may occur when the averaging time is
not sufficient to ensure that time averages approximate
statistical mean values (Gouédard et al., 2008). However,
the integration time is usually not a limiting factor,
therefore this error can be brought to an arbitariliy small
value and we will neglect it in the following.

3. Travel time estimation

If we consider the expression (8) of the cross correlation
when the noise sources surround the region of interest that
contains the sensors, then the term in the square brackets
can be computed by the Helmholtz-Kirchhoff identity: this
identity yields that this term is proportional to the
imaginary part of the Green’s function and we then find
that the derivative of the cross correlation is proportional
to the symmetrized Green’s function convoluted with the
time correlation function of the noise sources (Garnier and
Papanicolaou, 2009, Section 4.4):

@tCTðt; x1; x2Þ/ � F 	 ½Gð
; x1; x2Þ � Gð�
; x1; x2Þ�ðtÞ: (12)

Travel time estimation is then straightforward as the
singular component of the Green’s function G(t, x1, x2) is
concentrated at time lag t equal to the travel time Tx1 ;x2

.
When the noise sources are spatially localized the
Helmholtz-Kirchhoff identity cannot be used and we
address in this section travel time estimation in this
situation.

3.1. Analysis in the high-frequency regime

We assume from now on that the decoherence time of
the noise sources is much smaller than the typical travel
time that we want to estimate. If we denote by e the (small)
ratio of these two time scales, then we can write the time
correlation function Fe of the noise sources in the form

Feðt2 � t1Þ ¼ Fðt2 � t1

e Þ; (13)

where t1 and t2 are scaled relative to typical travel times.
The hypothesis e� 1 is both natural and useful:
� in
 applications, such as surface wave tomography, noise
records are first bandpass-filtered and then cross
correlated (Shapiro et al., 2005). If the central frequency
v0 of the filter is high enough so that the corresponding
wavelength l0 is much smaller than the typical travel
distance d, then we have e = l0/d� 1. As we will see
below, the resolution by cross correlation is inversely
proportional to the bandwidth, so the hypothesis e� 1
turns out to be natural in order to get some resolution
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Fig. 1. Travel time estimation in a homogeneous medium. The first configuration is plotted in Figure (a): the circles are the noise sources and the triangles

are the sensors. Figure (b) plots the cross correlation C(1) between the pairs of sensors (x1,xj), j = 1,...,5, versus the distance x j � x1

�� ��. The second configuration

is plotted in Figure (c) and Figure (d) plots the corresponding cross correlation C(1). Here F̂ðvÞ ¼ v2expð�v2Þ and c0 = 1.

Fig. 1. Estimation des temps de trajet dans un milieu homogène. La figure (a) est une esquisse de la première situation: les cercles sont les sources de bruit et

les triangles sont les capteurs. La corrélation croisée C(1) entre les paires de capteurs (x1,xj), j = 1,...,5, est dessinée en fonction de la distance x j � x1

�� �� dans la

figure (b). La figure (c) est une esquisse de la seconde situation et la figure (d) dessine la corrélation croisée correspondante. Ici F̂ðvÞ ¼ v2expð�v2Þ et c0 = 1.
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(i.e. an estimate of the travel time with an accuracy
smaller than the total travel time through the region);

� t
he Fourier transform of the time correlation function of

the sources has the form F̂eðvÞ ¼ eF̂ðevÞ, so that the cross
correlation (8) involves a product of Green’s functions
evaluated at high frequencies:

Cð1Þðt; x1;x2Þ ¼
1

2p

Z Z
F̂ðvÞKðyÞ

Ĝðve ; x1; yÞĜð
v
e ; x2; yÞe�ivt

edydv (14)

When e� 1 we can use a geometric asymptotics
approximation for the Green’s function

Ĝðve ; x; yÞ’Ax;yexpði ve Tx;yÞ; (15)

and we find that the expression (14) has the form of a
multiple integral with a smooth amplitude and a rapid
phase. Therefore, a stationary phase analysis appears as an
appropriate tool to study the cross correlations in the
regime e� 1. For simplicity we assume in the following
that the background medium is homogeneous with speed
of propagation c0. Then Ax,y = 1/(4p|x� y|) and Tx,y = |x� y|/
c0. Using stationary phase arguments one obtains the
following expression for the cross correlation in the regime
e small:

@tCð1Þðt; x1; x2Þ ¼
c0

2
Ax1 ;x2

½Kx2 ;x1
Feðt þ Tx1 ;x2

Þ

� Kx1 ;x2
Feðt � Tx1 ;x2

Þ�; (16)

where Kx1 ;x2
is the power released by the noise sources

located along the ray starting from x1 with the direction of
x1–x2 (it is a piece of the ray joining x1 and x2):

Kx1 ;x2
¼
Z 1

0
Kðx1 þ

x1 � x2

jx1 � x2j
lÞdl: (17)

Note that Kx1 ;x2
is not zero only if the ray starting from

x2 and going through x1 extends into the source region. In
other words, sources located along the ray starting from x1

with the direction of x1–x2 (resp. x2–x1) give rise to a
singular component at t ¼ Tx1 ;x2

(resp. t ¼ �Tx1 ;x2
). In

Fig. 1a–b one can see a peak at t ¼ Tx1 ;x j
because the ray

going through x1 and xj intersects the source region. In
Fig. 1c–d one cannot see any peak at t ¼ �Tx1 ;x j
because

the ray going through x1 and xj does not intersect the
source region.

To summarize, when e is small, the cross correlation
C(1)(t, x1, x2) has singular components (at t ¼ �Tx1 ;x2

) if
and only if the ray going through x1 and x2 reaches into the
source region, that is, into the support of the function K.
The results (16), (17) also show that:
� o
nly the noise sources located in a small tube around the
ray joining x1 and x2 contribute to the singular
components of C(1)(t, x1, x2) (this can be seen from the
line integral (17));

� t
he widths of the peaks are determined by the bandwidth

of the noise sources;

� t
he heights of the peaks do not depend on the distance

from the sources to the sensor array.

This last property follows from the stationary phase
analysis and is a consequence of two competing phenom-
ena that cancel each other: on the one hand the geometric
decay of the amplitude of the Green’s function as a function
of the distance from the sources to the sensors, and on the
other hand the increase of the diameter of the small tube
around the ray that contributes to the singular compo-
nents.

3.2. Signal-to-noise ratio reduction and enhanced resolution

due to scattering

In order to analyze the cross correlation technique in a
scattering medium, we first introduce a model for the
inhomogeneous medium. We assume that the medium has
a homogeneous background speed c0 and small and weak
fluctuations responsible for scattering:

1

c2ðxÞ ¼
1

c2
0

½1þ VðxÞ�;

where V(x) is a random process with mean zero and
covariance function of the form

E½VðxÞVðx0Þ� ¼ s2
s l3s rðxÞdðx� x0Þ:
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Here E stands for the expectation with respect to the
distribution of the randomly scattering medium, ss is the
standard deviation of the fluctuations of the speed of
propagation, ls is the correlation length of the fluctuations,
and the function r(x) characterizes the spatial support of
the scattering region. Note that we have assumed that the
correlation length is small enough so that we can consider
that the process V is delta-correlated.

To leading order in the scattering strength the average
cross correlation is the sum of the unperturbed cross
correlation Cð1Þ0 (i.e. the cross correlation (8) in the absence
of scattering) and of an additional term of the form:

E½Cð1Þðt; x1; x2Þ� � Cð1Þ0 ðt; x1; x2Þ

¼ 1

2p

Z Z
v4F̂eðvÞKrðyÞ Ĝðv; x1; yÞ Ĝðv; x2; yÞ e�ivtdydv;

(18)

where

KrðzÞ ¼ rðzÞ s2
s l3s

24p2c4
0

Z
KðyÞ
jy� zj2

dy: (19)

Note that the support of the function K
r

is the support of
r, i.e. the scattering region. K

r
(z) is proportional to the total

power reemitted from z by scattering. Eq. (18), which has the
same form as (8) but with K

r
instead of K, shows that the

random scatterers play the role of secondary sources. The
average cross correlation (18) possesses additional peaks at
t ¼ Tx1 ;x2

(resp. t ¼ �Tx1 ;x2
) due to the scattered waves

provided that there are rays issued from the scattering
region that goes through x1 and then x2 (resp. through x2 and
then x1). Indeed in the high-frequency regime we find

E½@tCð1Þðt; x1; x2Þ� � @tCð1Þ0 ðt; x1; x2Þ ¼
c0

2
Ax1 ;x2

� ½Kr
x2 ;x1

Fð4Þe ðt þ Tx1 ;x2
Þ � Kr

x1 ;x2
Fð4Þe ðt � Tx1 ;x2

Þ�; (20)

where Kr
x1 ;x2

is defined as in (17) but in terms of K
r instead

of K, and Fð4Þe is the fourth-order derivative of Fe. This shows
that:
� a
ll noise sources but only the scatterers along the ray
joining x1 and x2 participate in the additional peaks;

� t
he heights of the additional peaks decay with the square

distance from the sources to the scattering region.

To leading order in the scattering strength and in the
high-frequency regime, we find using again stationary
phase arguments that the variance of the fluctuations of
the cross correlation is:

Z
Varð@tCð1Þðt; x1; x2ÞÞdt ¼

s2
s l3s

211p5c2
0

� ½
Z

v4F̂eðvÞ2dv�
Z

rðzÞ
ðKz;x1

� Kz;x2
Þ2 þ K2

x1 ;z
þ K2

x2 ;z

jz� x1j2jz� x2j2
dz:

(21)

This shows that:
� a
ll noise sources and all scatterers participate in the
fluctuations of the cross correlation due to the randomly
scattering medium (and not only the ones along a
particular ray);

� t
he standard deviation of the fluctuations decay with the

square distance from the sources to the scattering region
and with the square distance from the scattering region
to the sensors;

� in
 terms of the noise bandwidth B, the standard deviation

scales as B1/2 while the amplitudes of the peaks scale as B,
which shows that the relative fluctuations decay with
the bandwidth.

The analysis of the mean and variance of C(1) therefore
shows that scattering can enhance the directional diversity
of the wave fields recorded by the sensors, which can help
in travel time estimation, but it also increases the
fluctuations of the cross correlation, which may make
the additional peaks difficult to detect. The use of fourth-
order cross correlations discussed in the next subsection is
a way to increase the SNR of travel time estimation in
randomly scattering media.

3.3. Use of fourth-order cross correlations

It is possible to estimate the travel time between two
sensors x1 and x2 in a scattering medium by looking at the
main peaks of a special fourth-order cross correlation
Cð3ÞT ðt; x1; x2Þ (C(3) stands for Correlation of Coda of
Correlation) (Stehly et al., 2008). This fourth-order cross
correlation uses the data recorded by an array of
auxiliary sensors xa,k, k = 1,...,Na, and it is evaluated as
follows:
� c
alculate the cross correlations between x1 and xa,k and
between x2 and xa,k for each auxiliary sensor xa,k as in (1);

� c
alculate the coda (i.e. the tails) of these cross correla-

tions:

CT;codaðt; xa;k;xlÞ ¼ CTðt; xa;k;xlÞ1½Tc1 ;Tc2 �ðjtjÞ;
for l ¼ 1;2; k ¼ 1; . . . ;Na;

cross correlate the tails of the cross correlations and sum
�

them over all auxiliary sensors to form the coda cross
correlation between x1 and x2:

Cð3ÞT ðt; x1; x2Þ ¼
XNa

k¼1

Z
CT;codaðt0; xa;k;x1Þ

� CT;codaðt0 þ t; xa;k; x2Þdt0:

This algorithm is parameterized by three important
times:
� t
he time T is the integration time and it should be large so
as to ensure statistical stability with respect to the
distribution of the noise sources;

� t
he time Tc1 should be large enough so that the Green’s

functions ðGðt; xa;k; x1ÞÞt 2 ½Tc1 ;Tc2 �
and ðGðt; xa;k; x2ÞÞt 2 ½Tc1 ;Tc2 �

limited to [Tc1,Tc2] do not contain the contributions of the
direct waves. This means that Tc1 depends on the index of
the auxiliary sensor k and should be a little bit larger than
maxðTxa;k ;x1

; Txa;k ;x2
Þ;
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Fig. 2. Travel time estimation in a scattering medium. The configuration is plotted in Figure (a): the circles are the noise sources, the squares are the

scatterers, the triangles are the sensors, and the empty triangles are the auxiliary sensors. Figure (b) plots the cross correlation C(1) between the pairs of

sensors (x1,xj), j = 1,...,5, versus the distance x j � x1

�� ��. Figure (c) plots the coda cross correlation C(3) between the pairs of sensors when the auxiliary sensors

are used. Figure (d) plots the coda cross correlation C(3) when the auxiliary sensors are not used.

Fig. 2. Estimation de temps de trajet dans un milieu diffusant. La figure (a) est une esquisse de la situation: les cercles sont les sources de bruit, les carrés

sont les diffuseurs, les triangles pleins sont les capteurs et les triangles vides sont les capteurs auxiliaires. La corrélation croisée C(1) entre les paires de

capteurs (x1,xj), j = 1,...,5, est dessinée en fonction de la distance x j � x1

�� �� dans la figure (b). La figure (c) dessine la corrélation croisée C(3), lorsque les capteurs

auxiliaires sont utilisés, et la figure (d) dessine la corrélation croisée C(3), lorsque les capteurs auxiliaires ne sont pas utilisés.
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� t
;

he time Tc2 should be large enough so that the Green’s
functions ðGðt; xa;k; x1ÞÞt2 ½Tc1 ;Tc2 �

and ðGðt; xa;k; x2ÞÞt2 ½Tc1 ;Tc2 �

limited to [Tc1,Tc2] contain the contributions of the
incoherent scattered waves. This means that Tc2 should
be of the order of the power delay spread.

The coda cross correlation Cð3ÞT is a self-averaging
quantity and it is equal to the statistical coda cross
correlation C(3) as T!1:

Cð3Þðt; x1; x2Þ ¼
XNa

k¼1

Z
Ĉ
ð1Þ
codaðv; xa;k; x1ÞĈ

ð1Þ
codaðv; xa;k; x2Þe�ivtdv
Cð1Þcodaðt; xa;k; xlÞ ¼ Cð1Þðt; xa;k; xlÞ1½Tc1 ;Tc2 �ðjtjÞ:

The coda cross correlation C(3) differs from the cross
correlation C(1) in that the contributions of the direct waves
are eliminated and only the contributions of the scattered
waves are taken into account (note that some of the
contributions of scattered waves are also eliminated, but
only those which correspond to small additional travel
times, which are also those which induce small directional
diversity). Since scattered waves have more directional
diversity than the direct waves when the noise sources are
spatially localized, the coda cross correlation C(3)(t, x1, x2)
usually exhibits a stronger peak at lag time equal to the
inter-sensor travel time Tx1 ;x2

(Garnier and Papanicolaou,
2009). In particular, in contrast with the cross correlation
C(1), the existence of a singular component at lag time
equal to the travel time Tx1 ;x2

does not require that the ray
joining x1 and x2 reaches into the source region, but only
into the scattering region.

We illustrate these results in Fig. 2 in which the five
sensors are aligned perpendicularly to the energy flux
coming from the noise sources and the cross correlation
C(1)(t, x1, xj) does not have a peak at lag time equal to the
travel time between the sensors x1 and xj, j = 1,...,5.
However the ray going through the sensors x1 and xj

intersects the scattering region and the coda cross
correlation C(3)(t, x1, xj) has a peak at lag time equal to
the travel time between the sensors. The comparison
between Fig. 2c, d also shows that the auxiliary sensors are
necessary to get the peak of the coda cross correlation.

4. Reflector imaging

In this section we show that cross correlations of signals
emitted by ambient noise sources and recorded by a sensor
array can also be used for imaging of reflectors. The data to
be used for imaging is the matrix of cross correlations
ðCðt; x j; xlÞÞ j;l¼1;...;N

between pairs of sensors of an array
ðx jÞ j¼1;...;N . The objective is to image the reflectors buried in
the medium. Here we consider the case in which there is
only one reflector located at zr. Note that it is often
necessary to have available data sets ðCðt; x j; xlÞÞ j;l¼1;...;N

and ðC0ðt; x j; xlÞÞ j;l¼1;...;N , with and without the reflector,
respectively, so that we can compute the differential cross
correlations DC = C� C0 and migrate them. In general, but
not always, the primary data set C cannot be used directly
for imaging because peaks in the cross correlations due to
the reflector may be very weak compared both to the peaks
of the direct waves, at lag times equal to the inter-sensor
travel times, as well as to the non-singular components
due to the directionality of the energy flux (Garnier and
Papanicolaou, 2009). In many applications where we want
to image localized changes in the environment, such as in
reservoir or volcano monitoring, both data sets are usually
available.

4.1. Analysis in the high-frequency regime

By a stationary phase analysis and a Born approxima-
tion for the reflector the singular components of the
differential cross correlations C(1)(t, x1, x2) can be identified
(Garnier and Papanicolaou, 2010). This is important
because this information will in turn allow us to determine
the appropriate imaging functional that should be used to
migrate the cross correlations. There are two main types of
configurations of sources, sensors, and reflectors:
� t
he noise sources are spatially localized and the sensors
are between the sources and the reflectors (Fig. 3a).
We call this the daylight illumination configuration. In
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Fig. 3. Passive sensor imaging in a homogeneous medium. The daylight illumination configuration is plotted in Figure (a): the circles are the noise sources,

the triangles are the sensors, and the diamond is the reflector. Figure (b) plots the image obtained with the backlight imaging functional (25). Figure (c) plots

the image obtained with the daylight imaging functional (24).

Fig. 3. Imagerie passive dans un milieu homogène. La figure (a) est une esquisse de la situation: les cercles représentent les sources de bruit, les triangles

sont les capteurs, et le losange représente le réflecteur. La figure (b) est l’image obtenue avec la fonction (25). La figure (c) est l’image obtenue avec la

fonction (24).

[()TD$FIG]

Fig. 4. Passive sensor imaging in a homogeneous medium. The backlight illumination configuration is plotted in Figure (a). Figure (b) plots the image

obtained with the backlight imaging functional (25). Figure (c) plots the image obtained with the daylight imaging functional (24).

Fig. 4. Imagerie passive dans un milieu homogène. La figure (a) est une esquisse de la situation. La figure (b) est l’image obtenue avec la fonction (25). La

figure (c) est l’image obtenue avec la fonction (24).
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this configuration the singular components of the
differential cross correlation are concentrated at lag
times equal to (plus or minus) the sum of travel times
Tx2;zr þ Tx1 ;zr ;

� t
he noise sources are spatially localized and the

reflectors are between the sources and the sensors
(Fig. 4a). We call this the backlight illumination
configuration. In this configuration the singular compo-
nents of the differential cross correlation are concentrat-
ed at lag times equal to the difference of travel times
Tx2;zr � Tx1 ;zr .

In the backlight imaging configuration, when e is small,
the differential cross correlation DC(1) has a unique
singular contribution at lag time equal to the difference
of travel times Tx2 ;zr � Tx1;zr and it has the form:

DCð1Þðt; x1; x2Þ ¼
srl3r

32p2c0

Kzr ;x1
� Kzr ;x2

jzr � x1jjzr � x2j
� @tFeðt � ½Tx2 ;zr � Tx1 ;zr �Þ; (22)

where Kz,x is defined by (17). In the daylight illumination
configuration, the differential cross correlation DC(1) has
two singular contributions at lag times equal to plus or
minus the sum of travel times Tx2 ;zr þ Tx1 ;zr and it has the
form:

DCð1Þðt; x1; x2Þ ¼
srl3r

32p2c0

Kx1 ;zr

jzr � x1jjzr � x2j
� @tFeðt � ½Tx2 ;zr þ Tx1 ;zr �Þ

� srl3r
32p2c0

Kx2 ;zr

jzr � x1jjzr � x2j
@tFeðt þ ½Tx2 ;zr þ Tx1 ;zr �Þ: (23)

Note that Kzr ;x j
is not zero only if the ray going from xj to

zr extends into the source region, which is the backlight
illumination configuration, while Kx j ;zr is not zero only if
the ray going from zr to xj extends into the source region,
which is the daylight illumination configuration. Eq. (23)
shows that:
� o
nly the sources located along the rays joining xj and zr

contribute to the singular components;

� t
he widths of the peaks are determined by the bandwidth

of the noise sources;

� t
he heights of the peaks are inversely proportional to the

square of the distance from the reflector to the sensor
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array, and they do not depend on the distance from the
sources to the reflector or the sensor array.

4.2. Migration of cross correlations

As shown in the previous subsection, the cross
correlation may have additional peaks at lag times that
depend on the reflector location. This suggests that the
reflector can be imaged by migrating the cross correlation
matrix. This form of passive sensor array imaging depends
in an essential way on the illumination configuration, that
is, the relative positions of the sensors, the noise sources,
and the reflector.

To form an image in a daylight illumination configuration
(Fig. 3a), we propose to use the daylight imaging functional
defined for a search point zS in the image domain by:

IDðzSÞ ¼
XN

j;l¼1

DCðTzS ;xl
þ TzS ;x j

; x j; xlÞ: (24)

This functional is built by evaluating each element of
the cross correlation matrix at lag time equal to the sum of
the travel times TzS ;xl

þ TzS ;x j
and by summing the migrated

matrix elements over all pairs of sensors (it is therefore a
Kirchhoff-type migration functional for the cross correla-
tion matrix). The resolution analysis of the daylight
imaging functional is carried out in (Garnier and Papani-
colaou, 2010). The cross range resolution for a linear sensor
array with aperture a is given by l0a/Lr. Here Lr is the
distance between the sensor array and the reflector and l0

is the central wavelength. The range resolution for
broadband noise sources is equal to c0/B where B is the
bandwidth of the noise sources. The range resolution for
narrowband noise sources is l0a2=L2

r .
To form an image in a backlight illumination configu-

ration (Fig. 4a), we propose to use the backlight imaging
functional defined for a search point zS in the image
domain by:

IBðzSÞ ¼
XN

j;l¼1

DCðTzS ;xl
� TzS ;x j

; x j; xlÞ: (25)

This functional is built by evaluating each element of
the cross correlation matrix at lag time equal to the[()TD$FIG]
Fig. 5. Passive sensor imaging in a scattering medium. The configuration is plo

scatterers, and the diamond is the reflector. Figure (b) plots the image obtained

plots the image obtained with the daylight imaging functional (24) applied w

functional (24) applied with DC(3).

Fig. 5. Imagerie passive dans un milieu diffusant. La figure (a) est une esquiss

diffuseurs, et le losange représente le réflecteur. La figure (b) est l’image obtenue

avec la fonction (24) utilisée avec DC(1). La figure (d) est l’image obtenue avec
difference of the travel times TzS ;xl
� TzS ;x j

and by summing
the migrated matrix elements over all pairs of sensors. The
cross range resolution is l0a/Lr while the range resolution
is l0a2=L2

r whatever the bandwidth, which means that the
range resolution is very poor compared to the daylight
imaging functional, because it exploits only differences of
travel times, which are much less sensitive to the range
than the sums of travel times (Garnier and Papanicolaou,
2010).

4.3. Signal-to-noise ratio reduction and enhanced resolution

due to scattering

We here discuss the trade-off between resolution
enhancement and SNR reduction due to scattering.

When the primary energy flux only gives a backlight
illumination of the reflector and when there is no
scattering, only the backlight imaging functional (25)
can be used, which produces an elongated peak at the
reflector location with poor range resolution. When there
is scattering, the scatterers can play the role of secondary
sources and they can provide a daylight illumination for
the reflector. This happens provided there are rays issuing
from the scattering region and going to the sensors and
then to the reflector. Scattering can therefore lead to the
appearance of a singular contribution in the cross
correlation at lag time equal to (plus or minus) the sum
of travel times and then the daylight imaging functional
(24) can have a peak at the reflector location with good
range resolution. However, the scattered waves also
involve fluctuations in the cross correlations that can be
larger than the additional peak exhibited here above. As a
consequence, the peak in the daylight imaging functional
(24) at the reflector location that we have just mentioned is
usually buried in the contributions of the non-singular
random components. This can be studied following the
lines of Subsection 3.2 and this happens in the setup of
Fig. 5, which we discuss in the next subsection.

4.4. Use of fourth-order cross correlations

We have noticed that the peaks produced by the
scattered waves in the differential cross correlation
DC(1)(t, xj, xl) and that are relevant to imaging of reflectors
tted in Figure (a): the circles are the noise sources, the squares are the

with the backlight imaging functional (25) applied with DC(1). Figure (c)

ith DC(1). Figure (d) plots the image obtained with the daylight imaging

e de la situation: les cercles sont les sources de bruit, les carrés sont les

avec la fonction (25) utilisée avec DC(1). La figure (c) est l’image obtenue

la fonction (24) utilisée avec DC(3).
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can be buried in fluctuations. This happens when the SNR
of the peaks at lag time equal to (plus or minus) the sum of
travel times �ðTx j ;zr þ Txl ;zr Þ is low. In this section we
propose to use an iterated cross correlation technique that
masks the contributions of the direct waves and increases
the effective SNR of the peaks produced by the scattered
waves. This technique was shown to be efficient for inter-
sensor travel time estimation in Section 3.3. In the
following we describe this technique for reflector imaging
with secondary daylight illumination from scattering.

It is possible to form a special fourth-order
cross correlation matrix DCð3ÞT ðt; x j; xlÞ between sensors

ðx jÞj
2
¼1;...;N

from the differential cross correlations DCT(t, xj,

xl) obtained from the recorded data. This is done as follows:
� c
alculate the coda (i.e. the tails) by truncation of the
differential cross correlations:

DCT;codaðt; x j; xlÞ ¼DCTðt; x j; xlÞ1½Tc1 ;Tc2 �ðjtjÞ;
for j; l ¼ 1; . . . ;N:
� c
ross correlate the tails of the differential cross correla-
tions and sum them over all complementary sensors in
the array to form the coda cross correlation between xj

and xl:

DCð3ÞT ðt; x j; xlÞ ¼
XN

k¼1;k =2f j;lg

Z
DCT;codaðt0; xk; x jÞ

�DCT;codaðt0 þ t; xk; xlÞdt0: (26)

The roles of the three parameters T, Tc1, and Tc2 are
described in Subsection 3.3. The differential coda cross
correlation DCð3ÞT is a self-averaging quantity and it is equal
to DC(3) as T!1:
DCð3Þðt; x j; xlÞ ¼
XN

k¼1;k =2f j;lg

Z
DĈ

ð1Þ
codaðv; xk; x jÞ

�DĈ
ð1Þ
codaðv; xk; xlÞe�ivtdv;

DCð1Þcodaðt; xk; xlÞ ¼DCð1Þðt; xk; xlÞ1½Tc1 ;Tc2 �ðjtjÞ:

The time windowing is very important because it
selects the contributions that we want to use for imaging
the reflector at zr. The asymptotic analysis of the functional
DC(3) can be carried out in the high-frequency regime
using stationary phase arguments. It shows that the
differential coda cross correlation DC(3) has singular
components at lag time equal to (plus or minus) the
sum of travel times�ðTx1 ;zr þ Tx2 ;zr Þ, and has less additional
terms than the usual differential cross correlation studied
in Subsection 4.3. As a consequence migration of the
differential coda cross correlation using the daylight
migration functional can produce an image of the reflector
with a higher SNR.

In Fig. 5 we consider a situation in which the primary
energy flux is backlight and scattering generates a
secondary daylight illumination. The daylight imaging
functional applied with DC(1) does not exhibit a clear peak
at the reflector location (Fig. 5c) because of the strong
fluctuations of the cross correlation at lag time equal to the
sum of travel times. However, the daylight imaging
functional applied with DC(3) (Fig. 5d) gives a much better
image. The overall result is that the backlight imaging
functional IB used with DC(1) has good cross-range
resolution and SNR while the daylight imaging functional
ID used with DC(3) has good range resolution and SNR.

5. Further results on cross correlation in scattering
media

In this note we have shown that imaging with ambient
noise sources in a random medium is statistically stable
with respect to the noise source distribution, but it is
usually not statistically stable with respect to the
distribution of the random medium. It is, however, possible
in some situations to exploit the enhanced diversity of the
scattered waves in order to improve the resolution in
travel time tomography or in reflector imaging without
reducing too much the signal-to-noise ratio. This is
especially true when using fourth-order cross correlations
which tend to increase the signal-to-noise ratio.

These results were obtained here in a weakly scattering
medium, in a high-frequency regime, but other propaga-
tion regimes can be analyzed. In Garnier and Sølna (2010b)
the role of random scattering in the Green’s function
estimation is studied in the radiative transport regime.
This work provides a bridge between the situation with a
directional wave field and a fully equipartitioned field. In
the radiative transport regime, scattering improves
Green’s function estimation by enhancing the directional
diversity of the waves recorded by the sensors under the
following conditions: first the sensors need to be close to
each other (that is, closer than the mean free path), while
the observation region can be far from the source region.
Resolution is enhanced when the propagation distance
from the sources to the observation region is larger than
the mean free path. In Garnier and Sølna (2010a) and de
Hoop and Sølna (2009) other regimes of propagation are
considered (randomly layered media and random paraxial
regime) which lead to similar conclusions. In Garnier and
Sølna (2010a,b), de Hoop and Sølna (2009) as in the weakly
scattering high-frequency regime discussed in this note,
the important practical issue is the lack of statistical
stability of the cross correlations with respect to the
distribution of the random medium. In general, averaging
over the medium is not possible but it may be possible to
smooth or average over mid-points and offsets and to
stabilize the data in order to invert for medium parameters
in the case of simple, low-dimensional medium models.
For instance a robust algorithm to detect an interface in the
medium is proposed in Garnier and Sølna (2010a,b), de
Hoop and Sølna (2009). The optimal way to combine data
in space and frequency to obtain stable and high-
resolution estimates remains an open problem.
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