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A B S T R A C T

Ambient noise tomography has now been applied at scales ranging from local to global. To

discuss the theoretical background of the technique, a simple form of a two-dimensional

(2-D) Born sensitivity kernel was developed at a finite frequency for a cross-correlation

function (CCF) of background surface waves. The use of far field representations of a

Green’s function and a CCF in a spherically symmetric Earth model, assuming a

homogeneous source distribution, is an efficient approach to the calculation of phase

sensitivity kernels. The forms of a phase sensitivity kernel for major and minor arc

propagations are the same as those for phase-velocity measurements of earthquake data.

This result indicates the validity of ambient noise tomography under the given

assumptions; however, the kernels are not equivalent in the case of an inhomogeneous

source distribution.

� 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

La tomographie à partir du bruit ambiant a, à présent, été appliquée à des échelles à la fois

locales et globales . Pour discuter des fondements théoriques de la technique, une simple

forme de noyau de sensibilité de Born à 2D et à fréquence finie a été développée pour une

fonction de corrélation (CCF) d’un bruit consistant en ondes de surface. L’utilisation de

représentations en champ lointain d’une fonction de Green et d’une CCF dans un modèle

de Terre à symétrie sphérique, en supposant une distribution de source homogène, est une

approche efficace pour le calcul de noyaux de sensibilité de la vitesse de phase. Les formes

des noyaux de sensibilité pour les propagations le long d’arcs majeurs et mineurs sont les

mêmes que celles qu’on observe dans les mesures de vitesse de phase avec les

observations des séismes. Ce résultat indique la validité de la tomographie à partir du bruit

ambiant dans les hypothèses données ici; cependant, les noyaux ne sont pas équivalents

dans le cas d’une distribution inhomogène de sources.

� 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
Email address: knishida@eri.u-tokyo.ac.jp.
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1. Introduction

Shapiro et al. (2005) performed a cross-correlation
analysis of long sequences of ambient seismic noise at
around 0.1 Hztoobtaina group-velocity anomaly of Rayleigh
lsevier Masson SAS. All rights reserved.
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waves due to the lateral heterogeneity of the crust in
southern California. The authors inverted the measured
anomalies to obtain a group-velocity map, employing a
method that is now referred to as ‘ambient noise tomogra-
phy’. The obtained group–velocity map at short periods (7.5–
15 s) showsa striking correlation withthe geologic structure.

Recently, phase velocity anomalies have also been
measured using dense networks of seismic stations (Bensen
et al., 2007). The anomalies are inverted to yield the three-
dimensional S-wave velocity structure in the crust and in
the uppermost mantle (Bensen et al., 2009; Nishida et al.,
2008). The tomographic method was now been applied at
scales ranging from local to global (Nishida et al., 2009).

The theoretical basis of cross-correlation analysis is the
fact that a cross-correlation function (CCF) between a pair
of stations provides the wave propagation between them
(Snieder, 2004), as with the Green’s function. Assuming
that a CCF has sensitivity along the ray path between a pair
of stations (Lin et al., 2009), the measured phase or group
velocity anomalies can be inverted to obtain maps of phase
or group velocity. The ray approximation is justified by the
high-frequency limit of the phase–velocity sensitivity
kernel. The kernels for earthquake data have been
evaluated by many researchers (Spetzler et al., 2002;
Yoshizawa and Kennett, 2005; Zhou et al., 2004), but only
one previous study has investigated ambient noise
tomography (Tromp et al., 2010).

In the present study, a form of a two-dimensional (2-D)
Born sensitivity kernel is obtained for a CCF, assuming the
stochastic excitation of surface waves. For simplicity,
potential representation is used for surface waves. The
Born sensitivity kernel is then calculated in a spherically
symmetric Earth model assuming a homogeneous source
distribution. A simple expression of phase sensitivity
kernels is derived from the Born sensitive kernel based on
the Rytov approximation with the far-field approximation
of a Green’s function and a CCF.

2. Theory of a synthetic cross spectrum of background
surface waves between a pair of stations

For estimation of the sensitivity kernels, this section
develops the theory of a synthetic CCF of background
surface waves between a pair of stations.

It is assumed that a displacement field u can be
represented by a fundamental Love wave and a funda-
mental Rayleigh wave, as follows:

u ¼ uL þ uR: (1)

Love and Rayleigh wave displacement fields in laterally,
slowing varying media can be written in terms of surface
wave potentials (Tanimoto, 1990; Tromp and Dahlen,
1993). The Love wave part uL and the Rayleigh wave part uR

are given by the surface wave potential xa, as follows:

ua ¼ Daxa; (2)

where the subscript a represents the Love wave (L) or
Rayleigh wave (R). The spatial differential operatorsDR and
DL are respectively defined as follows:

DR ¼ Uðr;vÞr̂ þ k�1
R ðr̂;vÞVðr;vÞrl (3)
DL ¼ k�1
L ðr̂;vÞWðr;vÞð�r̂ �rlÞ; (4)

whererl is the surface gradient operator, U(r, v) is the local
vertical eigenfunction, V(r, v) is the local radial eigenfunc-
tion, and W(r, v) is the local transverse eigenfunction as a
function of surface location r, r̂ is a unit vector defined on a
unit sphere, and kaðr̂;vÞ is the local wavenumber at the
angular frequency v. kaðr̂;vÞ can also be written in terms of
the phase velocity caðr̂;vÞ, as follows:kaðr̂;vÞ ¼ v=caðr̂;vÞ.
The convention for the Fourier transform is that exp (� ivt)
appears in the Fourier integral when transforming from the
time domain to the frequency domain. The eigenfunctions
are normalized following Tromp and Dahlen (1993), as
caðr̂;vÞCaðr̂;vÞI1a ðr̂;vÞ ¼ 1, where Caðr̂;vÞ is the group
velocity and I1a is the energy integral.

The surface wave potentials satisfy the inhomogeneous
spherical Helmholtz equation of a surface wave (Tromp
and Dahlen, 1993), as follows:

r2
l xaðr̂;vÞ þ j2

aðr̂;vÞxaðr̂;vÞ ¼ Faðr̂;vÞ; (5)

where ja is the following complex wavenumber,

jaðr̂;vÞ ¼ kaðr̂;vÞ �
v

2Qaðr̂;vÞCaðr̂;vÞ
i; (6)

where Qa is a quality factor. The equivalent surface traction
Fa is defined as follows:

FLðr̂;vÞ ¼ �kLðr̂;vÞWðr;vÞ f3ðr̂;vÞR2; (7)

FRðr̂;vÞ ¼ �ðUðr;vÞ f1ðr̂;vÞ

þ kRðr̂;vÞVðr;vÞ f2ðr̂;vÞÞR2; (8)

where R is the radius of the Earth. Here, f1 and f2 are
spheroidal components of the equivalent surface traction f,
and f3 is a toroidal component of f in the form of
f ¼ r̂ f1 þrl f2 � r̂ �rl f3.

A scalar Green’s function of Love and Rayleigh waves
Gaðr̂; r̂s;vÞ satisfies

r2
l Gaðr̂; r̂s;vÞ þ j2

aGaðr̂; r̂s;vÞ ¼ �dðr̂; r̂sÞ: (9)

A scalar potential function xa can be written as

xaðr̂;vÞ ¼
Z

S
Gaðr̂; r̂s;vÞFaðr̂s;vÞdS; (10)

where S is the unit sphere.
The cross spectrum F of background surface waves

between stations r1 and r2 can be given by

Fðr1; r2;vÞ ¼ uðr1;vÞu�ðr2;vÞh i
¼ D1

LD2
L FLLðr̂1; r̂2;vÞ þ D1

RD2
RFRRðr̂1; r̂2;vÞ

þ D1
LD2

RFLRðr̂1; r̂2;vÞ þ D1
RD2

L FRLðr̂1; r̂2;vÞ
(11)

where � represents a complex conjugate, hi denotes an
ensemble (statistical) average, an ab component of the
cross spectrum Fabðr̂1; r̂2;vÞ is xaðr̂1;vÞx�bðr̂2;vÞ

D E
, and

Di
a is the spatial derivative at point r̂i. For simplicity, the

ab component of the cross spectrum Fabðr̂1; r̂2;vÞ is
evaluated below.

The cross spectrum Fabðr̂1; r̂2;vÞ can be written as
follows:
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Fabðr̂1; r̂2;vÞ ¼
Z

S

Z
S

Gaðr̂1; r̂;vÞG�bðr̂2; r̂
0
;vÞ

�Cabðr̂; r̂
0
;vÞdSdS

0
; (12)

where Cab is the cross spectrum of surface traction
Faðr̂;vÞF�bðr̂

0
;vÞ

D E
between points r̂ and r̂

0
. Assuming that

the excitation sources of the background surface waves are
spatially isotropic but heterogeneous, the cross spectrum
Cabðr̂

0
; r̂
00
;vÞ is expressed in the following form:

Cabðr̂
0
; r̂
00
;vÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ĉabðr̂

0
;vÞĈabðr̂

00
;vÞ

q
h 1� jr̂

0 � r̂
00j

Lðr̂0;vÞ

 !
;

(13)

where Ĉabðr;vÞ is a power spectrum of surface traction at
r̂ (Fukao et al., 2002; Nishida and Fukao, 2007), Lðr̂0;vÞ is
the frequency-dependent coherent length, and the func-
tion h(x) is the Heviside step function.

The excitation mechanism of ambient noise from 0.05 to
0.2 Hz, known as microseisms, is firmly established.
Microseisms are identified at the primary and double
frequencies: the primary microseisms at around 0.08 Hz
have been ascribed to the direct loading of ocean swell onto
a sloping beach (Haubrich et al., 1963). The typical
frequency of secondary microseisms at around 0.15 Hz is
approximately double the typical frequency of ocean swells,
indicating the generation of the former via nonlinear wave–
wave interactions among the latter (Longuet-Higgens,
1950). In both cases of the excitation mechanisms, the
correlation length L can be characterized by the wavelength
of ocean swell, on the order of 300 m, which is expected to be
much shorter than the wavelength of seismic surface waves.

Supposing that the correlation length L(v) is much
shorter than the typical wavelength of background surface
waves at v, the cross spectrum Fab can be simplified as
follows:

Fabðr̂1; r̂2;vÞ ¼ 4p2

Z
S

Ĉ
e

abðr̂;vÞGaðr̂1; r̂ÞG�bðr̂2; r̂ÞdS:

(14)

Here, the power spectrum of effective surface traction per
unit wavenumber Ĉ

e

abðvÞ is defined as follows:

Ĉ
e

abðr̂;vÞ�
L2ðr̂;vÞ

4pR2
Ĉabðr̂;vÞ: (15)

3. 2-D Born sensitivity kernel for a CCF of background
surface waves in the case of a heterogeneous source
distribution

Employing a first-order Born approximation of a cross
spectrum Fab (Eq. (14)), a 2-D Born sensitivity kernel is
estimated for the cross spectrum, which is a representation
of a CCF in the frequency domain.

The first-order perturbation of the cross spectrum dF
can be written in terms of the perturbation of the Green’s
function dG, as follows:

dFabðr̂1; r̂2;vÞ ¼ 4p2

Z
S

Ĉ
e

abðr̂;vÞ

� dGaðr̂1; r̂;vÞG�bðr̂2; r̂;vÞþGaðr̂1; r̂;vÞdG�bðr̂2; r̂;vÞ
n o

dS:

(16)
dGa can be written as follows (e.g. Yoshizawa and Kennett,
2005):

dGaðr̂1; r̂;vÞ

¼
Z

S
�2k2

aðr̂3;vÞ
dcðr̂3;vÞ
cðr̂3;vÞ

Gaðr̂1; r̂3ÞGaðr̂3; r̂ÞdS3: (17)

The above equation can then be simplified as follows:

dFabðr̂1; r̂2;vÞ ¼
Z

S
Kabðr̂1; r̂2; r̂3;vÞ

dcðr̂3;vÞ
cðr̂3;vÞ

dS3: (18)

A 2-D Born sensitivity kernel for phase–velocity anomalies
is defined as follows:

Kabðr̂1; r̂2; r̂3;vÞ ¼ �2

�
k2
aF

�
baðr̂2; r̂3;vÞGaðr̂1; r̂3Þ

þ k2
bFabðr̂1; r̂3;vÞG�bðr̂2; r̂3Þ

�
: (19)

This form of the above equation is similar to that of an
adjoint kernel (e.g. Tarantola., 1984; Tanimoto, 1990;
Tromp et al., 2010). For example, the first term of the kernel
can be represented by convolution in the time domain
between the time reversal of the CCF and the propagating
Green’s function from r̂2 to r̂3.

4. 2-D Born sensitivity kernel in a spherically symmetric
Earth model for a homogeneous source distribution

For simplicity, the focus is on 2-D Born sensitivity
kernels in a spherically symmetric Earth model for a
homogeneous source distribution. A scalar Green’s func-
tion in a homogeneous model can be simplified in the
following form:

Gaðr̂1; r̂2;vÞ ¼
X

l

2lþ 1

4pðj2
a � lðlþ 1ÞÞ

 !
Plðcos Q12Þ; (20)

where Q12 is the angular distance between r̂1 and r̂2, and Pl

is the Legendre function of the l’th order.
In this section, it is assumed that homogeneous and

isotropic sources excite background surface waves. This
approximation enables us to simplify the a component of a
cross spectrum in the following form:

Faaðr̂1; r̂2;vÞ ¼ Ĉ
e

aaðvÞp
X

l

2lþ 1

ðj2
a � lðlþ 1ÞÞðj�2a � lðlþ 1ÞÞ

� Plðcos Q12Þ: (21)

The cross terms Fab are omitted for a 6¼b because they
take values of zero in the case of a homogeneous source
distribution.

Figure 1 shows a typical example of the Born sensitivity
kernel of a Rayleigh wave at 5.61 mHz with the source
spectrum C

e
aa of an empirical model (Fukao et al., 2002).

The sensitivity is concentrated within the first Fresnel
zone. The figure also shows the side lobes of the kernel,
which are suppressed when considering band-limited
kernels (Yoshizawa and Kennett, 2005), as shown in the
following section.

To obtain a more comprehensive form of the kernel, a
far-field approximation of the Green’s function and the CCF
is considered. A far-field representation of Green’s function
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Fig. 1. Born sensitivity kernel of a Rayleigh wave at 5.61 mHz, with amplitude normalized by the cross spectrum Faa(Q12, v). Each station is located on the

equator. The longitude of station 1 is 408; that of station 2 is 1408. The kernel was calculated using PREM (Dziewonski and Anderson, 1981). S1, S2, A1, and

A2 indicate the locations of station 1, station 2, the antipode of station 1, and the antipode of station 2, respectively. This kernel is not singular, even near

stations and near the antipodes of the stations.

Fig. 1. Noyau de sensibilité de Born d’une onde de Rayleigh à 5,61 mHz, d’ amplitude normalisée par le spectre croisé Faa(Q12, v). Chaque station est

localisée sur l’Equateur. La longitude de la station 1 est 408; celle de la station 2, 1408. Le noyau a été calculé en utilisant PREM (Dziewonski and Anderson,

1981). S1, S2, A1 et A2 indiquent la localisation de la station 1, de la station 2, l’antipode de la station 1 et l’antipode de la station 2, respectivement. Le noyau

n’est pas singulier, même près des stations et des antipodes des stations.
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is given as follows (Tromp and Dahlen, 1993):

Gaðr̂1; r̂2;vÞ ¼
X1
s¼1

gs
aðD

s
12;vÞ: (22)

The Green’s function of the s’th orbit gs
a is defined as

follows:

gs
aðD

s
12;vÞ ¼

ei �kaD
s
12þðs�1Þp2�

p
4ð Þe�

vDs
12

2CaQaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pkasin jDs

12j
q ; (23)

where the integer s( = 1, 2, . . . ) represents the surface wave
orbits. The quantity D

s
12, which is the total angular distance

traversed by a given arrival, is given by explicitly by,

D
s
12 ¼

Q12 þ ðs� 1Þp; s odd
sp�Q12; s even:

�
(24)

Similarly to the approximation of the Green’s function
(Dahlen and Tromp, 1998, chapter 11.1), a far-field
representation of the CCF is evaluated. Using the Poisson
sum formula (Dahlen and Tromp, 1998, eq. 11.4, p. 408) to
convert the summation over the angular degree l to an
integral over the wavenumber k, the following represen-
tation is obtained:
Faaðr̂1; r̂2;vÞ ¼ Ĉ
e

aaðvÞp
X1

s¼�1
ð�1Þs

�
Z 1

0

2

ðj2
a � k2Þðj�2a � k2Þ

Pk�1
2
e�2iskpkdk:

(25)

The above equation is transformed into a traveling
representation of the CCF (Dahlen and Tromp, 1998,
chapter 11.2), as follows:

Faaðr̂1; r̂2;vÞ ¼ 2Ĉ
e

aaðvÞp

�
� X1

s¼1;3;...

ð�1Þðs�1Þ=2
Z 1
�1

Q ð1Þk�1=2e�iðs�1Þkp

ðj2
a � k2Þðj�2a � k2Þ

kdkþ
X1

s¼2;4;...

ð�1Þs=2

�
Z 1
�1

Q ð2Þk�1=2e�iskp

ðj2
a � k2Þðj�2a � k2Þ

kdk

�
: (26)

The analysis employs a relation of the transformation
into a traveling wave representation (Dahlen and Tromp,
1998, appendix B.11), as follows:

Pk�1
2
ðcos QÞ ¼ Q ð1Þ

k�1
2

ðcos QÞ þ Q ð2Þ
k�1

2

ðcos QÞ; (27)

where Q ð1;2Þk�1=2 corresponds to waves propagating in the
direction of increasing and decreasing Q, respectively. The
following equation is also employed (Dahlen and Tromp,
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1998, eq. 11.13):

Q ð1;2Þ�k�1
2

ðcos QÞ ¼ e�2ikpQ ð1;2Þ
k�1

2

ðcos QÞ

þ e�ikptan kpPk�1
2
ð�cos QÞ: (28)

Following (Dahlen and Tromp, 1998, chapter 11.3),
the far-field approximation of the CCF is obtained as
follows:

Faaðr̂1; r̂2;vÞ ¼
X1
s¼1

fs
a; ðD

s
12;vÞ; (29)

where fs
aðD

s
12;vÞ is the cross spectrum of the s’th orbit, as

follows:

fs
aðD

s
12;vÞ ¼ Ĉ

e

aaðvÞ
2p2QaCa

v

� gs
aðD

s
12;vÞe

p
2i þ gs�

a ðD
s
12;vÞe�

p
2i

n o
: (30)

Because the cross spectrum Faa(Q12, v) is a real function,
the corresponding CCF is an even function, which has a
causal part and an acausal part. The first term represents
the causal part of the cross spectrum; the second term
represents the acausal part. This equation shows the phase
retreat (p/2) of the causal part of the corresponding CCF
from the Green’s function (Nakahara, 2006; Sanchez-
Sesma and Campillo, 2006).

The symmetry between the causal and acausal parts is
broken in the case of heterogeneous distribution of sources
(Cupillard and Capdeville, 2010; Kimman and Trampert,
2010; Nishida and Fukao, 2007). Source heterogeneity also
causes a bias of the phase from 0 to p/4 (Kimman and
Trampert, 2010).

These far field representations were used to calculate
an asymptotic 2-D Born sensitivity kernel K1

aðr̂1; r̂2; r̂3;vÞ
for a minor arc propagation (R1 or G1), and
K2

aðr̂1; r̂2; r̂3;vÞ for a major arc propagation (R2 or G2),
as follows:

K1
a ¼ �

2pĈ
e

aaQaCa=caffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin Q13sin Q23

p sin ðkaðQ13 þQ23ÞÞe�
vðQ13þQ23Þ

2QaCa

(31)
[()TD$FIG]

r1 r2

r3

Station 1 Station 2
Θ12

Θ13 Θ23
Θ1’3

Θ1’ 2^ ^

^

Fig. 2. Schematic map of the geometry of stations and their antipodes. Star symb

at r̂
0
1 and r̂

0
2. The open circle shows the location of a phase velocity anomaly a

Fig. 2. Carte schématique de la géométrie des stations et de leurs antipodes. Les s

leurs antipodes r̂
0
1 etr̂

0
2. Le cercle vide montre la localisation d’une anomalie de
K2
a ¼ �

2pĈ
e

aaQaCa=caffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin Q13sin Q23

p
�
�

cos ðkaðpþQ103 þQ23ÞÞe�
vðpþQ

103þQ23Þ
2QaCa

þ cos ðkaðpþQ13 þQ203ÞÞe
�

vðpþQ13þQ
203Þ

2QaCa

� sin ðkað2pþQ103 þQ203ÞÞe
�

vð2pþQ
103þQ

203Þ
2QaCa

�
; (32)

where Qij is the angular distance between the i’th and j’th
points, as shown in Fig. 2.

5. 2-D phase sensitivity kernel in a spherically symmetric
Earth model for a homogeneous source distribution

To obtain a phase sensitivity kernel for phase–velocity
perturbations, the causal part of an R1 or G1 wave packet
fc;1

a ðr̂1; r̂2; ;vÞ is isolated as follows:

fc;1
a ðr̂1; r̂2;vÞ ¼

Ĉ
e

aaðvÞ2p2QaðvÞCaðvÞ
v

g1
aðQ12;vÞe

p
2i:

(33)

The causal part of the Born sensitivity kernel is defined as
follows: Kc;1

a ¼ 1
2 ðK1

a �HðK1
aÞiÞ, where H represents the

Hilbert transform in the frequency domain. For simplicity,
the source term Ĉ

e

aa is assumed to be a smooth function in
the frequency domain. Then, perturbation of the causal
part dfc;1

a can be written as

dfc;1
a ¼

Z
S

dcaðr̂3;vÞ
ca

Kc;1
a ðr̂1; r̂2; r̂3;vÞdS3: (34)

The Rytov approximation is employed to obtain a phase
sensitivity kernel for phase–velocity perturbations (e.g.
Yoshizawa and Kennett, 2005; Zhou et al., 2004). In the
Rytov method, the logarithm of the cross spectrum fc;1

a is
considered instead of the wavefield itself. By taking the
logarithm, fc;1

a can be divided into real (amplitude) and
imaginary (phase) parts, as follows:

ln fc;1
a ¼ ln ðA1

aexp ð�c1
aiÞÞ ¼ ln A1

a �c1
ai; (35)

where A1
a is the amplitude of the causal wave packet, and

c1
a is its phase. The phase perturbation dc1

a for propaga-
r1’ r2’

Antipode of 
station 1

Antipode of 
station 2

Θ2’3

^ ^Θ1’2’

ols show the locations of stations at r̂1 and r̂2, and those of their antipodes

t r̂3.

ymboles en étoile montrent la localisation des stations à r̂1 et r̂2 et celle de

vitesse de phase à r̂3.
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tion along the minor arc (R1 or G1) is given by

dc1
a ¼

Z
K1

p;aðr̂1; r̂2; r̂3;vÞ
dc

c
dS3; (36)

where the phase sensitivity kernel K1
p;a is the imaginary

part of �Kc;1
a =fc;1

a .
Using the asymptotic kernel Kc;1

a , a phase sensitivity
kernel for R1 or G1 can be written as

K1
p;a ¼ �

k
3
2
affiffiffiffiffiffiffi
2p
p sin Q12

sin Q13sin Q23

� �1
2

� cos kaðQ13 þQ23 �Q12Þ �
p
4

	 

e�

vðQ13þQ23�Q12Þ
2QaCa :

(37)

This expression of the phase sensitivity kernel is the same
as that for phase measurements of earthquake data
(Yoshizawa and Kennett, 2005). The equivalence of the
expressions serves as validation of ambient noise tomog-
raphy. Of course, this discussion is valid only under the
assumptions of one-dimensional background structure
and a homogeneous source distribution.

Actual phase-velocity anomalies are measured with a
finite frequency band (e.g. Bensen et al., 2007). To consider
a sensitivity kernel for phase measurements, an averaged
phase-velocity kernel K̄

1
p;a in a certain frequency band is

better than that at a single frequency. An averaged kernel

[()TD$FIG]

Fig. 3. Imaginary part of the Rytov sensitivity kernels (K̄
1
p;a and K̄

2
p;a) of the fu

10 mHz). Each station is located on the equator. The lower panel and the left-han

(an equatorial path, and the lines of longitude at 908 and 1408). The lower panel sh

Fig. 3. Partie imaginaire des noyaux de sensibilité de Rytov (K̄
1
p;a et K̄

2
p;a) du mod

(de 5 à 10 mHz). Chaque station est localisée sur l’Equateur. Le panneau inférieur

indiqués par des lignes continues (trajet équatorial et sur les lignes de longitude

négatives le long des arcs mineurs et majeurs.
K̄
1
p;a is defined as follows:

K̄
1
p;a ¼

1

D f

Z f0þD f=2

f0�D f=2
K1

p;ad f ; (38)

where f0 is the central frequency and Df is the frequency
band width.

In the same manner, a phase sensitivity kernel K2
p;a for

R2 or G2 is given by

K2
p;a ¼

k
3
2
affiffiffiffiffiffiffi
2p
p sin Q12

sin Q13sin Q23

� �1
2

� sin kaðQ103 þQ23 �Q102Þ �
p
4

	 

e�

vðQ
103þQ23�Q

102Þ
2QaCa

�
(39)

þsin kaðQ13 þQ203 �Q120 Þ �
p
4

	 

e�

vðQ13þQ
203�Q

120 Þ
2QaCa

� cos kaðQ103 þQ203 �Q12Þ �
p
4

	 

e�

vðQ
103þQ

203�Q
1020 Þ

2QaCa

�
:

(40)

It is also possible to define an averaged phase-velocity
kernel K̄

2
p;a.

Figure 3 shows a typical example of the phase
sensitivity kernels K̄

1
p;a and K̄

2
p;a at a central frequency of

7.5 mHz for a frequency band width of 5 mHz. The
sensitivity is concentrated within the first Fresnel zones.
The side lobes of the kernels are suppressed due to
averaging in the frequency domain. The expression of the
ndamental Rayleigh wave at a central frequency of 7.5 mHz (from 5 to

d panel show slices of the kernels along the paths indicated by solid lines

ows that the kernels have negative values along the minor and major arcs.

e fondamental de l’onde de Rayleigh, à une fréquence centrale de 7,5 mHz

et le panneau de gauche montrent des coupes des noyaux le long de trajets

à 908 et 1408). Le panneau inférieur montre que les noyaux ont des valeurs
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R2 kernel is equivalent to that for earthquake data
(Spetzler et al., 2002), which validates its application of
ambient noise tomography using the observed phase-
velocity anomalies of R2 data (Nishida et al., 2009).

6. Effects of heterogeneous distribution of sources on a
Born sensitivity kernel

This section considers the effects of heterogeneous
distribution of sources on the Born sensitivity kernel. For
simplicity, the kernel K1

a is considered in a spherically
symmetric case for the minor arc. It is simply assumed,
phenomenologically, that the cross spectrum f1

a has only
azimuthal dependency, as follows:

f1
aðD

1
12;vÞ ¼ Ĉ

e

aa
2p2QaCa

v

�
aðj12Þg1

aðD
1
12;vÞe

1
2pi

þ aðj21Þg1�
a ðD

1
12;vÞe�

1
2pi

�
; (41)

where a(w) is a real coefficient that varies as a function of
azimuth, and w12 is the back-azimuth to r̂2 at r̂1. Because
the focus is on the perturbation of a time-symmetric part of
a CCF, the real part of the Born sensitivity kernel K1

a is
evaluated, as follows:

R½K1
a� / � faðj23Þ þ aðj13Þgsin ðkaðQ23 þQ13ÞÞ

� faðj23Þ � aðj13Þgcos ðkaðQ23 �Q13ÞÞ; (42)

where R indicates the real part. The first term shows an
elliptic pattern with foci at the stations, whereas the
second term shows a hyperbolic pattern with foci at the
stations. The second term vanishes in the case of a
homogeneous source distribution, as in Eq. (31). If the time
symmetry of the CCF is broken because of a heterogeneous
source distribution, the second term would take on a
hyperbolic pattern. Thus, the antisymmetry causes a bias
in phase velocity maps, even without phase changes in the
causal and acausal parts. Note that the second term
vanishes in the case of jr̂3j� jr̂2 � r̂1j.

Of course, the coefficient a(w) may have a imaginary
part because an incomplete source distribution also causes
a bias in the phase from 0 to p/4 (Kimman and Trampert,
2010). The imaginary part also causes a severe bias of the
Born sensitivity kernel.

7. Conclusion

A theory of Born and phase sensitivity kernels was
developed for a CCF using potential representation for
surface waves. Simple forms were shown of Born and
phase sensitivity kernels of a CCF in a spherically
symmetric Earth model, assuming a homogeneous source
distribution. The expression of the resultant phase
sensitivity kernel is equivalent to that for phase measure-
ments of earthquake data. This equivalence indicates the
validity of ambient noise tomography under the given
assumptions. The incomplete source distribution defines a
hyperbolic pattern with foci at the pair of stations in a
spherically symmetric case, which would generate a bias in
the measured phase-velocity anomaly.
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