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A B S T R A C T

We analyze the ‘‘field-field’’ cross correlation associated with scattered coda waves,

observed at a pair of distinct receivers, to obtain an estimate of the Green’s function

between the receivers with an emphasis on high-frequency body waves. The scattered

waves are generated in a slab with random medium fluctuations by an incident wave

packet. Following the dyadic parabolic scaling of wave packets and considering

appropriate scaling for the random fluctuations of the medium, we arrive at a description

in terms of a system of Itô-Schrödinger diffusion models. Studying the Wigner

distributions of the fields and expressing the cross correlation in terms of the Green’s

function and the Wigner distribution, we can give a complete characterization of the cross

correlation using a ‘‘blurring’’ transformation.

� 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

R É S U M É

Nous analysons la corrélation croisée entre des champs correspondant à des ondes

multiplement diffusées et observés en un couple de points distincts, afin d’obtenir une

estimation de la fonction de Green entre ces points. Nous prêtons une attention

particulière aux contributions des ondes de volume hautes fréquences. Les ondes sont

créées par diffusion dans une couche de milieu aléatoire d’un paquet d’ondes incident. En

adoptant une mise à l’échelle dyadique parabolique des paquets d’ondes et en considérant

un milieu aléatoire avec des échelles appropriées, nous obtenons une description en

termes d’un système de modèles de diffusion de type Itô-Schrödinger. En étudiant les

distributions de Wigner des champs et en exprimant la corrélation croisée en termes de la

fonction de Green et de la distribution de Wigner, nous donnons une caractérisation

complète de la corrélation croisée.
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1. Introduction

We analyze the notion of ‘‘field-field’’ cross correlations
associated with scattered coda waves, observed at pairs of
distinct receivers, to obtain an estimate of the Green’s
function with an emphasis on high-frequency body wave
reflections.

As a model configuration for the crust, we consider a
slab in which random medium fluctuations occur. The
bottom of the slab is bounded by a deterministic
discontinuity (a smooth reflector). We consider waves
incident from above the slab, and place our receivers
within the slab to study the corresponding cross correla-
tions. Otherwise, in the entire configuration, the medium
has a deterministic, smoothly varying component. In this
general case, the incident wave is decomposed into wave
packets. Each wave packet contains a particular scale. The
decomposition is used to select a scale in relation to the
fluctuations component of the medium in the slab.
Through localization in phase space, the propagation
and scattering of an incident wave packet can be described
by a coupled system of paraxial wave equations written in
curvilinear, boundary normal coordinates relative to the
support of the wave packet in the deterministic component
of the medium. Thus, in principle, each incident wave
packet generates its own system of paraxial wave
equations. The accuracy of this description can be proven
to improve with increasingly finer scales.

In this article, we assume that the background medium is
constant, that the slab is flat, and we consider a single wave
packet in the limit of fine scales (high frequency). Indeed, we
view the cross correlations in the context of parametrix
constructions. The paraxial form of the system that we
obtain in the limit allows for the use of Itô’s stochastic
calculus (for Hilbert-space valued processes) to analyze the
scattering due to the random fluctuations; indeed, it enables
the closure of the hierarchy of moment equations.

The solution procedure of the coupled system of
paraxial wave equations is based on an invariant
embedding type approach, generating a transmission
and a reflection operator capturing the scattering due to
the random fluctuations in the medium. Thus, we arrive at
a coupled system of Riccati equations for the two operator
kernels. In the limit of fine scales in the sense of
distributions, we then obtain a decoupled system of linear

Itô-Schrödinger equations for the limiting transmission
and reflection operator kernels, with a real-valued
Brownian field; to be precise, only the moments of these
kernels converge in the limit.

The solutions to the Itô-Schrödinger equations define
the transmitted and backscattered fields, at least their
statistics. The transmitted field is partly coherent; the
backscattered field is weak and fully incoherent in the
absence of a smooth (deterministic) reflector, while it is
partly coherent in the presence of a reflector. We analyze
the Wigner distributions of these fields. We obtain a
description of the cross correlation between two points in
terms of a blurring transformation of the paraxial random
Green’s function between these points. This transforma-
tion is statistically stable (in the sense that it does not
depend on the realization of the random fluctuations of the
medium) and it depends on the statistics of the fluctua-
tions of the random medium.

In the past decade, the understanding of how cross-
correlating diffuse fields recaptures the Green’s function,
has been an important topic of research (van Tiggelen,
2003). Cross correlating (diffuse) coda waves as discussed
in Campillo and Paul (2003) resulted in the retrieval of
surface waves observed at one station and excited at the
other station. The idea of using ambient noise for the
retrieval of a body-wave reflection response, in a planarly
layered medium, dates back to Claerbout (1968). The
retrieval of direct and reflected body waves using
teleseismic (S-wave) coda was discussed in Tonegawa
et al. (2009). The exploitation of a scattering medium in
capturing the Green’s function by field-field cross correla-
tions was studied by Derode et al. (2003). However, the
mathematical analysis of field-field cross correlations in
this setting from the point of view of stochastic calculus
has just begun. In our paper, we address a scattering
regime in which the field is partly coherent and we aim at
retrieving the Green’s function for the particular realiza-
tion of the random medium.

2. Scaling and assumptions

We consider acoustic waves propagating in 1+d spatial
dimensions. The governing equations are

rðz; xÞ @u

@t
þr p ¼ F;

1

Kðz; xÞ
@ p

@t
þr � u ¼ 0; (1)

where p is the pressure field, u is the velocity field, r is the
density of mass, and K is the bulk modulus of the medium;
ðz; xÞ 2R� Rd denotes the space coordinates. The source is
modeled by the forcing term F. We consider a configuration
in which a random slab occupies the region

Vr ¼ fðz; xÞ; x2Rd; �L � z � 0g;

and is sandwiched in between two homogeneous half
spaces. The surface z = 0 is the top interface and the surface
–L< 0 is the bottom or interior interface. The medium
consists of a deterministic component and random
fluctuations in the region Vr, which vary rapidly in space.
To simplify the analysis, the deterministic component of
the medium in Vr is assumed to be constant.

The medium is assumed to be matched at the top
interface z = 0 (transparent boundary conditions). Howev-
er, the interior interface can act as a smooth reflector and is
part of the deterministic component of the medium. This
model naturally captures primary reflections if the random
fluctuations were absent. Indeed, we consider a mismatch
at the bottom of the slab, z = –L< 0, which gives jump
conditions at the interior interface. The deterministic
component of the medium is thus given by

1

Kðz; xÞ ¼
K�1

0 if z � �L;

K�1
1 1þ nðz; xÞð Þ if z2 ð�L;0Þ;

K�1
1 if z�0;

8<
:

rðz; xÞ ¼
r0 if z � �L;
r1 if z2 ð�L;0Þ;
r1 if z�0;

8<
:
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where the random field v(z, x) models the medium

fluctuations, with correlation length lK. The deterministic

wavespeed for z> –L is c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1=r1

p
, and for z< –L is

c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K0=r0

p
.

The source, F, is located at z = zs� 0; we assume, here,
that zs = 0 and write Fðt; z; xÞ ¼ f sðt; xÞdðz� zsÞez, where ez

denotes the unit vector pointing in the z-direction,
signifying a body force. We shall refer to waves propagat-
ing in the positive z direction as upgoing. The source
generates downgoing waves which ‘‘propagate’’ through
the random medium, are reflected by the interface at z = –L,
and ‘‘propagate’’ up through the medium.

The source is now assumed to be of the form:

Fðt; z; xÞ ¼ xeðt; xÞdðzÞez (2)

The forcing function xeðt; xÞ ¼ xðe�4t; e�2xÞ gives a
wave packet oriented in the z direction of scale k, e ¼ 2�k=4,
corresponding with a dyadic parabolic decomposition of
phase space. Here x̂ denotes a window function supported
in a box in the v; kð Þ Fourier domain (the support of x̂ is a
finite distance away from the v = 0 axis) and we use the
Fourier transforms:

xðt; xÞ ¼ 1

ð2pÞdþ1

Z Z
x̂ðv;kÞe�iðvt�k�xÞdvdk

¼ 1

2p

Z
x
^
ðv;kÞe�ivtdk

Thus, the transverse width, R0, of the source function is
of order e2. This scaling is consistent with the paraxial
regime, which will be discussed in the next section, in as
much as that it generates the wave solution up to an error
of order e2. We assume that:
� t
he correlation length or radius of the fluctuations, lK, is
of the same order as R0; this regime guarantees non-
trivial interaction between the fluctuations of the
medium and the waves;

� t
he propagation distance is of the order of L, which is of

order 1; the ratio between the propagation distance and
the correlation length of the fluctuations is of order e�2.

The wave packet has a central frequency of order 2k. We
will establish results, which converge as k!1, signifying
the high-frequency regime.

Henceforth we shall assume non-dimensionalized units
chosen such that the deterministic bulk modulus K1 and

density r1 in the region Vr are one and, hence, the

deterministic wavespeed c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K1=r1

p
and impedance

Z1 ¼
ffiffiffiffiffiffiffiffiffiffiffi
K1r1

p
are equal to one. We assume that

Z0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
K0r0

p
6¼1. The medium fluctuations attain the

scaled form

1

Kðz; xÞ ¼
K�1

0 if z � �L;

1þ e3nð z

e2
;

x

e2
Þ if z2 ð�L;0Þ;

1 if z�0;

8><
>:

rðz; xÞ ¼
r0 if z � �L;
1 if z2 ð�L;0Þ;
1 if z�0;

8<
:

where v is a zero-mean, stationary random field with
correlation length of order one and standard deviation of
order one. We write

Cðz; xÞ ¼ E½nðz0 þ z; x0 þ xÞnðz0; x0Þ�; (3)

DðxÞ ¼
Z 1
�1

Cðz; xÞdz (4)

We assume that v satisfies strong mixing conditions in
z. The amplitude e3 of the fluctuations has been chosen so
as to obtain an effective limit of order one when e goes to
zero. That is, if the magnitude of the fluctuations is smaller
than e3, then the wave would propagate as if the medium
were homogeneous, while if the order of magnitude is
larger, then the wave would not penetrate the slab at all.
The scaling that we consider here, controlled by the choice
of wave packet, corresponds to the partly coherent regime.

3. Coupled system of paraxial equations, and
transmission and reflection operators

We eliminate the transverse components of the
velocity field. Because both the medium and the source
have transverse spatial variations at the scale e2, it is
convenient to rescale the transverse coordinates accord-
ingly, that is, e2x! x. In the region Vr, we then introduce
the directional decomposition in the deterministic medi-
um component,

pðt; z; e2xÞ

¼ 1

2p

Z
a
^e
ðv; z; xÞeiv z

e4 þ b
^e
ðv; z; xÞe�iv z

e4

� �
e
�iv t

e4 dv; (5)

with complex amplitudes a
^e

and b
^e

representing, locally,
up- and down-going wave constituents, respectively. We
have used Cartesian coordinates, since the ray generated
by initial conditions corresponding with the center of the
wave packet is straight, along the z direction.

The wave-packet source enables the use of the paraxial
approximation in the deterministic component of the
medium with the above-mentioned estimate, leading to
the system for z 2 (–L,0):

@a
^e

@z
¼ iv

2e n
z

e2
; x

� �
þ i

2v
Dx

� �
a
^e

þ e
�2iv z

e4
iv
2e n

z

e2
; x

� �
þ i

2v
Dx

� �
b
^e
; (6)

@b
^e

@z
¼ �e

2iv z
e4

iv
2e n

z

e2
; x

� �
þ i

2v
Dx

� �
a
^e

� iv
2e n

z

e2
; x

� �
þ i

2v
Dx

� �
b
^e
; (7)

supplemented with the boundary conditions:

b
^e
ðv; z ¼ 0�; xÞ ¼ �1

2
x
^
ðv; xÞ; (8)

a
^e
ðv; z ¼ ð�LÞþ; xÞ ¼ R0e

2iv L
e4 b
^e
ðv; z ¼ ð�LÞþ; xÞ; (9)

where R0 ¼ ðZ0 � 1Þ=ðZ0 þ 1Þ. We also have the jump
condition across z = –L:

b
^e
ðv; ð�LÞ�; xÞ ¼ T0 b

^e
ðv; ð�LÞþ; xÞ;
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where T0 ¼ 2Z1=2
0 =ð1þ Z0Þ, and across z = 0:
a
^e
ðv;0�; xÞ ¼ a

^e
ðv;0�; xÞ þ 1

2
x
^
ðv; xÞ

In the deterministic case, with v = 0, it can be proven
that this system decouples with solutions accurate up to
order e2.

We invoke an invariant imbedding approach to obtain
the representation valid for –L< z< 0:

b
^e
ðv; ð�LÞ�; xÞ ¼ T0

Z
T
^

eðv;�L; z; x; x0Þb
^e
ðv; z; x0Þdx0;

(10)

a
^e
ðv; z; xÞ ¼ R0e

2iv L
e4

Z
R
^

eðv;�L; z; x; x0Þb
^e
ðv; z; x0Þdx0;

(11)

where the operators T
^

e and R
^

e, defined through their
kernels, satisfy a natural coupled system of operator
Riccati equations which follow from the equations
satisfied by the local amplitudes. In the scaling regime
e! 0 we are able to deduce from this system a description
in terms of effective white noise models for the transmis-
sion and reflection operators, at least on the level of
moments. We describe this in the next section.

The formulation generalizes to curvilinear coordinates
if the deterministic wave speed in the slab is no longer
constant, and the rays are no longer straight, using
techniques from microlocal analysis and harmonic analy-
sis.

4. Itô-Schrödinger diffusion models for transmitted and
backscattered fields

We centre according to the travel time associated with
the deterministic medium component (constant wave
speed, here) and define the transmitted and reflected
pressure fields by

peRðs; xÞ :¼ pð2Lþ e4s;0þ; e2xÞ � 1

2
xð2L

e4
þ s; xÞ; (12)

peTðs; xÞ :¼ pðLþ e4s; ð�LÞ�; e2xÞ (13)

The field peTðs; xÞ is the field observed just below the
bottom interface at z = (–L)�; the field peRðs; xÞ is the field
observed just above the top interface at z = 0+:

peRðs; xÞ ¼
1

2p

Z
a
^e
ðv;0þ; xÞe�ivs dv; (14)

peTðs; xÞ ¼
1

2p

Z
b
^e
ðv; ð�LÞ�; xÞe�ivs dv (15)

These fields are now characterized via effective scaling
limit models for the transmission and reflection operators:

Proposition 4.1 The processes ðpeTðs; xÞÞs2R;x2Rd ,
ð peRðs; xÞÞs2R;x2Rd converge in distribution as e! 0 in the
space C0ðR; L2ðRd;R2ÞÞ \ L2ðR; L2ðRd;R2ÞÞ to the limit
processes ð pTðs; xÞÞs2R;x2Rd , ð pRðs; xÞÞs2R;x2Rd given by

pRðs; xÞ ¼ �
R0

4p

Z Z
R
^

ðv;�L;0; x; x0Þx
^
ðv; x0Þdx0e�ivs dv;

(16)
pTðs; xÞ ¼ �
T0

4p

Z Z
T
^

ðv;�L;0; x; x0Þx
^
ðv; x0Þdx0e�ivs dv;

(17)

where T0 and R0, are the transmission, resp. reflection,
coefficient of the interface at z = –L and defined above.
Furthermore,

L2ðR; L2ðRd;R2ÞÞ ¼ L2ðR� Rd;R2Þ:

The operators

ðR
^

ðv;�L; z; x; x0ÞÞz2 ½�L;0�

and

ðT ðv;�L; z; x; x0ÞÞz2 ½�L;0�

are the solutions of the following Itô-Schrödinger diffusion
models:

dR
^

ðv;�L; z; x; x0Þ ¼ i

2v
Dx þDx0ð ÞR

^

ðv;�L; z; x; x0Þdz

þ iv
2

R
^

ðv;�L; z; x; x0Þ	 dBðz; xÞ þ dBðz; x0Þð Þ;

(18)

dT
^

ðv;�L; z; x; x0Þ ¼ i

2v
Dx0T

^

ðv;�L; z; x; x0Þdz

þ iv
2

T
^

ðv;�L; z; x; x0Þ	dBðz; x0Þ; (19)

with the initial conditions at z = –L:

R
^

ðv;�L; z ¼ �L; x; x0Þ ¼ dðx� x0Þ;

T
^

ðv;�L; z ¼ �L; x; x0Þ ¼ dðx� x0Þ:

The symbol 8 stands for the Stratonovich stochastic
integral, and B(z, x) is a real-valued Brownian field with
covariance

E½Bðz1; x1ÞBðz2; x2Þ� ¼ minfz1; z2gC0ðx1 � x2Þ (20)

Making use of the semigroup property of the effective
operators we also find that the joint law for the direct
arrival to the two points of observation located at (–L1,
e2x1) and (–L2 e2x2), with –L� –L2� –L1� 0, can be
characterized by

pðL1 þ e4s;�L1; e2x1Þ


� 1

4p

Z Z
T
^

ðv;�L1;0; x1; x
0Þx
^
ðv; x0Þdx0e�ivsdv;

(21)Z Z

pðL2 þ e4s;�L2; e2x2Þ
 �

1

4p
T
^

ðv;�L2;�L1; x2; x
00Þ

� T
^

ðv;�L1;0; x
00; x0Þx

^
ðv; x0Þdx0dx00e�ivsdv (22)

We note that, for –L� –L2� –L1� 0, the operators
T
^

ðv;�L;�L2; x; x0Þ and R
^

ðv;�L;�L2; x; x0Þ are statisti-
cally independent of T

^

ðv;�L2;�L1; x; x0Þ and
R
^

ðv;�L2;�L1; x; x0Þ, which we exploit in evaluating
the cross-correlations. We remark here also that the
transmission operator over the sub-slab (–L1,0) appears
in both expressions in (21)–(22) and it is this pairing
that will lead to an expression for the cross correlations
in terms of a statistically stable filter or transformation
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Fig. 2. The four contributions to the cross correlation between points (–

L1, e2x1) and (–L2, e2x2).

Fig. 2. Les quatre contributions à la corrélation croisée entre les points (–

L1, e2x1) et (–L2, e2x2).
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below. The general statistical properties of the operators
R
^

, T
^

were studied in Garnier and Sølna (2009a).

5. Characterization of cross correlations

Here, we characterize the ‘‘field-field’’ correlation
function between the points (–L1, e2x1) and (–L2, e2x2).
We assume here that T� L and 0< L1< L2< L. The field-
field correlation function is given by

Ve
TðtÞ ¼

Z T

0
pðt;�L1; e2x1Þ pðt þ t;�L2; e2x2Þdt : (23)

The configuration is illustrated in Fig. 1, we compute
the cross correlation in between the two points at depth –
L1 and –L2. We will see that the wave field correlation
function concentrates around specific time lags t that
correspond to travel times between the two observation
points, and that the time extent of correlation function
around these time lags is much smaller, of order e4, i.e., of
the same order as the source pulse width.

Under the scaling assumptions of Section 2, we find that
the correlations in (23) has leading contributions at four
particular time lags:

Ve
Tð�ðL2 � L1Þ þ e4sÞ=e4
V�t ðsÞ; (24)

Ve
Tð�ð2L� L1 � L2Þ þ e4sÞ=e4
V�r ðsÞ (25)

Here, the amplitude scaling e�4 corresponds to a re-
scaling of the source time traces so that they have order
one energy, but plays no significant role as the problem is
linear. We shall here focus on the contribution Vþt , which
corresponds to correlation of wave components directly
transmitted in between the points of observation (Fig. 2).
The contribution Vþt is concentrated around time lag equal
to +(L2–L1) and it comes from the correlation between the
waves that propagate from the surface to the depth –L1 and
then to the depth –L2. The contribution V�t is concentrated
around time lag equal to –(L2–L1) and it comes from the
correlation between the waves that have been reflected by
the interface at z = –L and that propagate from this
interface to the depth –L2 and then to the depth –L1. We[(Fig._1)TD$FIG]
⊗

z = 0

z =−L1

z =−L2

z =−L

Fig. 1. Configuration. The source is located at the surface z = 0. An

interface is present at depth z = –L. We compute the cross correlation

between the two points at depth –L1 and –L2. The random fluctuations

occur in the interval z2(–L, 0).

Fig. 1. Configuration. La source est placée à la surface z = 0. Une interface

est présente à la profondeur z = –L. Nous calculons la corrélation croisée

entre les deux points aux profondeurs –L1 et –L2. Le milieu est aléatoire

dans l’intervalle z2(–L, 0).
stress here that these wave components have been
strongly affected by the multiple scattering in the medium
and understanding how this affects the relation of the
components V and Green’s functions is our main objective.
The contributions V�r correspond to cross terms and they
will be treated in detail elsewhere. We remark here that
they give contributions concentrated around times lags
that are larger than the ones of the first two contributions
(since 2L–L1–L2> L2–L1) and they can be used for estima-
tion of the depth L of the bottom interface.

The correlation component Vþt can be characterized in
distribution in the scaling limit considered in this paper by
the following expression using (21), (22) and the definition
(23):

Vþt ðsÞ ¼
1

2p

Z Z
Lþt ðv; x; x1; L1Þ

� T
^

ðv;�L2;�L1; x2; x1 � xÞdxe�ivsdv; (26)

where T
^

ðv;�L2;�L1; x; x0Þ is defined by (19). Remember
that T

^

ðv;�L2;�L1; x2; x1Þ is the random paraxial Green’s
function from the point ð�L1; e2x1Þ to the point ð�L2; e2x2Þ
that we want to estimate. Therefore, (26) reads as a filtered
version of the Green’s function in between the two points
of observation. This filter is

Lþt ðv; x; x1; L1Þ ¼
1

4

Z Z
T
^

ðv;�L1;0; x1 � x; y2Þ

� T
^

ðv;�L1;0; x1; y1Þx
^
ðv; y2Þx

^
ðv; y1Þdy1dy2 (27)

In the regime considered in this article, the filter Lþt
defining the relevant transformation is self-averaging, see
de Hoop and Sølna (2009), in the sense that
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Lþt ðv; x; x1; L1Þ ¼
1

4

Z Z
E½T
^

ðv;�L1;0; x1 � x; y2Þ

� T
^

ðv;�L1;0; x1; y1Þ�x
^
ðv; y2Þx

^
ðv; y1Þdy1dy2

In order to characterize the filter Lþt we introduce the
Wigner transform defined by

WT
vðL1; x; x

0;k;k0Þ ¼
Z Z

E½ T
^

ðv;�L1;0; xþ
y

2
; x0 þ y0

2
Þ

�T
^

ðv;�L1;0; x�
y

2
; x0� y0

2
Þ�e�iðk�yþk0 �y0 Þdydy0

The Wigner transforms can be shown to satisfy a set of
transport equations that can be integrated, as shown in
Garnier and Sølna (2009b), and we find the following
integral representation for WT

v:

WT
vðz; x; x0;k;k0Þ

¼ 1

ð2pÞd
Z Z

e�iðk0þkÞ�a�iðx0�xþk
vzÞ�be

v2

4

R z

0
Dðaþb

vz0Þ�Dð0Þdz0dadb

(28)

This gives then an integral expression for the filter. In
order to get an explicit form for the filter and characterize
the associated resolution scale, or filter support scale, we
consider next a particular regime of relatively strong
scattering or clutter.

5.1. The strongly cluttered regime

We introduce the correlation length ‘ and the standard
deviation s of the random fluctuations:

Cðz; xÞ ¼ s2C0ð
z

‘
;
x

‘
Þ

With this representation we have:

DðxÞ ¼ s2‘D0ð
x

‘
Þ; D0ðxÞ ¼

Z 1
�1

C0ðz; xÞdz

We assume also that the normalized autocorrelation
function D0(x) is at least twice differentiable at
x = 0, which corresponds to a smooth random
medium.

We introduce the parameter, depending on v,

bLðvÞ ¼ L
s2‘v2

4
; (29)

which characterizes the strength of the forward scattering.
We shall then assume a subsequent scaling regime
corresponding to relatively strong medium interaction,
with bL(v) being large.

Second, we introduce the frequency-dependent resolu-
tion parameter:

S2
vðL1Þ ¼

16

v2gL1
; (30)

where we defined

g ¼ �s2

d‘
DD0ð0Þ
Using the results of Garnier and Sølna (2009a), we find
the following expression for the filter

Lþt ðv; x; x1; L1Þ ¼
1

4
ð 6

pgL3
1

Þ
d=2

expð� jxj2

2S2
vðL1Þ

Þ

�
Z
jx
^
ðv; y1Þj

2dy1 (31)

Thus, we have a situation in which a sharp filter and
Green’s function estimation have been enabled by the
medium correlations. We remark that the expression (31)

is valid provided jx1j
ffiffiffiffiffiffiffiffi
gL3

1

q
, which means that the point

(–L1, e2x1) is in the forward cone of wave energy (Garnier

and Sølna, 2009a; de Hoop and Sølna, 2009). Note that this
cone is wider than the usual deterministic light cone due to
multiple scattering.

We have similarly

V�t ðsÞ ¼
R2

0

2p

Z Z
L�t ðv; x; x2; L2; LÞ

� T
^

ðv;�L1;�L2; x1; x2 � xÞdxe�ivsdv;

with the filter

L�t ðv; x; x2; L2; LÞ ¼
1

4

Z Z
T
^

ðv;�L2;0; y4; y2Þ

� T
^

ðv;�L2;0; y3; y1Þ

� R
^

ðv;�L;�L2; x2 � x; y4Þ

� R
^

ðv;�L;�L2; x2; y3Þx
^
ðv; y2Þx

^
ðv; y1Þdy1dy2

Note that, by reciprocity, we have

V�t ðsÞ ¼
R2

0

2p

Z Z
L�t ðv; x; x2; L2; LÞ

� T
^

ðv;�L2;�L1; x2 � x; x1Þdxe�ivsdv ; (32)

which shows that we obtain a filtered version of the anti-
causal Green’s function in between the two points of
observation.

We can also get a simple expression of the filter in the
strongly cluttered regime. Self-averaging implies that

L�t ðv; x; x2; L2; LÞ ¼
1

4

Z Z
E½ T

^

ðv;�L2;0; y4; y2Þ

� T
^

ðv;�L2;0; y3; y1Þ� (33)

� E½R
^

ðv;�L;�L2; x2 � x; y4Þ

� R
^

ðv;�L;�L2; x2; y3Þ�x
^
ðv; y2Þx

^
ðv; y1Þdy1dy2dy3dy4

We will again in general have sharp clutter enabled
resolution for the filter L�t , analogously to the situation
for the filter Lþt . However, the presence of the reflection
operator in the expression for the filter (33) modifies the
expression for the filter in a way that depends more
critically on the particular scaling regime considered. In
particular, one may have scaling situations in which
there is a restoration of coherence for the reflected
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waves which affects the resolution, moreover, a diffusive
or incoherent bottom interface condition will affect
wave diversity and resolution (Garnier and Sølna,
2009b). These phenomena will be treated in detail
elsewhere.

6. Discussion

We presented an analysis for partly coherent and partly
incoherent body waves generated by a (teleseismic) wave
packet remotely incident on a slab (the crust) containing a
medium consisting of a deterministic component and a
random field, based on the dyadic parabolic decomposition
of phase space coupled to the scaling of the random
fluctuations. The deterministic component consists, here,
of a planarly layered medium, but can be generalized to
contain conormal singularities (discontinuities) combined
with smooth wave speed variations. The wave packets
provide a frame to represent and study partly coherent
wave fields.

To obtain information about the deterministic medium
component, one needs to consider ‘‘field-field’’ cross
correlations. We showed that these cross correlations
are characterized by a transformation (blurring filter)
of the random paraxial Green’s function, between the
points at which the fields are taken, the transformation
containing information about the statistics of the random
fluctuations. If the points are taken purely transverse to the
propagation direction of the wave packet in the determin-
istic component, the blurring significantly increases, which
is consistent with the usual stationary phase arguments. In
general our results fully characterize the cross correlation
function in the regime in which the source and random
medium scaling is such that the waves remain concentrat-
ed in phase space.
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