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A B S T R A C T

In the present study, a prominent 11-year cycle, supported by the pattern of the

autocorrelation function and measures of Euclidean distances, in the mean annual sunspot

number time series has been observed by considering the sunspot series for the duration of

1749 to 2007. The trend in the yearly sunspot series, which is found to be non-normally

distributed, is examined through the Mann-Kendall non-parametric test. A statistically

significant increasing trend is observed in the sunspot series in annual duration. The results

indicate that the performance of the autoregressive neural network-based model is much

better than the autoregressive moving average and autoregressive integrated moving

average-based models for the univariate forecast of the yearly mean sunspot numbers.

� 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Dans la présente étude, un cycle remarquable de 11 ans, corroboré par le diagramme de la

fonction d’autocorrélation et les mesures des distances euclidiennes dans la série

temporelle du nombre annuel moyen de taches solaires ont été observés, en prenant en

considération les séries de taches solaires sur la période 1749–2007. La tendance dans les

séries annuelles de taches solaires dont il a été trouvé qu’elles étaient distribuées non

normalement, est examinée au moyen du test non paramétrique Mann-Kendall. Une

tendance à un accroissement statistiquement significatif est observée dans les séries de

taches solaires sur la durée de l’année. Les résultats indiquent que la performance du

modèle basé sur le réseau neuronal autorégressif est bien meilleure que les modèles basés
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sur la moyenne autorégressive mouvante et sur la moyenne autorégressive intégrée

mouvante, pour la prévision univariée du nombre moyen de taches solaires sur

l’année.

� 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

Solar activity forecasting is an imperative tool, which is
used in the various scientific and technological fields, like
the operations of the low-Earth orbiting satellites, the
electric power transmission lines, the high frequency radio
communications and the geophysical applications (e.g.
Alexandris et al., 1999; Katsambas et al., 1997). The
particles and electromagnetic radiations flowing from the
solar activity outbursts are also important to study the
long-term climatic variations (Sello, 2001). The easily
observable and long-term recorded aspects of the solar
activity are the dark regions on the solar disk, i.e., the
sunspots. Their numbers per time interval represent an
index of the general solar magnetic activity (Echer et al.,
2004a). Sunspot number (SN) series represents the longest
running direct record of solar activity, with reliable
observations dating back to the year 1610, soon after
the invention of the telescope (Usoskin et al., 2003). SN is
connected with solar flares strongly affecting the Earth’s
magnetosphere and the radiation environment. Mean solar
magnetic field value is related to the interplanetary
magnetic field controlling the averaged Earth’s magneto-
sphere conditions (Dmitriev et al., 1999). The number of
sunspots is characterized by a long-term temporal varia-
tion, reaching its maximum or minimum approximately
every 11 years (the solar cycle). This variation, in turn, has
an effect in terms of variation in the global climate (Tzanis
and Varotsos, 2008; Varotsos and Cracknell, 2004). Many
atmospheric phenomena exhibit decadal variability on
both regional and global scales. Such phenomena have
often been related empirically to solar cycle variations, on
the order of 11 or sometimes 22 years (Rind, 2002).
Shindell et al. (1999) showed how upper stratospheric
ozone changes may amplify observed, 11-year solar cycle
irradiance changes to affect climate. The latter is evidence
of the interplay between the photochemistry and dynam-
ics of the ozone layer especially over the middle and high
latitudes in both hemispheres (Varotsos, 2002). A connec-
tion between the 11-year solar cycle, the QBO and total
ozone was discussed by Varotsos (1989). Varotsos and
Cracknell (2004) identified the existence of Guttenberg-
Richter seismic law with-in the solar cycle, which was
further validated by Chattopadhyay and Chattopadhyay
(2008) using the Artificial Neural Network (ANN) and
factor analysis. Sunspots grow over a few days and last
from several days to a few months, indicating enhanced
solar activity that modulates the weather and the climate
(Chattopadhyay and Chattopadhyay, 2008). The associa-
tion between climatic variation and the variation in solar
cycle has been studied by several authors like Willett
(1951), Friis-Christensen and Lassen (1991), Fröhlich and
Lean (1998) and many others. Haigh (2006) used a general-
circulation model (GCM) to investigate the impact of the
11-year solar-activity cycle on the climate of the lower
atmosphere.

The prediction of solar cycles, a major thrust research
area for long time, requires the knowledge of the solar
dynamo, a term that includes the processes involved in the
production, transport, and destruction of solar magnetic
field (Pesnell, 2008). There are two methods of predicting
future solar activity. First is the purely numeric method
that explores the periodicity within the SN time series.
Examples in this direction are Rigozo and Nordemann
(1998) and Rigozo et al. (2001), Echer et al. (2004b), which
do not depend upon the intrinsic physics. The other
method is the precursor method which is based on
correlating any solar/geophysical parameter from earlier
in the solar cycle to SNs at solar maximum or some other
point later in the cycle (Echer et al., 2004a). Examples in
this direction are Kane (2001), Ahluwalia and Ygbuhay
(2009). The work, which the authors are going to present in
this article, comes in the first category.

The rate of solar flares and the amount of energy
released by the solar flares are well correlated with the SN,
as is the rate of coronal mass ejections (Pesnell, 2008). The
SN time series provides the longest existing record of solar
activity, and is thus the best available data set for studying
the long-term evolution of solar activity and, in particular,
of the 11-year activity cycle (Baranovski et al., 2008). Very
recently, Gil and Luis (2009) studied the monthly SN time
series and proved that the SN series displays the long
memory, with a large degree of dependence between the
observations that tends to disappear very slowly in time.
Standard autoregressive models have been used to predict
solar cycles (Hathaway et al., 1999). However, in the
situations of non-linear and non-stationary situations, the
conventional autoregressive processes are not very useful,
and thus, are not much acceptable. ANN, which is the
mathematical analogue of the nervous system, has been
recognized by the geo-scientists as a powerful alternative
to the conventional statistical approaches for developing
predictive models for complex geophysical systems (e.g.
Gardner and Dorling, 1998; Hsieh and Tang, 1998). The
method has an ability to identify a relationship from given
patterns and this makes it possible for ANNs to solve large-
scale complex problems such as pattern recognition, non-
linear modelling, classification, association, and control
(Tayfur, 2002). Forecasting time series by ANN has been
discussed in papers like Lin et al. (1994), Dorffner (1996).
Complexity of the solar cycle is already documented in
Kurths and Ruzmaikin (1990), Price et al. (1992) and Sello
(2001). Consequently, the study of solar cycle has also been
an area where ANN has got significant importance. In a
multivariate environment, Lundstedt (1992) implemented
ANN for predictions of solar-terrestrial effects. Sello (2001)
showed that the monthly mean SNs contain true non-
linear dependencies with the use of the method of
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surrogate data combined with the computation of linear
and non-linear redundancies. Calvo et al. (1995) showed
how the ANN can capture the intrinsic dynamics of solar
activity, producing good long-term forecasting for periods
up to a complete cycle. Conway et al. (1998) examined the
use of feed forward neural networks in the long-term
prediction of SNs. Park and Woo (2009) compared the
performance of two types of ANN in forecasting the
monthly SNs.

Analysis of the trend in the geophysical time series has
long been done to view various climatic aspects. Analysis
of the trend in the Indian summer monsoon rainfall has
been done by Ghosh et al. (2009), Guhathakurta and
Rajeevan (2008), Pal and Al-Tabbaa (2011) and Rana et al.
(2011). Both parametric and non-parametric methods
have been employed for identifying trends in data.
However, recent studies have shown that non-parametric
tests are more suitable for non-normally distributed and
censored data, including missing values, which are
frequently encountered in hydrological time series. These
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Fig. 1. a: autocorrelation function of the sunspot number time series under study

at the period of 10.792. This indicates an 11-year cycle.

Fig. 1. a : fonction d’autocorrélation des séries temporelles de taches solaires étud

le pic maximum à la période 10,792. Ceci indique un cycle de 11 ans.
methods are less influenced by the presence of outliers in
the data. Among those, the Mann-Kendall (MK) test (Mann,
1945; Kendall, 1975) is one of popular methods for trend
analysis in meteorological time series (Chiew and McMa-
hon, 1993; Dinpashoh et al., 2011; Jhajharia et al., 2011;
Yue and Pilon, 2004; Zetterqvist, 1991). Influence of serial
correlation on the MK test in trend-detection studies of
hydrological time series has been studied by Yue and Wang
(2002). In a recent study, Jhajharia and Singh (2011)
applied MK test to study the trends in temperature, diurnal
temperature range and sunshine duration in Northeast
India. In another recent study, Jhajharia et al. (2011)
investigated the trends in the reference evapotranspiration
estimated through the Penman-Monteith method over the
humid region of Northeast India by using the MK test after
removing the effect of significant lag-1 serial correlation
from the time series of reference evapotranspiration by
pre-whitening. Using long-term ionosonde measurements
in mid-latitudes, Bremer (1992) executed trend analysis
and identified decrease in the peak height of the
24232221201918171615143
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ionospheric F2-layer. The geomagnetic activity that is
controlled by the Sun and its solar wind, has been tested for
its trend by MK test by Love (2011). In the present article,
first, we have studied the 11-year solar cycle in terms of
the autocorrelation function (ACF) and Euclidean distance
(ED) which are being used the first time to study the SN
series and solar activity. Afterwards, we analyzed the trend
within the SN timer series using MK test. Details of the test
procedure are present in subsequent sections. In the next
phase, instead of dealing with raw time series, we
transformed the monthly SN data by Box-Cox transforma-
tion (Box and Cox, 1964), and then the probability
distribution of the time series under the transformation
was studied. After removing the irregularities and trends
from the time series by the Box-Cox transformation,
stationary and non-stationary methodologies were applied
to the time series. Lastly, we implemented the autore-
gressive neural network (ARNN) model and compared it
with ARMA and ARIMA models.

2. Data analysis

For the present study, the mean annual SNs for the
duration 1749 to 2007 have been collected from the web
site of NOAA, Boulder, Colorado (http://www.ngdc.noaa.-
gov/stp/solar/ssndata.html last accessed on 24th Decem-
ber, 2010). First, the nature of the ACF (Wilks, 2006) of the
SA time series has been investigated up to lag-200 and it is
presented in Fig. 1a. It is observed that the ACF is gradually
decaying in a sinusoidal manner. This indicates that the
time series is stationary. The most interesting feature of
the time series is that the maximum autocorrelation
coefficients (ACC) are occurring at the lags separated by 11.
This means that the entries of time series are gaining
highest positive association with the first entry in 11 years
interval. In the subsequent sections, we viewed the 11-
year cycle using the concept of ED and generated the
univariate model for SN time series using various methods.
In Fig. 1b, we present a periodogram and the most
prominent peak is found at the time point 11. This further
supports the presence of an 11-year cycle in the SN time
series.

3. Trend estimation in Sunspot number time series

Chattopadhyay et al. (2011) discussed that the
parametric methods require the data to be independent
and normally distributed, whereas, even for smaller
departures from normality, the non-parametric methods
are sometimes better than parametric methods. Non-
parametric methods use the ranks of observations rather
than their actual values, which relax the requirements
concerning the distribution of the data. The MK test, which
is a non-parametric test, provides a test for positive or
negative trends, which are not necessarily linear. It
provides a robust test for trend, free from assumptions
about mathematical form of the trend or the probability
distribution of errors (Hasanean, 2001). The mathematical
background of the MK test is discussed at length in papers
such as Chattopadhyay et al. (2011), Jhajharia et al. (2009),
Onoz and Bayazit (2003) and Yue et al. (2002). The MK
trend test first computes S statistic given by (Dinpashoh
et al., 2011; Jhajharia et al., 2011)

S ¼
Xn�1

i¼1

Xn

j¼iþ1

sgn x j � xi

� �

where n is the number of observations, xj is the jth

observation, and sgn(.) is the sign function which can be
defined as

sgn uð Þ ¼
1 i f u > 0
0 i f u ¼ 0
�1 i f u < 0

8<
:

Under the assumption that data are independent and
identically distributed, the mean and variance of the S

statistic are given by:

E Sð Þ ¼ 0

V Sð Þ ¼
n n � 1ð Þ 2n þ 5ð Þ �

Xm

i¼1

ti ti � 1ð Þ 2ti þ 5ð Þ

18

where, m is the number of groups of tied ranks, each with ti

tied observations. The original MK statistic, designated by
Z, can be computed as

Z ¼

S � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p S > 0

0 S ¼ 0
S þ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Sð Þ

p S < 0

8>>>><
>>>>:

If �Z1�a=2 � Z � Z1�a=2 then the null hypothesis of no
trend can be accepted at significant level of a. Otherwise,
the null hypothesis can be rejected and alternative
hypothesis can be accepted at the significant level of a.
In the present article, we are dealing with the time series of
annual SNs. However, to have a clear view of the data
under consideration, we have examined the trends in the
SN time series in monthly scales as well. The MK non-
parametric test was used to examine the trends in the SN
time series because the SN time series are non-normally
distributed. The results are displayed in Table 1.

From Table 1, it is observed that there is a rising trend in
the annual SN time series, which resembles the nature of
the time series in most of the months.

4. Euclidean distance approach

The approach of ED is not new in the field of the
meteorology. Elmore and Richman (2001) used ED as a
similarity metric for Principal Component Analysis.
Geometrically, the ED between two points is the shortest
possible distance between the two points. The majority of
the cluster analyses in the climatological literature have
been based upon EDs because of the many useful

http://www.ngdc.noaa.gov/stp/solar/ssndata.html
http://www.ngdc.noaa.gov/stp/solar/ssndata.html


Table 1

Results of the Mann-Kendall (MK)-test.

Tableau 1

Résultats du test MK.

MK-test

statistic

Observation

January 1.98231 Rising trend at 5% significance level

February 1.95139 Rising trend at 10% significance level

March 2.26572 Rising trend at 5% significance level

April 1.97941 Rising trend at 5% significance level

May 1.90333 Rising trend at 10% significance level

June 2.41074 Rising trend at 1% significance level

July 2.47742 Rising trend at 1% significance level

August 2.38199 Rising trend at 1% significance level

September 2.0655 Rising trend at 5% significance level

October 2.17385 Rising trend at 5% significance level

November 1.39374 No trend

December 1.60689 No trend

Annual 2.13507 Rising trend at 5% significance level
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Fig. 2. This figure shows the variation of Euclidean distance against lag-k.

The Euclidean distances have been computed before Box-Cox

transformation.

Fig. 2. La figure montre la variation de la distance euclidienne en fonction

de lag-k. Les distances euclidiennes ont été calculées avant transforma-

tion Box-Cox.
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properties of the Euclidean metric. Most of the recent
developments in clustering algorithms predominantly
have involved the use of EDs as well (Mimmack et al.,
2001). Considering the said time series from the point of
view of ED, the time series of SNs is given as X = {x1, x2,
x3,. . ., x259}, where x1 indicates the mean SN of the year
1749 and x2, x3,. . ., x259 etc. indicate the mean SNs of the
subsequent years. From the series X, we have generated
new series X1, X2 etc., where, Xk indicates the time series
starting from xk. The ED between X and Xk is defined as:

dk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 � xkÞ2 þ ðx2 � xkþ1Þ2 þ ::: þ ðx259�kþ1 � x259Þ2

q

(1)

After computing the EDs for several lags k, we have
plotted them in Fig. 2. The figure shows that like the ACF,
the dk is following a wave pattern having its peaks in
11 years intervals. This further indicates the existence of
11-year solar cycles which is established in the literature.

So far, we have considered the yearly mean SNs in its
raw form. Now we examine whether the time series of
annual SNs is normally distributed. The Anderson-Darling
test (Anderson and Stern, 1996; Elmore, 2005) was used to
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Fig. 3. Autocorrelation function of the sunspot number time series under st

Fig. 3. Fonction d’autocorrélation des séries temporelles de taches solaires ét
test the normality of the SN time series. The assumption of
the null hypothesis that the data are normally distributed
is examined. We find that the value of test statistic under
the null hypothesis is 6.078 and subsequently the null
hypothesis is rejected. Therefore, the data are not normally
distributed. For further study, we transformed the time
series by means of Box-Cox transformations. This trans-
formation removes the trend components and other
irregularities from the time series. The Box-Cox transfor-
mation is given by (Seleshi et al., 1994):

Zt ¼
Xl

t � 1

lGl�1
(2)

where, Xt is the original time series, G is the sample
geometric mean, l is the transformation parameter, and Zt

is the transformed series. In this paper, we have taken
l = 0.359. The autocorrelation structure after Box-Cox
transformation has been presented in Fig. 3, which
242322212019181716151413121

Lag

udy computed up to several lags after Box-Cox transformation.

udiées, calculées jusqu’à différents décalages après transformation Box-Cox.



resembles the same pattern as that of the original time
series. After transforming the time series, we test for
normal distribution, and we find that the transformed time
series is following normal distribution with mean 0 and
standard deviation 3.5.

The plot presented in Fig. 4 represents a normal
distribution followed by the Box-Cox transformed time
series. However, before Box-Cox transformation, the mean
and the standard deviation were 52.423 and 41.491, and
when we try to fit a normal distribution to it, we find a plot
in Fig. 5, which is not symmetric about the mean. This
indicates that before the transformation, the data series
was not normal.

Fig. 4. Distribution after Box-Cox transformation. The vertical axis

represents the probability density.

Fig. 4. Distribution après transformation Box-Cox. L’axe vertical repré-

sente la probabilité de densité.

Fig. 5. Distribution before Box-Cox transformation. The vertical axis

represents the probability density.

Fig. 5. Distribution avant transformation Box-Cox. L’axe vertical repré-

sente la probabilité de densité.
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5. Development of ARMA and ARIMA models

After applying Box-Cox transformation, the data series
is now free from trend components and other irregulari-
ties. As the ACF is showing a wave pattern with significant
positive and negative spikes gradually tending to 0, we
apply the stationary approach (Moran, 1954) autoregres-
sive moving average (ARMA) to this time series. An ARMA
(p, q) process is expressed as (Box et al., 2007):

fðBÞxt ¼ uðBÞat (3)

where, w(B) and u(B) are the polynomials of degree p and q

respectively, B is the backward shift operator, xt with upper
bar is (xt - m), where, m is the sample mean. A detailed
description of the ARIMA process and its theoretical
background is available in Box et al. (2007).

As we have already seen that there is an 11-year cycle
within the time series, we go up to 11 orders of autoregres-
sion with moving average orders of 1 and 2 respectively.
Therefore, as a whole, 22 ARMA (p, q) models are to be tested.
Goodness of fit of the models are tested though the Akaike
Information Criteria (AIC) (Wilks, 2006). The minimization of
the AIC indicates best fit. We find that the AIC is getting its
minimum (= 913.11) for the model ARMA (11, 1). Therefore,
it is understood that the yearly mean SNs are best
represented by ARMA (11, 1), where the order of auto-
regression is 11 and order of moving average is 1.

Previously we have mentioned that because of the
sinusoidal and gradually decaying pattern of the time
series under consideration we are using a stationary
approach. However, we also take into account the further
increasing autocorrelation after lag 56. That’s why, we are
trying a non-stationary approach in this section. Auto-
regressive integrated moving average (ARIMA) (Box et al.,
2007) modelling is attempted in this section. In general,
this process is denoted as ARIMA(p, d, q), where d denotes
the number of times the stationary process is summed. An
ARIMA(p, d, q) process is expressed as

fðBÞrdxt ¼ u Bð Þat (4)

The difference operator in the left hand side of (4) is
equal to (1-B). Here also, we have examined autoregressive
orders up to 11 and moving average orders up to 2. We
have kept d fixed at 1. Consequently, 22 models have been
generated. The AIC has attained its minimum (= 921.13) at
ARIMA (8, 1, 1). Thus, we find that in the case of ARIMA (p,

d, q), we require only 8 previous values of the time series as
predictor, whereas in ARMA (p, q) we require 11 previous
values of the time series as predictors. Some examples of
application of ARIMA in the non-stationary meteorological
time series include El-Fandy et al. (1994), Visser and
Molenaar (1995) and Woodward and Gray (1993, 1995).

Now, the question that naturally arises, is: Which one is

better? ARMA (11, 1) or ARIMA (8, 1, 1)? To answer this
question, we require computing a statistic that would
measure potential of a model to make forecast. To do the
same we compute Willmott’s index that was advocated by
Willmott (1982) to measure the degree of agreement
between actual and predicted values. This is given as
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(Willmott, 1982)

d ¼ 1 �
X

Pi � Oij j
h i2 X

ð Pi � O
�� ��þ Oi � O

�� ��Þ2
h i�1

(5)

where, Pi, Oi, and O with upper bar denote the ith
predicted value, ith observed value, and mean of the
observed values, respectively. Willmott (1982) recom-
mended this statistic to assess the degree to which a model
output fits an observed dataset. This statistic has been used
by Chattopadhyay and Chattopadhyay (2009) and Comrie
(1997). In the cases of the ARMA (11, 1) and ARIMA (8, 1, 1),
the values of d are approximately equal to 0.96. This
indicates that these two models are equally potent to
forecast the time series of yearly mean SNs. However, as
less number of predictors are needed in the ARIMA (8, 1, 1),
the ARIMA (8, 1, 1) appears to be more useful than the
ARMA (11, 1) to predict the yearly mean SNs. This indicates
that before the transformation the data series was not
normal.

6. Development of Autoregressive Neural Network
(ARNN) model

ANN is now applied to the time series under consider-
ation in an autoregressive manner. The form of ANN used
in this letter is the multilayer perceptron (MLP), the most
popular form of ANN used for prediction purpose.
Application of an ANN in forecasting the SNs is not very
new. The computations carried out inside the ANN amount
to: (i) performing the weighted average of its impinging
inputs; (ii) sending this average through a (biased) sigmoid
function; and (iii) forwarding the sigmoid-function output
to the next layer of neurons (Calvo et al., 1995). The
newness in our approach is that we would examine the
possibility of forecasting the yearly mean SNs by ANN in an
autoregressive manner. In the autoregressive approach,
the values of a time series are predicted on the basis of the
previous values of the same time series. An autoregressive
model of the order k implies that the current value of the
time series is being predicted on the basis of past k data of
the same random variable. Thus, a linear autoregressive
model of order p can be expressed using p number of
previous values of the time series, including a noise term as
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Figure 6. Indices de Wilmott pour des ordres variés d’ARNN.
follows (Chattopadhyay and Chattopadhyay, 2009):

x tð Þ ¼
Xp

i¼1

aix t � ið Þ þ 2 tð Þ (6)

In the above equation, a linear function FL can be
introduced, in which case the equivalent form of the above
equation would be (Chattopadhyay and Chattopadhyay,
2009):

x tð Þ ¼ FL x t � 1ð Þ; x t � 2ð Þ; . . . ; x t � pð Þð Þ þ 2 tð Þ (7)

Replacing L by MLP leads to the AR-NN model. Since we
have already identified the 11 years cycle in the ACF, we
would vary the number of predictors from 1 to 11. Here, we
denote the proposed neural network model as ARNN (n)
where n is the number of predictors derived from the time
series. Thus, 11 ARNN (n) models would be generated by
varying n from 1 to 11. The ARNN (n) models are trained as
MLP (Gardner and Dorling, 1998) with sigmoid non-
linearity. In mathematical form, the adaptive procedure of
a feed forward MLP can be presented as (Kamarthi and
Pittner, 1999):

wkþ1 ¼ wk þ hdk (8)

The above equation represents an iterative process that
finds the optimal weight vector by adapting the initial
weight vector w0. This adaptation is performed by
presenting to the network sequentially a set pairs of input
and target vectors. The positive constant h is called the
learning rate. The direction vector dk is the negative
gradient of the output error function E. Mathematically, it
is denoted as:

dk ¼ �rEðxkÞ (9)

We use the adaptive gradient learning method to train
the ARNN (n) models. Stopping criteria is chosen as the
minimization of the mean squared error. The entire
dataset, in each case, is divided into training and test
cases in the ratio 7:3. In each case, an extensive variable
selection procedure is followed by stepwise multiple
regression analysis. The type of non-linearity in the ANN
depends upon the type of activation function chosen to
train the ANN. Gardner and Dorling (1998) have shown
11109876

 of ARNN

etwork (ARNN).
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Figure 7. Nuage de points pour ARNN (1).
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that the sigmoid activation function f xð Þ ¼ 1 þ e�xð Þ�1
� �

performs better than other types of activation function.
After generating the ARNN (n) models, the Willmott’s
indices are plotted in Fig. 6. The figure shows that the
Willmott’s indices attain their maximum for ARNN (1) and
ARNN (11). Thus, from Fig. 6 it can be concluded that these
two models are producing best forecast. However, the most
important fact, which is understood from this observation, is
that the neural network can perform very well even when it
is provided with only one predictor. At this juncture, it can,
therefore, be concluded that ARNN in general is more
effective than ARMA or ARIMA (they require more number
of predictors) to produce univariate forecast for the yearly
mean SN time series. To view the quality of the forecasts
pictorially we have created scatterplots in Figs. 7 and 8,
which show that ARNN (1) produces forecasts with
coefficient of determination R2 equals 0.98.

7. Concluding remarks

Finally, it is our observation that there is a prominent
11-year cycle in the mean yearly SN time series and it is
supported by the pattern of the ACF and measures of EDs.
Trend analysis by means of the non-parametric MK test
reveals that the yearly SN time series exhibits increasing
trend. It is further revealed that although it has a
systematic pattern for autocorrelation, it is not distributed
normally. Application of Box-Cox transformation converts
it to a normally distributed time series. At the end, it has
been revealed that for univariate forecast of the yearly
mean SNs, ARNN model performs better than the auto-
regressive moving average and the autoregressive inte-
grated moving average models.

Acknowledgements

The first author wishes to acknowledge the warm
hospitality provided by Inter University Centre for
Astronomy and Astrophysics, Pune, India, where a part
of this study was carried out during the visit from 30
December, 2010 to 10 January, 2011. The authors wish to
sincerely acknowledge the constructive suggestions from
the reviewers to enhance the quality of the work.

References

Ahluwalia, H.S., Ygbuhay, R.C., 2009. Preliminary forecast for the peak of
solar activity cycle 24. Adv. Space Res. 44, 611–614.



S. Chattopadhyay et al. / C. R. Geoscience 343 (2011) 433–442 441
Alexandris, D., Varotsos, C., Kondratyev, K.Y., Chronopoulos, G., 1999. On
the altitude dependence of solar effective UV. Physics and Chemistry
of the Earth. Part C-Solar-Terrestrial and Planetary Science 24, 515–
517.

Anderson, J.S., Stern, W.F., 1996. Evaluating the potential predictive utility
of ensemble forecasts. J. Clim. 9, 260–269.

Baranovski, A.L., Clette1, F., Nollau, V., 2008. Nonlinear solar cycle fore-
casting: theory and perspectives. Ann. Geophys. 26, 231–241.

Box, G.E.P., Cox, D.R., 1964. An analysis of transformations. J. Roy. Statist.
Soc. Ser. B 26, 211–252.

Box, G.E.P., Jenkins, G.M., Reinsel, G.C., 2007. Time Series Analysis: fore-
casting and control. Pearson Education Inc. and Dorling Kindersley
Publishing Inc.

Bremer, J., 1992. Ionospheric trends in mid-latitudes as a possible indi-
cator of the atmospheric greenhouse effect. J. Atmos. Terrest. Phys. 54,
1505–1511.

Calvo, R.A., Ceccato, H.A., Piacentini, R.D., 1995. Neural network predic-
tion of solar activity. Astrophys. J. 444, 916–921.

Chattopadhyay, S., Chattopadhyay, G., 2008. A factor analysis and neural
network-based validation of the Varotsos-Cracknell theory on the 11-
year solar cycle. Inter. J. Remote Sensing 29, 2775–2786.

Chattopadhyay, G., Chattopadhyay, S., 2009. Autoregressive forecast of
monthly total ozone concentration: a neurocomputing approach.
Comput. Geosci. 35, 1925–1932.

Chattopadhyay, G., Jhajharia, D., Chattopadhyay, S., 2011. Univariate
modeling of monthly maximum temperature time series over North-
east India: neural network versus Yule-walker equation based
approached. Meteorol. Appl. 18, 70–82.

Chiew, F.H.S., McMahon, T.A., 1993. Detection of trend or change in
annual flow of Australian rivers. Inter. J. Climatol. 13, 643–653.

Comrie, A.C., 1997. Comparing neural networks and regression models for
ozone forecasting. J. Air Waste Manage. Assoc. 47, 653–663.

Conway, A.J., Macpherson, K.P., Blacklaw, G., Brown, J.C., 1998. A neural
network prediction of solar cycle 23. J. Geophys. Res. 103, 29733–29742.

Dinpashoh, Y., Jhajharia, D., Fakheri-Fard, A., Singh, V.P., Kahya, E., 2011.
Trends in reference evapotranspiration over Iran. J. Hydrol. 399, 422–
433, doi:10.1016/j.jhydrol.2011.01.021.

Dmitriev, A. et al., 1999. Solar activity forecasting on 1999–2000 by
means of artificial neural networks. EGS XXIV General Assembly,
22 April 1999, The Hague, The Netherlands.

Dorffner, G., 1996. Neural Networks for Time Series Processing. Neural
Network World 6, 447–468.

Echer, E., Rigozo, N.R., Nordemann, D.J.R., Vieira, L.E.A., 2004a. Prediction
of solar activity on the basis of spectral characteristics of sunspot
number. Annal. Geophys. 22, 2239–2243.

Echer, E., Rigozo, N.R., Souza, M.P., Vieira, L.E.A., Nordemann, D.J.R., 2004b.
Reconstruction of the aa index on the basis of spectral characteristics.
Geofısica Internacional 43, 103–111.

El-Fandy, M.G., Ashour, Z.H., Taiel, S.M.M., 1994. Time series models
adoptable for forecasting Nile floods and Ethiopian rainfalls. Bull.
Am. Meteorol. Soc. 75, 83–94.

Elmore, K.L., 2005. Alternatives to the chi-square test for evaluating rank
histograms from ensemble forecasts. Weather Forecast. 20, 789–795.

Elmore, K.L, Richman, M.B., 2001. Euclidean distance as a similarity metric
for principal component analysis. Mon. Weather Rev. 129, 540–549.

Friis-Christensen, E., Lassen, K., 1991. Length of the solar cycle: an
indicator of solar activity closely associated with climate. Science
254, 698–700.
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