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A B S T R A C T

The association between the monthly total ozone concentration and monthly maximum

temperature over Kolkata (22.568 N, 88.308 E), India, has been explored in this paper. For

this, the predictability of monthly maximum temperature based on the total ozone as

predictor is investigated using Artificial Neural Network. The presence of persistence and

similar cyclic patterns are revealed through autocorrelation and cross-correlation

coefficients. Common cycles of length 12 and 6 have been identified through periodogram.

Hence, a predictive model has been generated by Artificial Neural Network in the form of

Multi Layer Perceptron (MLP) using scaled conjugate gradient learning with sigmoid non-

linearity. After training and testing the network, an MLP with total ozone of month n as

predictor and maximum temperature of month (n + 1) as the target output is found as the

best model. Performance of the model has been judged statistically. Finally, the MLP model

has been compared with linear and non-linear regressions and the efficiency of MLP has

been established over the regression models.

� 2011 Published by Elsevier Masson SAS on behalf of Académie des sciences.

R É S U M É

L’association entre la concentration mensuelle en ozone total et la température mensuelle

maximum sur Kolkata (22,568N ; 88,308E), Inde, est explorée dans le travail ici présenté.

Dans ce but, la prédictabilité de la température annuelle maximum basée sur l’ozone total

comme prédicteur, a été examinée en utilisant le Réseau Neuronal Artificiel. La présence

de persistance et de diagrammes cycliques similaires sont observés au moyen des

coefficients d’autocorrélation et de corrélations croisées. Des cycles communs, de

longueur comprise entre 6 et 12 ont été identifiés au moyen de périodogrammes. D’où un

modèle prédictif généré par réseau neuronal artificiel sous la forme de perception multi-

couche (MLP) utilisant un apprentissage de gradient conjugué à non-linéarité sigmoı̈de.

Après avoir entraı̂né et testé le réseau, un modèle MLP avec l’ozone total d’un mois n en

tant que prédicteur et la température maximum du mois (n + 1) en tant que sortie de cible,
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. Introduction

Suitability of stratospheric predictors in generating
xtended range forecast of tropospheric variables is well
ocumented in the literature (Baldwin et al., 2003; Jung
nd Barkmeijer, 2006). Most of the energy that drives the
limate system comes from the sun and variations in solar
adiation on several timescales are linked with substantial
ariations of Earth’s climate. Because of the absorption of
ltraviolet (UV) radiation by ozone in the stratosphere, its
oncentration varies with the intensity of UV radiation

lexandris et al., 1999, Katsambas et al., 1997). Ozone
ariations have a direct radiative impact on the strato-
phere and troposphere, and it has been observed that the
tmospheric temperatures are broadly consistent with the
adiative processes (Baldwin and Dunkerton, 2005). Based
n the concept of general circulation model (GCM), it is
hown that the changes in tropospheric circulation and
mperature are produced in response to stratospheric
ermal perturbations (Simpson et al., 2009). Several

uthors investigated the variability of stratospheric ozone
nd temperature on monthly to inter-annual timescales
usco and Salby, 1999; Kiladis et al., 2006; Randel and

obb, 1994).
Ozone plays a fundamental role in controlling the

hemical composition and climate of the troposphere
racknell and Varotsos, 1994; Kondratyev and Varotsos,

996; Varotsos, 1987, 2002). Tropospheric photochemistry
 initiated by photolysis of ozone, which leads to the
rmation of hydroxyl radical. Absorption of thermal

adiation by ozone influences the energy budget of the
oposphere (Kondratyev and Varotsos, 1995; Logan and
irchhoff, 1986). In an analysis of mean-monthly temper-
ture and total ozone data, Angell and Korshover (1964)
uggested that quasi-biennial oscillations extend to the
olar latitudes of both hemispheres. Much of the observed
ariability of stratospheric ozone and temperature on
onthly to inter-annual timescales is attributable to trend

ke changes or to forced variations with specified time-
cales (Cracknell and Varotsos, 1994; Randel and Cobb,
994; Varotsos, 2004). Correlations between ozone and
mperature are commonly used to investigate the

hotochemical and dynamical aspects of satellite-derived
zone data. The dynamical contributions to the ozone
mperature correlations are examined by Rood and
ouglass (1985). Sensitivity of ozone to temperature in
e upper stratosphere and lower mesosphere is investi-

ated by Froidevaux et al. (1989). Shibata and Deushi
005) investigated the radiative effect of ozone on the

uasi-biennial oscillation with a chemistry-climate model.
he changes in temperature have an impact on ozone
hemistry in the stratosphere, which will give feedback on
mperature, since ozone itself is an absorbing gas.

hanges in stratospheric ozone will also alter the radiation

field at the lower height levels, thus affecting the dynamics
and chemistry down into the troposphere (Shindell et al.,
1998). From the results of a global climate model including
an interactive parameterization of stratospheric chemis-
try, Shindell et al. (1998) showed how upper stratospheric
ozone changes may amplify the 11-year solar cycle
irradiance changes to affect the climate.

It is known that the effect of total ozone (TO), which is
comprised of the tropospheric and stratospheric ozone
contents (Cracknell and Varotsos, 1995; Varotsos et al.,
1995), has significant effects on the climatic condition over
the Indian subcontinent. The TO variability is mainly
dominated by annual cycles, quasi-biennial oscillations
(QBO), El Niño Southern Oscillation (ENSO) and solar cycle
(Cracknell and Varotsos, 1995; Varotsos et al., 1994). A
significant negative correlation between TO and QBO has
been observed for three Indian stations: New Delhi,
Varanasi, and Pune, and positive correlation for Kodaikanal
station (Londhe et al., 2003). All the stations showed
significant positive correlations between TO and solar flux.
It was observed by Hingane (1990) that the appearance of
minima in total ozone over the subtropical belt of the
Indian subcontinent may be the result of some unique
signatures of thermal and dynamic processes appearing in
that region. The association between the monsoon
circulation and TO over India was studied by Londhe
et al. (2005). Due to the non-linearity of ozone concentra-
tions and the complex interactions between meteorologi-
cal variables and ozone, the development of non-linear
models like Artificial Neural Network (ANN) (Gardner and
Dorling, 1998, 2000), a potent mathematical tool for
modelling non-linear geophysical processes, has gained
the attention of several researchers working in the area of
forecasting tropospheric ozone (e.g. Abdul-Wahab and Al-
Alawi, 2002; Chaloulakou et al., 2003; Clark and Karl, 1982;
Corani, 2005; Gardner and Dorling, 1998, 2000; Gómez-
Sanchis et al., 2006; Hsieh and Tang, 1998; Salazar-Ruiz
et al., 2008; Wang et al., 2003). Comrie (1997) compared
the performance of ANN with conventional regression
method in forecasting the surface ozone concentration and
established the supremacy of the ANN over conventional
regression. In a comparative study based on a wide set of
forecast quality measures, Chaloulakou et al. (2003)
indicated that the ANNs provide better estimates of ozone
concentrations, whilst the more often used linear models
are less efficient at accurately forecasting high ozone
concentrations. Sousa et al. (2007) studied a comparison
between ANN and multiple linear regression by removing
the effect of multicollinearity by means of principal
components and found that ANN equipped with principal
component analysis performed significantly better than
the multiple linear regression model. Salazar-Ruiz et al.
(2008) compared the performance of different types of
ANN with Ridge regression and obtained results with

a été estimé comme étant le meilleur modèle. La performance du modèle a été jugée

statistiquement. Enfin, le modèle a été comparé avec les régressions linéaires et non-

linéaires, et l’efficacité du MLP par rapport aux modèles de régression a été bien établie.

� 2011 Publié par Elsevier Masson SAS pour l’Académie des sciences.
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ilar margins of errors. Although the application of ANN in
recasting tropospheric ozone is available in handful, the
plication of ANN is not so frequent in modelling and
recasting the TO, which is characterized by immense non-
earity and complexity (Chattopadhyay and Chattopad-
ay, 2008a, 2010a; Koçak et al., 2000). Chattopadhyay and
attopadhyay (2009a, 2009b, 2010b) implemented ANN in

odelling TO. Although the study of Chattopadhyay and
attopadhyay (2009a) was made in a multivariate
vironment, the studies of Chattopadhyay and Chatto-
dhyay (2009b, 2010b) were based on univariate
proaches where autoregressive ANN models were gener-
ed and compared with autoregressive moving average and
toregressive integrated moving average models.
The ANN applications discussed in the last paragraph

ere involved with prediction of ozone or TO based on
her meteorological parameters or the past values of TO

e series. However, the present study deviates from the
oresaid studies in the sense that instead of predicting TO
ing meteorological parameters, it has adopted TO as the
edictor to generate a predictive model for surface
mperature, which is a vital parameter for various
eteorological processes. The average air temperature at
e surface of the Earth is a frequently used parameter for
nsing the state of a climatic system (Ceschia et al., 1994;
attopadhyay et al., 2010a, 2010b). Necessity for
edicting the surface temperature has been emphasized

 various papers (e.g. Hussain, 1984; Rehman et al., 1990;
id, 1992; Tasadduq et al., 2002). The study area, Kolkata,

 the present paper belongs to Gangetic West Bengal,
hich is characterized by severe pre-monsoon (March–
ay) thunderstorms and heavy summer-monsoon (June–
ptember) rainfall. Role of temperature in the genesis of
understorm is studied in Haklander and Delden (2003),
ntrieser et al. (1997), Schmeits et al. (2005) and the role

 temperature in rainfall is discussed in Elliott and Angell
987), Kumar et al. (1997, 1999), Liu and Yanai (2001).
e primary objective of the present article is to discern
w the monthly maximum temperature (Tmax) over
lkata is associated with the monthly TO. The newness of
e present study can be summarized as follows:

to some extent, TO is a tracer for large-scale meteoro-
logical processes in the upper troposphere and lower-
most stratosphere (Hoinka, 1998). In particular, TO tends
to be highest on the cyclonic side of upper-level jet
streams and in the region of isolated cyclonic vortices
(cut-off lows). The observed connection between TO and
tropopause height (TH) is valid not only on short time
scales but also on long time scales. The increasing TH and
the decreasing tropopause temperature are qualitatively
associated with the decreasing trend of ozone in the
stratosphere. It should be noted that the midtropo-
spheric temperature is used as a proxy for the tempera-
ture at the earth’s surface (Varotsos and Kirk-Davidoff,
2006). Also, greenhouse gases (GHGs) warm the earth’s
surface but cool the stratosphere radiatively and
therefore affect ozone depletion. In addition, due to
the ozone depletion, less heat would be absorbed in the
stratosphere while, due to the increase in GHGs content,
more heat would be trapped in the atmosphere;

� in the existing literature on the climate over India,
surface temperature has been used as a predictor for
summer-monsoon rainfall (Liu and Yanai, 2001; Partha-
sarathy et al., 1990; Sikka, 1980) and TO has been studied
for its trend (Sahoo et al., 2005) and inter-annual
variability (Singh et al., 2002). However, despite the
physical association between TO and temperature, no
study till date has been attempted to forecast surface
temperature using TO as predictor. The present study
examined the association between TO and maximum
surface temperature (Tmax) and predicted Tmax based
on TO as predictor;
� in the existing ANN applications, TO has always been the

predictand with other meteorological parameters as
predictors (Chaloulakou et al., 2003; Sousa et al., 2007).
The present study developed ANN model with TO as
predictor and meteorological parameter Tmax as pre-
dictand;
� existing works compared the ANN with multiple linear

regression models while forecasting TO (Comrie, 1997;
Sousa et al., 2007). The present paper compared the
performance of ANN with linear regression as well as
non-linear regressions like quadratic regression, expo-
nential regression and logistic regression;
� in a work by Chattopadhyay et al. (2010a), univariate

modelling of monthly Tmax over Kolkata was attempted
and it was established that previous four months Tmax
data can produce high Willmott’s index when applied to
a modular neural network. However, in the present
paper no Tmax data for the previous month is required
and only TO data of the previous month is considered as
the predictor. Hence, a newness of the work is the less
number of previous data.

The organization of the rest of the article is as follows:
in Section 2, the data under consideration are analyzed
through autocorrelation function, cross-correlation func-
tion, and through periodogram method of analysis. In
Section 3, ANN models are generated to forecast Tmax
based on TO as predictor. In Section 4, various regression
models are generated and finally, it has been examined
whether an extended range forecast of monthly maximum
temperature can be estimated using ANN with its non-
linear methodology.

2. Different statistical analyses of the data

2.1. Data

In the present paper, the data are derived from the
measurements made by the Earth Probe Total Ozone
Mapping Spectrometer (EP/TOMS). The EP/TOMS experi-
ment provides measurements of the Earth’s total column
ozone by measuring the backscattered Earth radiance in
the six 1 nm bands (NASA, 1998). The total ozone (TO) data
are available at ftp://jwocky.gsfc.nasa.gov/pub/eptoms/
data/overpass/OVP075_epc.txt. In this paper, January
1997 to December 2002 monthly TO data over Kolkata
has been utilized. The corresponding monthly maximum
temperature (Tmax) data for Kolkata have been collected
from the website of India Waterportal (http://www.india-

ftp://jwocky.gsfc.nasa.gov/pub/eptoms/data/overpass/OVP075_epc.txt
ftp://jwocky.gsfc.nasa.gov/pub/eptoms/data/overpass/OVP075_epc.txt
http://www.indiawaterportal.org/taxonomy/term/1216
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aterportal.org/taxonomy/term/1216). The time series of
max and TO are plotted on Fig. 1.

.2. Autocorrelation structure analysis

Atmospheric variables often exhibit statistical depen-
ence with their own past or future values. In the
rminology of the atmospheric sciences, this dependence
rough time is usually known as persistence. Persistence

an be defined as the existence of (positive) statistical
ependence among successive values of the same variable,
r among successive occurrences of a given event (Wilks,
006). Positive dependence means that large values of the
ariable tend to be followed by relatively large values, and
mall values of the variable tend to be followed by
elatively small values. The persistence is measured by

eans of autocorrelation coefficients computed as (Wilks,
006).

k ¼
Cov x n � kð Þð Þ; x n � kð Þð Þ½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Variance x n � kð Þð Þð Þ
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Variance x n � kð Þð Þð Þ
p (1)

here x̄ n � kð Þ and x n � kð Þ denote the average of first (n –
) and last (n – k) data values of the time series. Examples
f autocorrelation function analysis in climatological study
clude the works of Sivakumar (2001), Daoud et al. (2003),

rzysztofowicz and Evans (2008). From the autocorrela-
on function of the monthly TO displayed on Fig. 2, it is
und that lag1 autocorrelation is 0.757, which indicates

ersistence in the time series and lag12 autocorrelation
oefficient showed 0.622. In the negative side, the most
egative autocorrelation coefficients are occurring at lag6

and lag18, which are –0.619 and –0.513 respectively. This
clearly indicates the presence of annual cycle within the
time series.

In the case of Tmax over the study zone, it is found from
Fig. 3, that the lag1 autocorrelation is 0.684, which
indicates existence of significant persistence within the
time series. At lag12, it is 0.772. However, in the negative
side, the autocorrelation coefficients are not as large as
they are in the case of TO. From Figs. 2 and 3, a similarity is
observed between the TO and Tmax over Kolkata. Both the
time series are completing a cycle in 12 months. Moreover,
in both the cases, lag1 and lag12 autocorrelation coeffi-
cients are significantly high.

The search for the relationships usually involves the
calculation of a sample cross-correlation function (CCF) for
the pairs of time series (Chang et al., 1997; Kripalani and
Kumar, 2004). Considering the CCF between monthly TO
and Tmax time series on Fig. 4, it is observed that the cross-
correlation coefficients lie between –0.6 and 0.8. It should
be noted that dominant negative and positive cross-
correlation coefficients (CC) are existing. The pattern of
CCF for the lags –7 to –3 and 3 to 7 are having similar
patterns with high negative CC at the lags –5 and 7. A high
positive CC is occurring at lag 0. It may be further noted
that like the ACF, the CCF is also exhibiting a sinusoidal
pattern. The CCs are prominent at 99% level of significance.
From these observations, it can be interpreted that the
Tmax and TO show significant degree of similarity in their
temporal variation. Finally, it is observed that the CCF is
symmetric about the horizontal axis representing the lags
as negative and positive levels. The stability or symmetry
of the CCF about the horizontal axis indicates a stable

ig. 1. Time series of monthly maximum temperature (8C) and monthly total ozone concentration (DU) over Kolkata during the period 1997–2002.

ig. 1. Séries temporelles de température (8C) mensuelle maximum et de concentration (DU) mensuelle d’ozone total sur Kolkata, pendant la période 1997–

002.

http://www.indiawaterportal.org/taxonomy/term/1216
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lationship between TO and Tmax. Hence, it is possible to
nerate a predictive model for Tmax using TO as
edictor.

. Periodogram analysis

There have been literally thousands of attempts to find
cles in meteorological phenomena. Application of
riodogram method in the analysis of time series of
matological data is well discussed in various papers (Gil-
ana, 2005; Marr and Harley, 2002; Prouse and Ervin,

1935; Seleshi et al., 1994; Vyushin et al., 2007). Any data
series consisting of n points can be represented by adding
together a series of n/2 harmonic functions as (Wilks,
2006).

yt ¼ ȳ þ
Xn=2

k¼1

Akcos
2pkt

n

� �
þ Bksin

2pkt

n

� �� �
(2)

where Ak and Bk are Fourier coefficients. The advantage of
this perspective is that it allows us to see separately the
contributions to a time series that are made by processes

. 2. Autocorrelation function for the monthly total ozone concentration over Kolkata during the period 1997–2002.

. 2. Fonction d’autocorrélation pour la concentration mensuelle d’ozone total sur Kolkata, pendant la période 1997–2002.

. 3. Autocorrelation function for the monthly maximum temperature over Kolkata during the period 1997–2002.
. 3. Fonction d’autocorrélation pour la température mensuelle maximum sur Kolkata, pendant la période 1997–2002.
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arying at different speeds, that is, by processes operating
t a spectrum of different frequencies (Wilks, 2006). The
haracteristics of a time series are Fourier-transformed
to the frequency domain and are most often examined

raphically, using a plot known as the periodogram, or
ourier line spectrum. The plot of spectrum consists of

Ck ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ak

2 þ Bk
2

q
along the vertical axis and period of the

kth harmonic tk ¼ n
k along the horizontal axis (Wilks,

2006). In the present work, periodograms of monthly TO
and monthly Tmax time series are presented on Figs. 5 and
6. It is interesting to note that the periodogram of TO time
series reflects some of the features of the Tmax period-

ig. 4. Cross-correlation coefficients for the monthly total ozone concentration and monthly maximum Temperature over Kolkata during the period 1997–

002.

ig. 4. Coefficients de corrélations croisées pour la concentration mensuelle d’ozone total et la température mensuelle maximum sur Kolkata, pendant la

ériode 1997–2002.

ig. 5. Periodogram analysis for the monthly total ozone time series over Kolkata during the period 1997–2002.
ig. 5. Périodogramme pour la série temporelle d’ozone total mensuel sur Kolkata, pendant la période 1997–2002.
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ram. In the case of TO, the maximum density 12840.193
rresponds to the period 12 and in the case of Tmax, the
ghest density 513.428 corresponds to the period 12.
us, the common spectrum of length 12 is available in
th TO and Tmax time series. Furthermore, it should be
ted that at the period 6, both of the time series are
ving next maximum spectral density. This further
dicates the similarity in the patterns of the two time
ries under consideration.
In the subsequent sections, it will be examined whether
redictor-predictand relationship exists between TO and
ax. To do the same, one has to examine whether Tmax

 the given month can be estimated on the basis of TO of
e previous months. The ANN would be implemented for
is purpose. A brief overview and implementation
ocedure of ANN would be elaborated in the subsequent
ctions.

 Artificial Neural Networks: a brief review

Fundamental development in the area of feed forward
N during the period 1960–1990 was reviewed exten-
ely by Widrow and Lehr (1990). Introduction of back

opagation algorithm (Rumelhart and McClelland, 1986)
ened up new avenues to the application of ANN in
odelling various time series problems (Hsieh and Tang,
98). In the simplest form, backpropagation training
gins by presenting an input pattern vector to the
twork, sweeping forward through the system to gener-
e an output response vector, and computing the errors at
ch output (Widrow and Lehr, 1990). The next step
volves sweeping the effect of the errors backward.

ally, the weights are updated based on the correspond-
g error gradient. A wide review of application of
ckpropagation learning to the atmospheric problems

is available in Gardner and Dorling (1998). Maier and
Dandy (2000) presented an extensive review of the
application of ANN in predicting hydrological time series.
Several applications of ANN are available in meteorological
forecasting problems like thunderstorm (Manzato, 2005;
Marzban and Stumpf, 1996), rainfall (Chattopadhyay and
Chattopadhyay, 2010a; Kuligowski and Barros, 1998), tide
(Leea and Jeng, 2002), groundwater level (Coulibaly et al.,
2001), evapotranspiration (Zanetti et al., 2007) etc. In
Section 1, various examples of applications of ANN in
modeling and forecasting of tropospheric ozone are
discussed.

The present paper applies ANN in the form of multilayer
perceptron (MLP) (Gardner and Dorling, 1998; Haykin,
2008; Rojas, 1996). In MLP, each network consists of
several simple processors called neurons, or cells, which
are highly interconnected and arranged in several layers.
There are three basic types of layers: input layer, hidden
layer(s), and output layer. Input and output layers are
connected through hidden layer(s). There may be one to
several hidden layers in between input and output layers.
In mathematical form, the adaptive procedure of a feed
forward MLP can be presented as (Kamarthi and Pittner,
1999).

wkþ1 ¼ wk þ hdk (3)

Here, wk denotes the weights to the ANN. The direction
vector dk is the negative gradient of the output error
function E, and is given by

dk ¼ �rE wkð Þ (4)

The backpropagation algorithm in which the weights of
the network are updated immediately after the presenta-
tion of each pair of input and target output is called the

. 6. Periodogram analysis for the monthly maximum temperature time series over Kolkata during the period 1997–2002.

. 6. Périodogramme pour la série temporelle de température mensuelle maximum sur Kolkata, pendant la période 1997–2002.
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equential learning. The other learning procedure in which
e whole training set is considered as a batch is called the

atch learning. Silverman and Dracup (2000) identified the
dvantages of ANN over conventional statistical methods
s:

 a priori knowledge of the underlying process is not
required;

 existing complex relationships among the various
aspects of the process under investigation need not be
recognized;

 constraints and a priori solution structures are neither
assumed nor enforced.

. Implementation of Artificial Neural Network

Several conjugate gradient algorithms are there in the
terature of ANN learning. Johansson et al. (1990)
escribed in detail the theory of general conjugate gradient
ethods and how to apply the methods in feed-forward

NNs. Møller (1993) introduced a variation of a conjugate
radient method (Scaled Conjugate Gradient, SCG), which
voids the line-search per learning iteration by using a
evenberg-Marquardt approach in order to scale the step
ize. The Conjugate Gradient methods choose the search
irection and the step size more carefully by using
formation from the second order approximation (Møller,

993).

 w þ yð Þ � E wð Þ þ E0 wð ÞT y þ 1

2
yT E00 wð Þy (5)

here w is the weight vector, which is a vector in the real
uclidean space RN, where N is the number of weights and
iases in the network. A basis of RN is chosen as the
onjugate system p1; p2; . . . ; pNf g. In SCG, a Lagrangian
ultiplier lk was introduced by Møller (1993) to regulate
e indefiniteness of the Hessian matrix E’’(w) and the

econd order information was set as

k ¼
E0 wk þ sk pkð Þ � E0 wkð Þ

sk

þ lk pk; with; 0 < sk < < 1 (6)

Since its introduction, the SCG has been used in several
NN applications for geophysical problems (e.g. Abraham
nd Nath, 2001; Khan and Coulibaly, 2006). In the present
aper, SCG has been applied with sigmoid activation
nction f xð Þ ¼ 1

1þe�x. Advantage of the sigmoid function is
e form of its derivative. Gardner and Dorling (1998)

iscussed the advantage of this activation. In Any model
evelopment process data pre-processing can have a
ignicant effect on model performance. As the outputs of

e logistic transfer function are between 0 and 1, the data
re generally scaled in the range 0.1–0.9 or 0.2–0.8. If the
alues are scaled to the extreme limits of the transfer
nction, the size of the weight updates is extremely small

nd atspots in training are likely to occur. Before
eveloping the proposed ANN model for prediction of
max based on TO concentration, the data are scaled to
.1,0.9] to avoid the asymptotic effect caused by the

sigmoidal activation function. The scaling is done by using
the transformation

xtrans formed ¼ xmin þ 0:8�1 x � 0:1ð Þ xmax � xminð Þ (7)

Minimization of mean squared error is taken as the
stopping criterion for the ANN model. It is common
practice to split the available data into two sub-sets; a
training set and an independent validation set (Maier and
Dandy, 2000). Typically, ANNs are unable to extrapolate
beyond the range of the data used for training. One
method, which maximizes utilization of the available data,
is the holdout method (Maier and Dandy, 2000) that we
have used in this article. The basic idea is to withhold a
small subset of the data for validation and to train the
network on the remaining data. Once the generalization
ability of the trained network has been obtained with the
aid of the validation set, a different subset of the data is
withheld and the above process is repeated. Different
subsets are withheld in turn, until the generalization
ability has been determined for all of the available data
(Maier and Dandy, 2000). In the present paper, we have
divided the dataset into the ratio of 67:33 in order to use
two third of the entire dataset as the training set and the
remaining one third as the test set. As the generalization
ability is determined for all of the available data, the
prediction performance is measured by Willmott’s index
(WI) (Comrie, 1997; Chattopadhyay and Chattopadhyay,
2010b; Willmott, 1982) given by

WI ¼ 1 �
XN

i¼1

Pi � Oið Þ2=
XN

i¼1

Pi � Ō
�� ��þ Oi � Ō

�� ��� 	2

" #
(8)

The usefulness of WI in meteorological modeling is
discussed in Chattopadhyay and Chattopadhyay (2008b).

In the present ANN modeling problem with SCG
learning, the data set contains the TO and Tmax data
pertaining to January 1997 to December 2002. Thus, in
monthly scales, there are 72 data points. In this data set,
ANN model in the form of MLP will be generated. The first
target is to examine whether it is possible to estimate
Tmax of a given month using TO concentration of the
immediately previous month. In this case, there would be
71 input patterns in the MLP model. The order of the input
matrix would be (71 � 2). The first column of the input
matrix corresponds to TO and the second column
corresponds to the observed monthly Tmax, which is
the target output of this supervised learning methodology.
The MLP is learned through SCG with single hidden layer
and the optimum size of the hidden layer, i.e., the optimum
number of nodes in the hidden layer is recorded. After
training and testing, the model is validated over the entire
set of target outputs. The WI is found to be 0.863 and the
value of R2 is 0.560. The actual Tmax and those predicted
by this ANN model are plotted as line diagram in Fig. 7a. In
this line diagram, it is observed that in some of the test
cases, the actual and predicted values are almost coinci-
dent. In Fig. 7b, a scatterplot is presented to view the
degree of linearity between the actual and predicted Tmax.
A prominent positive slope is discernible in the scatterplot
that indicates a good positive association between the
actual and predicted Tmax. Calculating the percentage
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ror of prediction in the test cases, it is found that in 83.1%
d 70.4% test cases, the errors of predictions are below 5%
d 2.5%, respectively. Thus, the predictions yields for 5%
d 2.5% acceptable errors are 0.831 and 0.704 respective-

. This further proves the goodness of fit of the ANN model
 the form of MLP. The Pearson correlation coefficient
tween actual and predicted values is 0.748. From the
ove observation it is felt that it is possible to predict the
ax over Kolkata for a given month predicted by the TO

ncentration of the immediately previous month. The WI
d R2 values from this MLP model are presented
ctorially in Fig. 9 along with those obtained from
gression models, to be discussed in the next section.

A second model is generated by incorporating one more
edictor in input matrix for the MLP. In this model, TO of
onths n and (n + 1) would be used to predict the Tmax of
onth (n + 2). Dividing the entire input matrix into training

and test cases as above and implementing the identical
training and test methodology, we generate the prediction
model. In this case, WI is 0.866 and R2 is 0.564. The WI and R2

for the second model are almost equal to those of the first
model. This indicates that the two models are of almost
equal prediction capacity. However, the first model requires
less number of predictors and hence it is more acceptable
than any other model of similar prediction capacity and
dependent on more number of predictors.

5. Comparison with regressions

In the present section, the performance of the first MLP
model is compared with linear as well as non-linear
regression models. Superiority of MLP in ozone forecasting
over multiple linear regression is established in Agirre-
Basurkoa et al. (2006). Non-linear regression models are
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. 7. Diagrams showing the association between the actual monthly maximum temperature (̊C) (Tmax) and those predicted by multilayer perceptron

del. The line diagram is plotted in 7a and scatterplot is presented in 7b.

. 7. Diagrammes montrant l’association entre température (̊C) mensuelle maximum actuelle (Tmax) et celle prédite par le modèle perception multi-

uche. Diagramme linéaire en 7a et en nuage de points en 7b.
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hosen as quadratic regression, exponential regression and
gistic regression. The regression equations are found to be

s follows (Abdul-Wahab and Al-Alawi, 2002; Chattopadhyay
t al., 2010a, 2010b;Comrie, 1997; Manel et al., 1999):

max n þ 1ð Þlinear ¼ 0:0948 þ 0:1178 � TOðnÞ (9)

max n þ 1ð Þquadratic ¼ 50:3484 � 0:2650 � TOðnÞ

þ 0:0007 � TOðnÞð Þ2 (10)

Tmax n þ 1ð Þexponential ¼ 10:9810

� exp 0:0039 � TOðnÞð Þ (11)

Tmax n þ 1ð Þlogistic ¼
1

0:0911 � 0:9961TO nð Þ (12)

The coefficients of determination R2 for the above four
regression models are computed as 0.306, 0.309, 0.311 and

ig. 8. Diagram showing the association between the actual monthly Tmax (8C) and that predicted by conventional Regression model.

ig. 8. Diagramme montrant l’association entre la température mensuelle maximum actuelle Tmax (8C) et celle prédite par le modèle de régression

onventionnel.
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ig. 9. Values of different statistics measuring the suitability of different models in predicting the monthly Tmax over Kolkata based on total ozone as

redictor.
ig. 9. Valeurs de différentes statistiques mesurant l’harmonisation des différentes méthodes dans la prédiction de la température mensuelle maximum sur

olkata, sur la base de l’ozone total comme prédicteur.



0.3
an
re
ac
th
ca
Ho
th
ve
th
ex
th
fro
pe
pr
pr
m
w

lin
co
ce
Tm
m
Th
ou
pr
ha
pr
th

Fig

Fig

S.S. De et al. / C. R. Geoscience 343 (2011) 664–676674
22, respectively. For the above models, WI is calculated
d the values are found to be 0.676, 0.678, 0.680 and 0.687,
spectively. The line diagram presented on Fig. 8 shows the
tual and predicted Tmax values. The line diagram shows
at the linear as well non-linear regression equations
ptured the pattern of the observed Tmax time series.
wever, they are unable to yield predictions very close to

e actual Tmax values especially when the Tmax value is
ry low or very high. Therefore, it may be concluded that
e linear or non-linear regressions are unable to predict the
treme Tmax cases. The WI and R2 values corresponding to
e regression models are presented on Fig. 9. It is observed
m the above WI and R2 values that logistic regression
rforms better than the other three regression models. The
ediction yields for the regression models are also
esented in Fig. 9. It is observed that in all the regression
odels the prediction yields are below the ANN model
hen 5% and 2.5% error of prediction are allowed.

From the above discussion, supremacy of ANN over
ear and non-linear regression models is established. To
mpare their performance in extreme cases, the per-
ntage of error (PE) of prediction for the months having
ax � 35 8C and 	 25 8C are calculated for the first ANN

odel and the four regression models explained above.
e PE are presented on Fig. 10, which shows that in 12,
t of 16 cases, the PE produced by ANN lies below those
oduced by regression models. This established that ANN
s higher potential than the regression models to make
ediction of extremely high or low Tmax situations over
e study zone.

6. Conclusion

In the present article, an attempt has been made to
analyze the monthly maximum temperature over Kolkata
using monthly total ozone concentration as predictor. The
interrelation between the predictors and the predictand has
been investigated through autocorrelation, cross-correlation,
and periodogram. Two ANN models have been generated in
the form of MLP using scaled conjugate gradient learning
with sigmoid activation function. The Willmott’s indices of
two MLP models are 0.863 and 0.866, respectively. The
Willmott’s index for the second model is almost equal to that
of the first model. This indicates that the two models are of
almost equal prediction capacity. However, the first model
requires less number of predictors and hence it is more
acceptable than any other model of similar prediction
capacity and dependent on more number of predictors. To
examine the skillfulness of the first MLP model, its
performance has been finally compared with linear regres-
sion model and non-linear regression models in the forms of
quadratic, exponential and logistic regression and the
efficiency of the first model has been established. The
conclusion is that, the first MLP model has considerable
potential for estimating monthly Tmax using monthly total
ozone concentration as predictor.
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