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Indi

Brés

* 

163

doi:
drology, environment (Pedology)

proved remote sensing detection of soil salinity from a semi-arid
mate in Northeast Brazil
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ntroduction

Fragile arid and semi-arid areas are particularly prone
environmental problems including salinization

(Debenham, 1992). Soil salinity is an in situ form of
soil degradation due to the build up of soluble salts at or
near the surface of the soil (Schofield et al., 2001). It is
one of the oldest environmental problems and is
considered one of the seven main paths to desertification
(Kassas, 1987). Roughly 20% of irrigated agriculture
worldwide is affected by salinization (Ghassemi et al.,
1995).
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A B S T R A C T

Remote sensing techniques are being increasingly applied to investigate soil character-

istics. Here we propose an approach that allows the detection of salt-affected soils in arid

and semi-arid environments. We test the procedure in Northeast Brazil through a

combination of remote sensing and geochemical ground-based measurements. Spectral

indices were used to characterize soil salinization features and patterns. The Linear

Spectral Unmixing technique (LSU) is applied in this study to improve the prediction of soil

salinity. Eighteen indices were extracted from the MODIS Terra data. A moderate

correlation was found between electrical conductivity and the spectral indices. An

improvement occurs in most of the correlations after applying the LSU method. To

generate a predicted salinity map, a multiple linear regression, based on the best

correlated indices is conducted. The standard error of the estimate is about 12.1 mS cm�1.

� 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Les techniques de télédétection pour l’identification des sols salés sont de plus en plus

utilisées. Notre étude a pour objectif de déterminer la salinité des sols dans la région du

Nord-Est du Brésil en utilisant des données de télédétection ainsi que des données

géochimiques des sols. Des indices de télédétection ont été établis pour identifier les

formes et motifs des sols affectés par la salinisation. Dans cette étude, la technique de

démélange linéaire spectral a été choisie pour améliorer la détection des sols salés. Les

résultats obtenus montrent que cette technique apporte plus de précision et décrit bien la

réalité des sols affectés par la salinisation. Pour générer la carte de prédiction des sols salés

de la zone d’étude, une régression multi-linéaire a été utilisée. L’erreur standard des

estimations est de 12 mS cm�1.

� 2011 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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Monitoring and mapping of salt-affected areas is
required to quantify the salinization phenomenon. Many
studies have described and assessed salt-affected soils using
satellite, airborne video imagery and land radiometric
techniques. These take advantage of the correlation
between the reflectance of salt emergences and soil salinity
indicators (Csillag et al., 1993; Everitt et al., 1988; Long and
Nielsen, 1987; Verma et al., 1994). A major challenge of
remote sensing is to detect different levels of soil salinity and
sodicity (Fraser and Joseph, 1998). The potential of this
technique is the ability to study salinity problems on a large
scale. Several authors demonstrated the advantage of
combining data from remote sensing with ground-based
geochemical measurements (Bishop and McBratney, 2001;
Bouaziz et al., 2011; Carré and Girard, 2002). One of the
major remote sensing techniques used to monitor crucial
environmental problems like salinization is the linear
spectral unmixing (LSU) method. It is widely used to
estimate the number of reference materials (also called
endmembers), their spectral profiles (Fig. 1), and their
fractional abundances (Bioucas-Dias and Figueiredo, 2010).

Previous studies focused on detailed investigations of
restricted areas (< 100 km2). Here, we present the first

attempt to detect and quantify soil salinization over a large
area by using wide swath MODIS data. This approach
allows unprecedented coverage by sacrificing the spatial
resolution compared with other types of satellite data. The
MODIS data are being compared with geochemical data
from field samples to test the reliability of the approach.

Our objectives are: (1) to explore the potential and
limits of MODIS Terra data in discriminating salt-affected
areas; (2), to assess salt-affected soil through a combina-
tion of LSU and soil geochemistry; and (3) to predict soil
salinity through linear regression analysis.

2. Materials and methods

2.1. Study area

The study area (Fig. 1) lies in north-eastern Brazil and
incorporates 17% of the Brazilian territory (N-S, 00800’-
20800’ and E-W, 30800’-52800’). The area includes wet-
lands and steppe plains as well as agricultural land.
Climate here varies from humid conditions in the north
(close to the equator) to a warmer arid to semi-arid south.
A semi-arid climate prevails for most of the region. The

Fig. 1. Location of the study area: (a) composite MODIS image of Brazil acquired in July 2008; (b) composite SRTM image of South American continent.
Fig. 1. Localisation de la zone d’étude : (a) composite de l’image MODIS du Brésil acquise en Juillet 2008 ; (b) composite de l’image SRTM de l’Amérique du Sud.
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ion yields some of the oldest soils in the world,
erlain by Pre-Cambrian bedrock (Vasconcelos et al.,
4). These soils include acrisols, arenosols, ferralsols,
thosols and luvisols (WRB, 2006). Approximately
0 km2 of this region is irrigated agricultural land, 25
0% of which is affected by salinization (Heinze, 2002).

During the field work in the summer of 2008, 112
ples were taken from top soils (10 to 15 cm) of the

estigated area.

 Remote sensing data and processing specifications

Our models have the following inputs: (1) 18 spectral
ices (these indices were generated from four different
ote sensing indicators (a) salinity (Table 1), (b)
nsity (Table 2), (c) vegetation (Table 3), and (d)
ctral bands from MODIS; (2) Chemical analysis of

 samples (EC and pH measurements) which reveal the
 content in the top layer of soil: 0 to 15 cm depth).

1. MODIS Terra data

Studying the Earth across a large region is inherently
llenging due to the quantity of data and information
t must be processed. In such cases, remote sensing is a
d approach, especially in conjunction with MODIS data

 to the wide extent of the swath (2330 km). We use the
DIS Terra Surface-Reflectance Product (MOD 09) in this
dy. This is computed from the MODIS Level 1B land
ds 1, 2, 3, 4, 5, 6, and 7 (centered at 470 nm, 555 nm,

 nm, 858 nm, 1240 nm, 1640 nm, and 2130 nm, respec-
ly). MOD09 Terra data is corrected for atmospheric

ttering and absorption as standard, which is an

important advantage over other types of satellite data
(Vermote et al., 2002). A combination of two different
MOD09 data are used in this study, the MOD09A1 surface
reflectance within 7 bands and a spatial resolution of 500
m and the MOD09Q1 surface reflectance, providing a
better spatial resolution of 231 m.

2.3. Proposed integrated approach

Several authors have demonstrated the advantage of
combining data from remote sensing with ground truth
measurements (Bishop and McBratney, 2001; Carré and
Girard, 2002; Cazenave and Boucher, 2006 and references
therein, especially Calmant and Seyler (2006) about the
Amazon Basin). Considering the complexity of the
salinization process, the identification of salty regions
and especially of slightly low and moderately affected
areas (the case of our field area) remains challenging.

Our approach displays an attempt to predict salt-
affected areas in the Northeast of Brazil through several
remote sensing techniques (Fig. 2). Salinity in the top soil is
determined by measuring electrical conductivity (EC)
which is the most common way to assess soil salinity.

le 1

lied salinity indices on the investigated area.

eau 1

ces de salinité appliqués dans la zone d’investigation.

Indices

1
ffiffiffiffiffiffiffiffiffiffiffi
G � R
p

(1)

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ R2 þ NIR2

p
(2)

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ R2

p
(3)

-11 SWIR1=SWIR2 (4)

ter_SI SWIR1�SWIR2ð Þ/ SWIR1þSWIR2ð Þ (5)

, NIR: reflectance in the green, red and near-infrared bands; SI1:

ity index 1, SI2: salinity index 2, and SI3: salinity index 3 (Douaoui

l., 2006); SI-11: salinity index 11 (Bannari et al., 2008); ASTER_SI:

ity index ASTER (Bannari et al., 2008).

le 2

lied intensity indices on the investigated area.

eau 2

ces d’intensité appliqués dans la zone d’investigation.

Indices

t1 G þ Rð Þ=2 (6)

t2 G þ R þ NIRð Þ=2 (7)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2 þ NIR2

p
(8)

, NIR: reflectance in the green, red and near-infrared bands; Int1:

nsity within the visible spectral range (Douaoui et al., 2006); Int2:

nsity within the VIS-NIR spectral range (Douaoui et al., 2006); BI:
Fig. 2. Simplified flow diagram of the spatial estimation approach.

Table 3

Applied vegetation indices on the investigated area.

Tableau 3

Indices de végétation appliqués dans la zone d’investigation.

Indices

SAVI NIR � Rð Þ � 1 þ Lð Þ= NIR þ R þ Lð Þ (9)

NDVI NIR � Rð Þ=NIR þ R (10)

EVI 2:5 � NIR�Rð Þ
NIRþc1�R�c2�BþL (11)

R, NIR: reflectance in the red and near-infrared bands; NDVI: normalised

difference vegetation index (Rouse et al., 1974); SAVI, soil-adjusted

vegetation index and EVI, enhanced vegetation index (Huete et al., 1985);

L in Eq. (9) is a constant equals to 0.5; L in Eq. (11) is the canopy

background adjustment that addresses non-linear, differential NIR, and

red radiant transfer through a canopy. c1 and c2 are the coefficients of the

aerosol resistance term, which uses the blue band to correct for aerosol

influences in the red band. The coefficients adopted in the MODIS-EVI

algorithm are: L = 1, c1 = 6 and c2 = 7.5.
htness index (Khan et al., 2001). Fig. 2. Diagramme simplifié de l’approche d’estimation spatiale.
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EC is usually expressed in microSiemens per cm at 25 8C
(mS/cm).

Both samples and remote sensing data were acquired
during the dry season in July and August 2008. Accumula-
tion of salts at the surface is at a maximum during this
period, making salt detection easier. Ground samples from
Brazilian soil were analyzed in the laboratory using 1:5
diluted extracts (USSL, United State Salinity Laboratory
Staff, 1954), which is a convenient method of estimation of
soil salt content. Prediction maps derived from several
statistical methods (Kriging, Co-kriging and Inverse
Distance weighting) were created using the ground truths
of electrical conductivity and pH measurements. Eighteen
indices are used with the MODIS Terra data to map salt-
affected soil. A Pearson correlation between the remote
sensing indices and the electrical conductivity measure-
ments from the field was used to assess the efficiency of
each index in discriminating soil salinity. The LSU method
is applied to determine the relative abundance of materials
that are depicted in the multispectral MODIS image. Based
on the three abundance maps (vegetation, soil and clouds),
each pixel is considered as a linear combination of the
reflectance of these three components. Furthermore, LSU is
used to distinguish if the pixel of each sample is
representative for the soil. For this purpose, we explored
all the pixels representing the location of the samples.
Then, we considered only the pixels incorporating more
than 55% of soil (computed from the abundance maps, see
in the results Section 3.2). This step is made to ensure that
the spectral signature from the sample is emitted mainly
from a soil. Subsequently, the correlations between the EC
and the remote sensing indices are recomputed. The
impact of the LSU method is discussed in Section 3.1.

Multiple Linear Regressions (MLR) is a multivariate
statistical technique and one of the most widely used
techniques to determine the correlation between a
response variable and some combination of two or more
predictor variables. Several multiple linear regressions
(MLR’s) are explored in this study to predict soil salinity. To
build the MLR models, 80% of the samples are randomly
selected. The remaining 20% are used to validate the salt
prediction relationships. All the statistical operations
(computing of correlation, conducting of MLR and random
sample selection) were done using SPSS software.

The flow chart in Fig. 2 is a simplified description of the
succession steps followed in this research. The samples are
split into two parts: the highly and very highly salt-
affected samples, and the low and moderately affected
samples (89% of all the samples).

2.3.1. Spectral indices for salinity mapping

Remote sensing approaches are being increasingly
applied to detect salt-affected areas (Bannari et al.,
2008; Csillag et al., 1993; Everitt et al., 1988; Verma
et al., 1994). Several spectral combinations are highlighted
in the literature and used as indices for the mapping of salt-
affected regions. Khan et al. (2001) proposed three spectral
band combinations from the LISS-II sensor of the IRS-1B
satellite in order to discern patterns of salt-affected areas:
salinity index (SI), normalized difference salinity index
(NDSI), and brightness index (BI). SI-1, SI-2 and SI-3 are

remote sensing salinity indices proposed by the Indo-
Dutch Network Project (IDNP 2002) to assess soil salinity
conditions based on Landsat-TM data. Khaier (2003)
combined band 4 and 5 from the ASTER image and
proposed the salinity index ASTER-SI. Some of these
indices and others are considered in this research and
conducted within the MODIS09 Terra images to detect
slightly and moderately affected soil in north-eastern
Brazil. Eighteen spectral band combinations from
MODIS09 are conducted in this study. These indices are
divided into four groups: salinity indices, vegetation
indices, MODIS09 Terra bands, and spectral intensity
indices. Table 1 presents the different indices applied in
Northeast Brazil as well as the specific coefficients
integrated in these indices.

2.3.2. Endmember extraction

Before modelling the linear mixture for unmixing,
endmembers for the given study area have to be extracted.
The endmember determination step consists in identifying
and delineating typical regions in the scene. Various
techniques such as the Pixel Purity Index (PPI), Orasis
(Optical real-time Adaptative Spectral Identification Sys-
tem), Iterative Error Analysis (IEA), Convex Cone Analysis
(CCA), Automated Morphological Endmember Extraction
(AMEE), have been developed to extract endmember spectra
automatically from remotely sensed data. PPI is selected for
this study to find the most spectrally pure pixels in the
MODIS Terra multispectral image in the Environment for
Visualizing Images (ENVI) software. PPI is one of the most
successful approaches for defining the pure pixels (Board-
man et al., 1995). PPI method is based on the geometry of
convex sets (Ifarraguerri and Chang, 1999) and considers
spectral pixels as vectors in an N-dimensional space.

2.4. Spectral unmixing

Every image pixel has rarely one component. It is
always a mixture of different components (Tompkins et al.,
1997). The idea behind the LSU method is to decompose
the pixel spectra into a collection of constituent spectra, or
spectral signatures, and their corresponding fractional
abundances that quantify the proportion of endmembers
present in the pixel. The technique is useful for extracting
information from data with low spatial resolution, and
would thus be ideal for free MODIS data with large ground
coverage (Cross et al., 1991).

The LSU method is widely used to estimate the number
of endmembers, reference materials (or endmembers),
their spectral profiles (Fig. 3) and fractional abundances.

Each spectrum from the four MODIS images is modelled
as a linear combination of a finite set of known end-
members:

ri ¼
Xn

j¼1

ai jxi j

� �
þ ei (12)

where n = spectral reflectance of a pixel in ith spectral band
containing one or more components; aij = spectral reflec-
tance of the jth component in the pixel for ith spectral band;
xj = proportion value of the jth component in the pixel;
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 error term for the ith spectral band; j = 1, 2, 3, . . ., n

mber of components assumed; in this study n = 6); i = 1,
, . . ., m (number of spectral bands for the sensor system;
ase of MODIS, m = 7).

We used the LSU approach based on four assumptions
ned by Settle and Drake (1993):

ere is no significant occurrence of multiple scattering
etween the different surface components;
ach surface component within the image has sufficient

ectral contrast to allow its separation;
 each pixel the total land cover is unity;

ach surface component is known.

esults and discussion

 Spectral characteristics of ground features

The complexity of soil properties makes the spectral
ntification of salt minerals in soils problematic (Csillag

et al., 1993). In this section we discuss the spectral
behaviour of the different classes of salt-affected soil in
north-eastern Brazil. Depending on the spectral regions
provided by the MODIS Terra data, visible, near-infrared
(NIR) and shortwave infrared (SWIR) are the investigated
spectral regions. Reflectance in the SWIR reveals mostly
stressed spectral information (i.e.: spectral profiles from
soil sample locations are close to each other in the SWIR
spectrum interval) regarding the salt-affected soil (Fig. 4).
However, reflectance from the visible and near-infrared
region is a good indicator, showing more sensitivity to the
varieties of slightly and moderately salt-affected soil.
Reflectance profiles from Fig. 4 show a ranking of the
salinity classes. Within the visible and NIR-range, the five
samples represented in Fig. 4 show a good distinction
between the different categories of salt-affected soil from
the MODIS multispectral data. In general, as shown in the
ranking of reflectance in Fig. 4 and as Metternicht and
Zinck (2003) and Rao et al. (1995) revealed, reflectance
increases with increasing quantity of salts at the terrain
surface. According to the investigated samples in this study
area, salt-affected soil (high electrical conductivity) shows
a relatively higher spectral response in the NIR and the first
200 nm of the SWIR than in the visible spectrum. Fariftteh
et al. (2005, 2007) found that increases in soil salinity
induced changes in soil reflectance for wave bands higher
than 1,300 nm, particularly in the water absorption bands
between 1400 and 1600 nm. This is in agreement with the
findings of Metternicht and Zink (1997).

3.2. Remote detection of soil salinity from Spectral indices

MODIS Terra spectral bands are incorporated into a
spectrum range varying from 450 nm (blue) to 2150 nm in
the SWIR. The seven spectral bands of MODIS Terra (Fig. 5)
were considered as indices of soil salinity. A Pearson
correlation between the electrical conductivity values and
the MODIS Terra spectral bands was conducted to evaluate
which spectrum interval could reveal more about the salt-
affected area. Figs. 6–8 present the resulting correlation
coefficients computed at a significance level of P < 0.01
level (2-tailed).

Correlation between the MODIS terra spectral bands
and EC from the ground truth shows a higher correlation in
the VIS and NIR region of the spectrum interval (Fig. 6).

3. Schematic view of the spectral linear unmixing process (adapted from Bioucas-Dias and Figueiredo, 2010).

3. Vue schématique de l’approche de démélange linéaire spectral (adaptée par Bioucas-Dias et Figueiredo, 2010).

4. Spectral signature variation of different soil surface features due to

rences in electrical conductivity: (1) EC = 132 mS cm�1; (2)

 51 mS cm�1; (3) EC = 14 mS cm�1; (4) EC = 556 mS cm�1; (5)

 74 mS cm�1.

4. Variation de la signature spectrale de différentes surfaces de sol,

ée par la différence de la conductivité électrique : (1)

 132 mS cm�1 ; (2) EC = 51 mS cm�1 ; (3) EC = 14 mS cm�1 ; (4)

 556 mS cm�1 ; (5) EC = 74 mS cm�1.
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Among the MODIS spectral bands, band 4 (NIR) gives the
highest correlation (58%). The use of LSU improves the
correlation within most of the applied remote sensing
indices on the MODIS Terra data. There is clear improve-
ment in band 4 where the correlation increases by 23%.
Nevertheless, bands 1 and 2 of the VIS interval did not
show any improvement in correlation, remaining at 38%
(Fig. 6).

Intensity indices show low correlation with the EC,
varying between 32 and 40%. The use of LSU increases the
correlation by up to 10%. Hence, the three intensity indices
used in this study do not show potential for discriminating
salt-affected soil. Moreover, vegetation indices offer a low
correlation, especially before the use of LSU (Fig. 7). This
suggests that the density of vegetation cover is not
significant in terms of soil salinity monitoring. The
coefficients of correlation improve as a result of LSU, but
not enough to provide accurate information regarding soil
salinity. EVI shows the highest correlation at 40%. EVI is a
widely used vegetation index in this region ; it takes into

consideration the aerosol resistance term and transfer
through a canopy using the coefficients L, C1 and C2 (Eq.
(11)). When correlating the performed salinity indices
(Table 1) and the EC of the soil samples, salinity index 2
(SI2, Eq. (2)) provides the highest correlation, not only
among the salinity indices but among all the spectral
indices performed in our work. SI-2 is among a cluster of
salinity indices where only the G, R and NIR are combined.
These indices show the highest correlation compared to
other indices where the SWIR bands are used. This is due to
the high performance of G, R and NIR bands in retrieving
patterns and features of soil salinity in the investigated
area (i.e.: high correlation between the G, R, and NIR
MODIS spectral bands with the EC from ground truth). The
MODIS SWIR bands showed a low correlation with EC ;
therefore the salinity indices computed from these bands
have a limited potential for detecting soil salinity. The low
spatial resolution of the MODIS Terra data is one of the
main reasons for such a weak correlation. Furthermore, the
collected samples cannot be completely representative of

Fig. 5. Correlation between the MODIS Terra spectral bands and the EC.

Fig. 5. Corrélation entre les bandes spectrales du MODIS et EC.

Fig. 6. Correlation between vegetation indices and EC.

Fig. 7. Correlation between intensity indices and EC.

Fig. 7. Corrélation entre les indices d’intensité et EC.

Fig. 8. Correlation between salinity indices and EC.
Fig. 6. Corrélation entre les indices de végétation et EC. Fig. 8. Corrélation entre les indices de salinité et EC.
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 pixels because one sample represents only one point on
 relevant 231 � 231 m pixel.
The generated abundance maps display the fractional
ount of material present at each pixel (Fig. 9). The three
ndance maps (e.g. vegetation, clouds, and soil) were
erated through the application of the LSU method.
se maps show the spatial density distribution of the
in three components composing the investigated
ion. The soil abundance map shows the predominance
are soil in the study area. The vegetation abundance

p reveals a high vegetation density to the north-west
ere the Amazon biome is found (indicated by an arrow
ig. 9b). The derived cloud abundance map from the LSU
thod was helpful to delineate areas with clouds
icated by an arrow in Fig. 9a). Cloud abundance is

used on the eastern coast, so samples from this area
re avoided when building the MLR relationship.

 Multiple linear regression to predict salt-affected areas

MLR estimates the coefficients of the linear equation,
olving one or more independent variables that best
dict the value of the dependent variable. In this paper, a
ltiple linear regression model is developed to predict

 and/or moderately salt-affected soils.
The model is based on the data of the best spectral
nity indices (as predictor variable) and the EC from
und truth measurements (as response variable). From
eral explored models of MLR, the best MLR approach
nd involves a combination of the salinity predictors
inity indices 2, band 4 from MODIS spectral bands) and

s used to model the empirical relationship between
trical conductivity and soil salinity as indicated by
ote sensing indices. To build up the MLR relationship,

 of the samples are selected randomly by the software.
 remaining samples are used for validation. The choice
he best model was based on the coefficient of multiple
ermination (R2) computed by the model (Draper and
ith, 1998; Wijaya et al., 2010).
The best R2 value in the regression output indicates that

can be explained by the predictor variables used in the
model.

The regression empirical relationship is given by the
following formula:

Predicted ECð Þ ¼ �70:306 � SI2 þ 177:973 � B4

� 2:210 (13)

The best MLR empirical relation is based on the salinity
index 2 and the spectral band 4 (NIR) of MODIS Terra
image. These two indices show the highest correlation
with the EC from the ground truth. Combining these
salinity indices helps to build a more reliable MLR
empirical relationship to predict soil salinity. The standard
error (also known as the root mean square error) of the
estimate is the square root of the residual mean square. It is
shown that the standard deviation of the data about the

9. Gray-scale abundance maps for clouds (left), vegetation (center), and soil (right).

9. Carte d’abondance des nuages (à gauche), de la végétation (au centre) et des sols (à droite).

Fig. 10. Relationship between measured and estimated electrical

conductivity (EC) values (linear regression).

Fig. 10. Relation entre les valeurs de conductivité électrique (CE)
ées et mesurées (régression linéaire).
y 40.5% of the total variation of the predicted EC values estim
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regression line is about 12 mS/cm. This error decreases
with increasing soil salinity, which means the higher the
electrical conductivity the closer the predicted conductivi-
ty will lie to the ground truth measurement (Fig. 10).

The empirical relationship between measured and
estimated EC values showed an overestimation of the
predicted electrical conductivity values. Fig. 10 shows that
predicted values of electrical conductivity are often higher
than the values from the ground truth measurements.

4. Conclusion

The present study evaluates the potential of using the
LSU technique combined with remote sensing indicators
from MODIS Terra data for the assessment and monitoring
of salt-affected soil over a large area. Our remote sensing
methodology provides a reliable variety of indicators to
address land degradation by salinization. Although the
correlations found in this study are not strong, they reveal
the potential of various spectral indicators to predict salt-
affected areas in north-eastern Brazil. A moderate correla-
tion was found between electrical conductivity and the
spectral indices. An improvement occurs in most of the
correlations after applying the LSU method. This suggests
the LSU plays an important role in retrieving more accurate
information regarding soil salinity. The use of LSU on
MODIS Terra data has great potential despite the low
spatial resolution of the MODIS images.

We propose that the combination of spectral indices
and ground truth measurements is an efficient way to
create a large-scale predicted soil salinity map.

An MLR analysis with SI2 and B4 was conducted to
predict soil salinity, which gave a moderate coefficient of
multiple determination (R2 = 40%). Further research by
means of non-linear methods should enable refinement of
the model and reduce the error of predicted electrical
conductivity values.
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