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A B S T R A C T

The environmental modeller faces a dilemma. Science often demands that more and more

process representations are incorporated into models (particularly to avoid the possibility

of making missing process errors in predicting future response). Testing the causal

representations in environmental models (as multiple working hypotheses about the

functioning of environmental systems) then depends on specifying boundary conditions

and model parameters adequately. This will always be difficult in applications to a real

system because of the heterogeneities, non-stationarities, complexities and epistemic

uncertainties inherent in environmental prediction. Thus, it can be difficult to define the

information content of a data set used in model evaluation and any consequent measures

of belief or verisimilitude. A limit of acceptability approach to model evaluation is

suggested as a way of testing models, implying that thought is required to define critical

experiments that will allow models as hypotheses to be adequately differentiated.

� 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

R É S U M É

Le modélisateur de systèmes environnementaux doit faire face à un dilemme. La science

demande souvent que de plus en plus de représentations des processus soient incorporées

dans les modèles (particulièrement pour éviter la possibilité de commettre des erreurs

d’omission, lors des simulations). L’évaluation de représentations causales dans les

modèles environnementaux (comme hypothèses multiples en ce qui concerne le

fonctionnement des systèmes environnementaux) sous-entend la spécification des

conditions aux limites et des valeurs des paramètres du modèle. Ceci sera toujours

difficile pour les applications à des systèmes réels en raison des hétérogénéités, des non-

stationnarités, des complexités et des incertitudes épistémiques inhérentes aux

simulations environnementales. Il est ainsi ardu de définir l’information dans un jeu de

données utilisé pour l’évaluation de modèles et les mesures de croyance ou de

verisimilitude qui en découlent. Une méthodologie fondée sur des limites d’acceptabilité

est suggérée pour l’évaluation des modèles, mais ceci implique qu’il faille définir des

expérimentations critiques qui permettront de différencier suffisamment les modèles

entre eux, considérés comme étant des hypothèses.

� 2012 Publié par Elsevier Masson SAS pour l’Académie des sciences.
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1. Introduction

There are many decisions in the domain of environ-
mental science that are perceived as requiring quantitative
predictions to enable ranking of different management
scenarios. This implies proposing causal models about
environmental processes in a context of open environ-
mental systems subject to significant uncertainties. While
some predictions of this type have become routine (such as
in weather forecasting) in many other cases, the act of
prediction comes close to crossing the border between
science and the ‘‘trans-science’’ of Weinberg (1972).
Certainly, the limitations of such predictions are not
always well understood by those who wish to use them to
inform decisions.

Quantitative predictions require models that are
intended as formal representations of causal (process)
relationships, even if such relationships are expressed in
stochastic or fuzzy form. These formal representations,
however, are often gross simplifications of the perceptual

model1 of the relevant processes and causalities. This is the
case even where the formal model is intended to represent
our current understanding of the physics (and/or geo-
chemistry and/or ecology). There are always complexities,
non-stationarities and heterogeneities that we can per-
ceive as possibly having a significant impact on the system
response but which are not included in the formal model
because there is no agreed mathematical representation,
or which are treated as a simplified ‘‘sub-grid’’ parameter-
isation in a larger scale model (as, for example, in
atmospheric models used from weather forecasting to
climate change predictions).

These approximate model representations are then
supplied with incomplete and imperfect initial and
boundary condition data to generate quantitative pre-
dictions. Any single run of the most detailed global
climate model is of this type. It includes causal relation-
ships (expressed as partial differential equations) to
represent the fluxes of mass and energy in the atmosphere
and oceans. It also includes many different approximately

causal parameterisations to allow for sub-grid processes
(energy dissipation, land surface to atmosphere fluxes of
vapour and heat, cloud formation, rain generation, aerosol
dispersion. . .). It is normally run deterministically, to
produce a single set of outputs (though recently limited
ensemble predictions have been run by the Hadley Centre
as part of the UKCP09 product2 with realisations
generated using a ‘‘stochastic physics’’; ensemble pre-
dictions are also being used in other areas of environ-
mental modelling to assess prediction uncertainties,
Beven, 2009).

This is one common feature of causal models in the
environmental sciences3. Approximate implementations,
driven by approximate boundary and auxiliary conditions
will necessarily produce approximate results and different
implementations (different model structures, parameter
sets or ways of defining initial and boundary conditions)
will produce different results. These different implemen-
tations can then be considered as multiple working
hypotheses about the way the system functions (note
that a similar argument applies to stochastic or fuzzy
representations, even if the resulting predictions are not
deterministic). The issue that then arises is whether, given
the different sources of uncertainty in the modelling
process, we can differentiate one hypothesis from another
in trying to refine the science (and consequently have more
faith in the model predictions). We can again use the
prediction of global climate change as an example. The
IPCC (2007) (Inter-governmental Panel on Climate Change)
reported on the outcomes from a number of different
deterministic global climate models that could be consid-
ered as different representations (multiple working
hypotheses) about how the global climate system works.
The different implementations produce different results
(and for predicted variables such as rainfall, different
implementations can produce very different results in
some parts of the globe). In this case, rather than decide on
whether one model hypothesis is more realistic than
another, the range of outcomes from different models has
been presented. They have also been presented as
conditional scenarios because of the real epistemic
uncertainty about future emission forcing as well as the
approximate nature of the models themselves.

The concept of testing causal models of environmental
systems as hypotheses raises a number of interesting
philosophical issues that will be discussed in what follows.
In particular we will consider the paradox of model
complexity; the relationship between degrees of belief and
verisimilitude; defining belief as likelihood for models of
complex environmental systems in the face of epistemic
uncertainties; the compromise between acceptance and
rejection of models, and the role of critical experiments in
testing competing models as hypotheses of system
response.

2. The paradox of model complexity

In predicting the impacts of future change on environ-
mental systems, it is necessary to be careful about defining
the process representations relevant to the expected future
states of the system. A model (as hypothesis) that does well
in predicting the response of a system under current
conditions might not do well in predicting the future

1 The term perceptual model is used here to indicate a qualitative set of

perceptions of how an environmental system works. As such it can

include complexities and ambiguities that cannot be easily incorporated

into a formal model producing quantitative predictions (see Beven, 2012).

That is not to say that the perceptual model is itself an adequate

appreciation of the complexity of the real system which may not yet be

properly understood even qualitatively.
2 See http://ukclimateprojections.defra.gov.uk/content/view/868/531/

3 Note that I am using causal here in the sense as being defined by

process descriptions that purport to represent causal linkages rather than

models developed directly from observational data. It is worth noting,

however, that an argument can be made that models developed directly

from observational data might be more robust in prediction than

deductive models constrained by prior conceptions (see for example,

Young, 1998, 2001, 2003, 2011; Young and Beven, 1994; Young and Ratto,
index.html, Murphy et al., 2007; Rougier and Sexton, 2007). 2009).

http://ukclimateprojections.defra.gov.uk/content/view/868/531/index.html
http://ukclimateprojections.defra.gov.uk/content/view/868/531/index.html
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ditions. This might be because the boundary conditions
nge to induce a different type or range of response
ond that for which the model has been calibrated. It
ht be because the future change invokes changes in the
ctive parameter values in the model (without a
ificant change in model structure). It might be because

 future changes the nature of the process mechanisms
olved in a way that implies the need for a change in
del structure.
Thus there is a deductive argument to include as many
cesses as perceived as being important under both
rent and future conditions in a predictive model to avoid
del failure as a result of missing processes. Most
dellers want to be realist in the sense of defining a
rrect’’ model representation of the system under study

 discussion of Beven, 2002a). The missing processes
ument also fulfils the purpose of models as a way of
viding a framework for formalising scientific under-
ding. Different scientists might well make different

ices about what processes are important, and about how
se processes might best be represented. While some
cesses are certainly better understood than others, there

 enough uncertainties in describing the processes that, as
he case of global climate models, such choices produce a
ltitude of model implementations (or, effectively,
peting hypotheses about system function).

However, the introduction of more processes means
t because many process representations are based on
uctive empirical functions, there are more model
ameters to be identified. The deductive argument then
flicts with the much discussed inductive problem of

ing a parsimonious model to represent a set of data
ile avoiding over-fitting. This is particularly the case
en functional representations that have been developed
mall scales or laboratory scales are used at larger time

 space scales for practical applications. A hydrological
mple is the widespread use of Darcy-Richards equation
escribe unsaturated flow in soils where the nature of

 unsaturated flow relationships results from the
ticular conditions of the laboratory experiments carried
 by Richards (1931) in which increasing air pressure
s used to reduce the saturation of the soil. This ensures
t the larger pores stay empty, something that is not
essarily the case in field soils. The representation is
ed on the wrong experiment and the wrong physics
ough Richards never claims in his paper that his
ilibrium process representation will hold generally
real soils). In addition, heterogeneity of soil character-
cs in the field means that, given the non-linearity of the
aturated flow relationships, even if local fluxes are
itive, the local parameters do not average linearly.
s, the parameter values determined at the small scale

 then not necessarily appropriate as effective parameter
ues that are required in a model to get good predictions
arger scales, compensating for small scale heterogene-
s and other model and boundary condition deficiencies.
ause in many cases the process representations are
linear, this can be a problem even for some of the most

epted process equations when there are any sub-grid
all-scale heterogeneities or temporal non-stationarities
he real system.

Another example is the widespread use of the Manning
equation to describe velocities in river flows. What is now
known as the Manning equation was rejected by Manning
in his original analysis (Manning, 1891) in favour of
something more complicated (and dimensionally correct).
It was also based on an analysis of what is called uniform
flow (in which velocity vectors do not change in the
downstream direction or in time) but is now widely
applied in hydraulic models to represent friction losses for
non-uniform, gradually-varying flows. Furthermore, liter-
ature values of the Manning roughness coefficient are
normally back-calculated from measurements in single
river cross-sections. What is needed for prediction is
normally a roughness representing a whole river reach
(with all its geometrical complexity and heterogeneities.
Again, a local representation is being used as a larger scale
parameterisation and effective values of the parameters are
required.

In both these hydrological cases (and similar cases in
other branches of environmental modelling), the use of
such empirical functional relationships would not neces-
sarily be a problem if there were measurement techniques
available to evaluate the process equations and model
predictions at the scales at which the models are being
applied (at least under current conditions: the determina-
tion of effective parameter values for future conditions
would still be a problem). In nearly every practical
application of environmental models, however, this is
not the case. It is then necessary to infer effective
parameter models by a process of calibration or history
matching, in which case the possibility of interaction
between process representations in providing good fits to
the available observations assumes greater significance.
This means that model testing will have limited power. Not
only may it be difficult to differentiate between different
model structures as hypotheses but it may also be difficult
to differentiate between different sets of effective param-
eter values within a model structure, a problem that is
compounded by both aleatory and epistemic uncertainties
in the input or forcing data used to run the model. This is
what Beven (Beven, 1993, 2006a; Beven and Freer, 2001)
has called the equifinality problem (after Von Bertalanffy,
1968).

Equifinality, as used in this sense, is intended to express
the concept that there may be many different competing
model structures and parameter sets within a model
structure that might give equally acceptable results when
compared with observations (Beven, 2006a). The models
considered as acceptable or behavioural might, however,
give quite different predictions. While the concept is
similar to the use of the terms ambiguity, non-identifia-
bility, and non-uniqueness, it has been chosen to reflect the
fact that this is a generic problem in environmental
modelling, not simply a question of underdetermination in
determining the model of the system. Equifinality implies
that deciding on an ‘‘optimal’’ model in calibration may be
a poor strategy, even if residual errors are accounted for in
some statistical framework.

The paradox of model complexity then arises because
the greater the process understanding that is included in
the model, the more parameter values that must be
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defined. Thus, the greater the potential for equifinality of
models where the available observations cannot differen-
tiate between different models as hypotheses. Even a
hypothetically ‘‘perfect’’ causal model of the processes
(which would necessarily have a large number of degrees
of freedom in calibration) would not be immune to this
paradox because in any practical application, it is
necessarily forced by imperfect input data and compared
with imperfect observations of system of response.

So we wish to make models more complex in order to
make their predictions more realistic, but we might find it
difficult to differentiate between models as hypotheses in
practical applications. In environmental modelling, how-
ever, there is no possibility of ultimate resort to the
Popperian solution of falsification since, as our models are
necessarily approximate and driven by necessarily ap-
proximate boundary conditions, they can all be falsified if
we look closely enough (Beven, 1993, 2002a; Cartwright,
1999; Morton, 1993; Oreskes et al., 1994). There may also
be important understanding to be gained from model
failures (see Andréassian et al., 2010).

And yet, even if our models are wrong in detail, they
might well reflect the dominant causal characteristics of
the system and consequently be useful in making
predictions for decision makers, even if those predictions
are uncertain. They might, in a classic instrumentalist
view, be ‘‘fit for purpose’’ in the sense of providing
predictions of future observations within some limits of
acceptability or statistical consistency (e.g. Hitchcock and
Sober, 2004; Sober, 1999, 2002; but see also Mikkelson,
2006) noting that success in this sense will also depend on
assumptions about future boundary conditions as well as
model structure and parameter values as hypothesis. The
question then is how we can tell if one model (as
hypothesis) is more or less fit for purpose than another
in the face of the different sources of uncertainty in the
modelling process. This raises issues of degrees of belief
and verisimilitude.

3. Degrees of belief and verisimilitude in causal
environmental models

Testing models as hypotheses implies changing degrees
of belief (often expressed as probabilities or possibilities)
in a particular hypothesis or set of hypotheses as evidence
is gathered. Testing hypotheses in the face of uncertainty is
traditionally the domain of statistical theory and there are
a variety of well-established methodologies for hypothesis
testing in statistics when the errors can be reduced to
having only random characteristics. Some have argued
that probability theory is the only way of rigorously taking
account of uncertainties (e.g. O’Hagan and Oakley, 2004).

There has been extensive discussion about the use of
the Akaike (or other) information criterion as a way of
determining appropriate model complexity and avoid
over-fitting (e.g. De Vito, 1997; Forster and Sober, 1994;
Hitchcock and Sober, 2004). Bayesian frameworks also
allow prior judgements about model structures where
modelling errors can be reduced to random characteristics
(Goldstein and Rougier, 2006; Kennedy and O’Hagan,
2001; but see also discussions by Dowe et al., 2007;

Forster, 1995; Howson, 2003). The same methods provide
ways of estimating the probabilities of an outcome
conditional on the model predictions that can be used in
estimating prediction uncertainties for decision makers.

Bayesian methods are increasingly used in environ-
mental modelling (see, for example, Beven, 2009; Clark,
2006), but practical experience suggests that the assump-
tion that models can be evaluated in terms of random
errors conditional on the model being considered correct is
rarely valid in environmental modelling. They are often
used, as if the modelling errors have random character-
istics, even when the stochastic assumptions may be
difficult to justify (e.g. Rougier and Sexton, 2007, for just
one example) and it is more likely that the total model
error is structured in non-stationary and non-statistical
ways as a result of epistemic uncertainties arising from
both model structure error and input error (see the
discussion of non-ideal cases in Beven, 2006a and practical
examples in Beven and Westerberg, 2011; Beven et al.,
2011).

It is important to understand what is being suggested
here. It is well known that both deterministic chaotic and
stochastic (Hurst/Kolmogorov) processes can generate
non-stationary characteristics from rather simple mathe-
matical mechanisms that are well defined and stationary
in the long term (e.g. Koutsoyiannis, 2011; Schertzer et al.,
2010). Within a statistical framework, it is also perfectly
possible to add components to the error model that
account for structures such as heteroscedasticity, auto-
and spatial correlation or functional non-stationarities
(such as a sinusoidal seasonal variation) with the aim of
leaving an aleatory residual component. Such components
are not causal in themselves (although they might later be
interpreted to modify one or more process representa-
tions) but rather describe data or model inadequacies in a
functional way (e.g. Kennedy and O’Hagan, 2001). Here I
am suggesting something rather different, an expectation

that arbitrary epistemic uncertainties will result in a
variability in model errors that is not consistent (in time or
space) and that is also not random in the sense of being
convergent to some asymptotic distribution of such errors
within the time frame or spatial domain of a modelling

application. Given very large data series, some more
general behaviour for these errors might be identified
but in real applications we do not and cannot have the

knowledge of any underlying structure that might be
provided by such quantities of data. That is why such errors
can have the appearance of being arbitrary and must be
treated as epistemic.

To give a hydrological example from rainfall-runoff
modelling, even if we could be sure of having a realistic
model of runoff generation processes, epistemic uncer-
tainties arise in both the forcing rainfall data and the river
discharge outputs that might be used in model evaluation.
This is because raingauge networks are sparse, such that
particularly for strongly convective rainfalls, the total
volume of inputs might be poorly estimated in a way that is
storm type, position and movement dependent. Such
errors cannot be easily represented by simple statistical
error models (albeit that there have been attempts to do so
using geostatistical methods with inadequately estimated



var
esti
non
hyd
ant
exp
to n
lati
wit
gen
wa
con
cur
is m
flow
me
by 

cur
use
how
lev
use
epi
et a
201
me
com
pre
Bev

stra
eva
ide
nec
lead
tha
of 

ass
res
nea
not
stat
non
erro

atin
can
can
Pop
unc
pro
acc
util
the
by 

ma
stat
unc
diff
the
con

K. Beven / C. R. Geoscience 344 (2012) 77–88 81
iograms). Similar arguments can be made for rainfalls
mated from radar systems. They are then processed
linearly though the rainfall-runoff model structure (all
rological models must reflect the nonlinear effects of

ecedent wetness on runoff generation) with an
ectation that this nonlinear transformation will lead
on-stationarity in any heteroscedasticity or autocorre-

on in the residuals. The model output is then compared
h the river discharge measurements, except that, in
eral, it is not river discharge that is measured. It is

ter level in the river that is measured. This is then
verted to discharge by means of an empirical rating
ve based on point velocity measurements at the site. It
uch more difficult to do such measurements at higher
s, particularly at flood levels. Thus the rating curve

asurements are often extrapolated to higher discharges
fitting some site-specific functional form for the rating
ve (alternatively hydraulic calculations are sometimes
d but require some rather strong assumptions about

 the effective roughness coefficient will change with
el). This means that the extrapolated discharge data
d to evaluate model predictions might also be subject to
stemic errors (e.g. Beven et al., 2011, 2012; Krueger
l., 2010; Mathevet and Garçon, 2010; Westerberg et al.,
1). Similar examples can be cited from other environ-

ntal domains, including commensurability problems of
paring point measurements to spatial integral model

dicted variables over some landscape element (e.g.
en, 1989, 2006a).
Such epistemic uncertainties are then a strong con-
int on the use of formal statistical likelihoods in model
luation. Under the assumption that the errors (after
ntifying appropriate model inadequacy functions as
essary) are random, formal likelihoods will normally

 to a very strong over-differentiation between models
t actually have somewhat similar performance in terms
error variance and bias. This is a direct result of
umptions about the information content in a series of
iduals as if they arise from purely random effects. In
rly all environmental modelling applications, this will

 be the case: the residuals will have complex non-
ionary structure and persistence as a result of the
linear processing of input errors and model structural
rs (see Beven, 2006a; Beven et al., 2008).

This clearly has important implications for differenti-
g between models as causal hypotheses. If all models

 be falsified but some might be useful in prediction how
 we assess an appropriate ‘‘degree of verisimilitude’’ (in
per’s phrase) in making some allowance for epistemic
ertainties? This effectively poses a problem of com-
mise between rejection (all models can be falsified) and
eptability (but some may be fit for purpose in having
ity in prediction). This compromise is fundamental in

 development of theories of verisimilitude (see review
Niiniluoto, 1998) but it would seem to be difficult to
ke such a compromise objective in practice if formal
istical likelihoods are not valid in the face of epistemic
ertainties (although Niiniluoto, 1987, presents many
erent forms of similarity measures). Fitness for purpose
n becomes a question of likelihood as subjective belief,
ditioned on what the modeller considers to be

important in terms of performance (see the discussion
of this difficulty in respect of hydrological modelling in
section 5 below).

4. Evaluation of causal model likelihoods

Howson and Urbach (1993) and Press and Tanur (2001)
have illustrated the ways in which science can be
interpreted as working in subjective Bayesian ways,
combining prior beliefs with (sometimes selected) evi-
dence to derive some posterior ranking of possible
hypotheses. The subjectivity in this process is not a
problem within a Bayesian framework. The original
formulation of Bayes equation (Bayes, 1763) is couched
in terms of combining prior likelihood beliefs about
hypotheses with evidence expressed in terms of some
odds expressing support for different hypotheses. There is
no intrinsic reason why those odds should not be
expressed subjectively, as well as any prior beliefs. Formal
likelihood theory, however, and particularly attempts to
formulate an objective Bayes theory, have attempted to
quantify the information content of model residuals so as
to minimise subjectivity. This then introduces assump-
tions about the random nature of model residuals in ways
that may not be justified in real applications where, as we
have noted earlier, the non-stationarity of residual
properties may be almost guaranteed by the nonlinear
model dynamics. Over-strong assumptions about the
randomness of residuals will then lead to over-condition-
ing of the likelihood surface and overestimation of the
likelihood ratios that might be used to differentiate one
model as hypothesis from another (see, for example, Beven
et al., 2008, where this is demonstrated even for a
hypothetical case free of any model structural error).

In principle, any assumptions about the model residuals
used to formulate a likelihood function can be checked (for
good practice in this respect, see for example Engeland
et al., 2005). This is, however, rarely done in actual
applications and even when it is done, it is rare to question
more than the summary statistics of mean bias, residual
variance and low order autocorrelation for some model
deemed as having maximum likelihood under the chosen
error assumptions. Where residuals are clearly non-
Gaussian, then they are often transformed (by using, for
example, Box-Cox or meta-Gaussian transforms) so as to
still take advantage of a standard (simple) likelihood
formulation.

There is no doubt that in some cases such formal
likelihoods might be wrong but still a useful approxima-
tion in giving models that give good predictions high
likelihood, but in other cases there is a danger that over-
conditioning may result in making a Type II error in giving
a likelihood of close to zero to a model that would perform
well in prediction just because of epistemic errors in the
forcing data. If models are being tested as hypotheses this
is tantamount to rejecting such a model. It is easily
demonstrated that, by the very nature of formal statistical
likelihood functions, two models with small differences in
error variance and bias can have differences of many orders
of magnitude in likelihood as more data are added in
conditioning. Such enormous differences in likelihood
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seem totally unrealistic given that some of the sources of
such errors are epistemic.

That is not necessarily an argument for not using a
Bayesian statistical approach for such inference, only that
the way in which likelihood functions are developed
should be the subject of more study for cases where
epistemic errors are significant (which might be all real-
world environmental modelling applications, Beven,
2006a). More realistic likelihood functions should then
reflect the real information content of a residual series if it
has complex non-stationary characteristics arising from
the interaction of input errors, model structural errors, and
evaluation observation errors (which, while independent
of the model, might also be structured in complex ways as
a result of the physical nature of the observation, e.g. errors
in discharge estimates when a river goes overbank in a
flood). Since there is no easy way to separate out the effects
of these different sources of error on the residual series
(see discussion in Beven, 2005), there is also no easy way to
estimate the real information content in the residuals and
consequently an appropriate likelihood formulation.

Beven (2006a) has therefore suggested an alternative,
non-parametric, approach to the problem of evaluating
model likelihoods that is consistent with the equifinality
thesis introduced above. This approach is based on
specifying limits of acceptability before running the model.
The approach has been applied in rainfall-runoff modelling
(Freer et al., 2004; Liu et al., 2009), hydraulic modelling
(Pappenberger et al., 2007), water quality modelling (Dean
et al., 2009; Page et al., 2007) and mixing models
(Iorgulescu et al., 2007). Ideally, such limits of acceptability
can be defined for all the individual observations with
which a model will be compared in testing. Models that
provide results within the limits of acceptability will be
retained for use in prediction, those that do not will be
rejected. Within the range of the limits of acceptability,
likelihood measures can also be specified that, when
combined over all observations (not necessarily multipli-
catively as in Bayes), can be used to weight the predictions
of the individual models in the acceptable set. This
represents an extension of the Generalised Likelihood
Uncertainty Estimation (GLUE) methodology first intro-
duced by Beven and Binley (1992).

This approach replaces the need to make assumptions
about the random structure of the residuals in the formal
likelihood method, to a need to specify limits of
acceptability. The starting point in doing so is the
uncertainty in the observations with which a model will
be compared, since we should not expect a model to
provide predictions with greater accuracy than the
expected observation errors. This is not in itself sufficient,
however, since a good model might still be rejected on the
basis of observation error alone if it is driven with poor
input data. Thus, the limits of acceptability need to reflect
the possibility of different sources of input error in some
way. Such errors may also not be simple or random in
nature. In hydrological models, for example, two types of
inputs are required–precipitation inputs (both rain and
snow where appropriate) and estimates of evapotranspi-
ration loss back to the atmosphere (often derived from
weather measurements at a point or remote sensing

images by another interpretative model). These might also
be subject to multiple sources of uncertainty and exhibit
quite different structures. This is true even, for example, of
simple remote sensing images of surface temperature (e.g.
Santer et al., 2011). As in the case of rating curves to
quantify discharge discussed earlier, this role of interpre-
tative models in defining ‘‘observations’’ is often neglected
in model applications (e.g., Beven et al., 2012).

While the limits of acceptability approach does
encourage the consideration of all these different sources
of uncertainty in the modelling process, there does not
seem to be any easy way around making an assessment of
the effects of input error on limits of acceptability for
applications where there can be no independent assess-
ment of the nature of input errors (which again must be
very nearly all real applications of environmental models).
In principle, given enough information, we could evaluate
such errors objectively but we do not have that informa-
tion so these errors are certainly epistemic and should not
be treated as if aleatory. We should then expect that such
errors might have non-stationary characteristics but the
only evidence that a particular part of an input data series
might be in error is normally that a model that is
acceptable elsewhere does not produce good results
following that particular input. Such evidence is, of course,
highly conditional on the possibility that the model itself
might be in error and would not in any case produce good
results in that particular period. Testing models as
hypotheses within this context would appear to be
challenging and requiring further methodological devel-
opments (see, for example, the vagueness measures
suggested in Lawry, 2006, 2008).

5. Compromise between model acceptance and model
rejection: a hydrological example

Hydrology is a difficult science. It deals with nonlinear
catchment (and global) systems subject to naturally highly
variable (and non-stationary) boundary conditions. It does
not have measurement techniques to assess all the
relevant variables at the different scales of interest and
consequently tends to use causal theory developed at
laboratory scales as if it applied at larger scales even
though there are reasons to doubt the validity of this
approach (see, for example, Beven, 2006b and discussion of
the Darcy-Richards and Manning equations above). It has
to deal with the fact that every catchment is unique in its
detailed characteristics and therefore any causal model
will have some parameters that need to be adjusted or
calibrated to allow for this uniqueness (Beven, 2000; Beven
et al., 2002; De Marsily, 1994; Ganoulis, 1996). In these
features it is quite representative of the environmental
sciences in general (see the general discussions in Beven,
2009; Morton, 1993). The fundamental equation in
hydrology, that can be applied at any scale, is the water
balance equation. The water balance equation can also be
supplemented by energy balance and momentum balance
equations (e.g. Reggiani et al., 1998, 1999, 2000). Since
these are forced input-output systems, there is an implied
causality in these balance equations, since changes in state
variables and outputs of the system are a direct response to
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 input terms. Thus, for the water balance for a
chment area, A,

Dt ¼ Q Dt þ A E Dt þ G DS þ A DS (1)

ere P is precipitation input per unit area (units of depth
 unit time) over a time step Dt, Q is the measured
harge from the catchment (units of volume per unit
e), E is loss to the atmosphere due to evapotranspira-

 per unit area (units of depth per unit time), G is
easured subsurface outflows (units of volume per unit

e) and DS is the change in bulk storage (units of depth
 unit area).
Thinking about each of the terms in this most basic of
sal equations, some of the reasons why hydrology is a
cult science become immediately apparent. It is well
wn that the effective catchment area measured at the

d surface may not be the same as the subsurface
chment area. The precipitation inputs can only be
asured with some error (generally greater for snow
uts than rainfalls). Some inputs (such as the deposition

ater on vegetation in mountain clouds) are not easily
asured at all.
For the output terms, river discharge is generally not
asured continuously but, as noted earlier, measure-
nts of water level are converted to discharge using a
ting curve’’ developed from a small number of discharge
asurements. It therefore also is associated with some
tentially epistemic) error, especially for the highest and
est flows. Actual rates of evapotranspiration are
trolled by weather variables (net radiation, tempera-

e, humidity, wind speed) but also by the availability of
ter in the soil and by plant physiology in complex ways.
re are reasonable measurement techniques at a point

 eddy correlation methods) or transects (by laser
nding or scintillometry) but not for spatially integrated
ues over a catchment area. Potential outputs via deeper
surface flow pathways cannot be measured and are
refore normally assumed zero, but this might also
oduce an error. Finally, there are techniques for point
asurements of changes in storage in the soil profile, or
ote sensing methods that provide estimates of the

rage in the uppermost soil (at least in optimum
umstances) but these are subject to their own
ertainties and are not sufficient to get an adequate
mate for the spatially integrated change in storage.
Thus, even the most fundamental equation in hydrolo-
is subject to significant error in each of its terms. If the
ter balance equation would be proposed as a hypothesis
ydrology it clearly cannot be proven without allowing
such uncertainties (Beven, 2005; see also the argu-

nts of Cartwright, 1999, with respect to Newton’s 2nd
 of motion as applied to real problems). Similar
uments can be applied to the energy balance and
mentum balance equations. Most causal models,

ever, assume that these balances are met de facto
in the catchment theory outlined in Reggiani et al.,
8, 1999, 2000), although some operational models do
w parameters to be calibrated that modify some of
se terms (e.g. bias correction in the inputs either for a
ole period or on an event by event basis, or some ‘‘deep

percolation rate’’ parameter to allow for the term G and
errors in other terms that might lead to inbalance). Such
modifications are not, however, based on directly on
measurements and this will then allow trade-offs between
ways of satisfying the water balance constraint (e.g. Le
Moine et al., 2007).

Yet, so far, we have not even started to think about
representing the causal processes that control the dynamic
response of the system: i.e. how, given a particular state of
the system as a pattern of water storage, the inputs will lead
to changes in the output boundary fluxes of Q, E and G. This is
what Reggiani et al. call the closure problem (see also Beven,
2006b, 2012), and it is essentially where the very many
available hydrological models differ in their underlying
equations and dynamics. Why are there so many hydrologi-
cal models available? Precisely because each has some
adjustable parameters that can be calibrated in each
application and there is enough uncertainty in the terms
of the water balance equation that no hydrologist expects
perfect agreement between predictions and observations.

But this then raises an interesting question about
testing models as causal hypotheses about the catchment
system response. Is it indeed possible to say if one model is
better than another in a useful way, given the uncertainties
outlined above? This is clearly a problem that is not limited
to hydrology, but will also hold in many different
environmental applications, and particularly applications
such as sediment transport, water quality and aquatic
ecology that depend on predictions of water fluxes.

To take a very simple example, in considering the
response of a catchment system we could propose to test a
hypothesis that G is zero because a particular catchment is
underlain by a relatively impermeable bedrock (though
even impermeable bedrock is sometimes associated with
fracture lines that can provide sufficient storage of water
and permeability to support water uptake by tree roots,
wells for local water supplies, and which might provide
flow pathways for water out of a catchment). We can
implement models with and without G but the paradox of
complexity applies. We will need some representation of G
(even if only a simple linear function of storage) with one
(or more) parameters to be calibrated. It is very difficult to
assess the values of such parameters a priori for any
arbitrary application. Thus we would need to assess
whether this additional parameter adds to how well the
model can predict the catchment outputs. However, since
the other terms in the balance equation are not known
with any certainty, it is unlikely that any clear improve-
ment will be found. Indeed we can go further and say that
any model that does fit a calibration data set exceedingly
well should be considered suspect, since it may be fitting to
the errors in the data (the classic problem of over-fitting an
over-parameterised model or a high order polynomial
function).

The question therefore is how to proceed in the face of
these difficulties, which can be posed in terms of how to
assign relative probabilities (if only as measures of belief)
to different causal process representations as a compro-
mise between model acceptance and model rejection.

One approach is to work by deduction alone. This is
equivalent to assigning only prior probabilities and in
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particular, a prior probability of 1 to a community
consensus model and a prior probability of zero to all
other representations. There is (as yet) no accepted
example of such a consensus model at the catchment
scale in hydrology, although there have been suggestions
for community land surface models and community
catchment modelling systems (the later allowing the user
to choose from a menu of process representations). The
theoretical framework of Reggiani et al. (op. cit.) was
intended to be a step towards an agreed framework, and
many hydrological modellers still hold to the blueprint
outlined by Freeze and Harlan (1969) despite its demon-
strated deficiencies (Beven, 1989, 2002b).

This particular example does not necessarily, of course,
prove a general rule but is illustrative of the problem of
deduction in these circumstances. How complex would such
a model have to be to achieve a consensus; should different
users be allowed to make choices of different sub-
components; how complex would it need to be to be
generally fit for purpose; and how far is it possible to
estimate the effective values of the parameters deductively
in any particular application? This leaves open therefore the
possibility of different consensus deductive model formula-
tions (and different parameter sets within those formula-
tions) depending on the group of scientists involved. Should
instead, as suggested by one referee of this paper, model
structures be subjected to a randomised experimental
design (as might be possible within the Imperial College
Rainfall-Runoff Modelling Toolbox of Wagener et al., 2004,
the FUSE system of Clark et al., 2008, and the FLEX system of
Fenicia et al., 2008) rather than relying on the causal
reasoning of the scientist? But, given epistemic uncertain-
ties, there is still no reason why models that are the most
successful in calibration should continue to be the most
successful in prediction. Similar arguments apply to models
derived by induction (see footnote 3 above). The question of
how models should be assessed in terms of probability as
belief remains. Again this does not seem to be just a problem
in hydrology, but applies to many forms of modelling of
environmental processes.

There are two obvious ways of assessing probability as
belief. The first would be to rely on expert opinion. But this
will then tend towards circular reasoning, because of the
difficult of finding scientists who are not committed to one
modelling paradigm or another. The second would be to
test the models as hypotheses against available data for a
range of different circumstances. But, in fitting historical
data, this is then subject to the paradox of complexity and
the uncertainty of measurements as discussed above.

6. A third approach

A third approach has not often been tried in this area of
science; to analyse the assumptions of different models as
hypotheses and try to find critical experiments that might
distinguish between different model structures or param-
eter sets (e.g. Beven, 2002a,b). Hypothesis testing is a
classic approach in science; so why has it not been more
widely used in environmental modelling? It would seem
that there may be a general perception that any such
critical experiments may not be feasible given the available

measurement techniques and resources. Simply having
more detailed point measurements in space may not be
sufficient since we can allow for such variability in many
model representations by allowing auxiliary conditions
(initial states, local parameter values) to also vary in space
(see Morton, 1993). An example is the matching of spatial
water table measurements by allowing local soil hydraulic
parameter values (e.g. Blazkova et al., 2002; Lamb et al.,
1998). In this case, the assumption of homogeneous soil
hydraulic parameters (which would be necessary without

the availability of spatial observations) would result in the
model predicting water tables less accurately at most
observation points. Forster and Sober (1994) argue that
any changes in such auxiliary conditions need to be
justified by a sufficient gain in predictive power where,
they suggest, sufficient might be measured statistically in
terms of Akaike information. The use of such measures of
information presupposes, however, that model residuals
have a simple statistical structure which, as detailed more
fully above, will not be the case for most environmental
models subject to epistemic uncertainties in both forcing
data and structure (see for example, Beven, 2010).

And yet, this still seems to be a positive way of
approaching the problem of testing models as hypotheses
even if it may be that rather than falsifying one hypothesis
relative to another it will only be possible to change the
relative probabilities, possibilities or vagueness measures
(as belief) in one model relative to another by whatever
means (see for example, Iorgulescu et al., 2007; Liu et al.,
2009; Pappenberger et al., 2007). This will then produce a
set of prior likelihoods for prediction for all those models
that survive such an evaluation (the set of behavioural
models within the GLUE methodology, Beven, 2006a, 2009,
2010). Note that this applies equally to models being
evaluated at local scales and those being tested for
performance at regional or global scales.

7. Causal models, hypothesis testing, and philosophy

Thus, the environmental modeller faces a dilemma. The
science often demands that more and more process
representations are incorporated into models (particularly
to avoid the possibility of making missing process errors in
predicting future response). Testing the causal representa-
tions in environmental models (as hypotheses about the
functioning of environmental systems) then depends on
specifying boundary conditions and model parameters
adequately. This can be done in the laboratory, but this
does not guarantee equal validity when applied to the real
system because of the heterogeneities, non-stationarities,
complexities and epistemic uncertainties inherent in
environmental prediction. Thus, it can be difficult to
define the information content of a data set used in model
evaluation (where the resulting model residuals may not
have simple statistical structure) and therefore to define
adequate hypothesis tests with respect to observations
made under current conditions. Predicting future change
will necessarily be that much more difficult. The future
inevitably involves some unknown unknowns (and, as the
theory of nonlinear dynamics suggests, the possibility of
mode switches in behaviour).
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This disjunctive nature of the possibility of prediction is
instance of Hume’s problem of induction (see the
ussion of Howson, 2003) most recently popularised by

eb (2010) as the ‘‘black swan’’ problem. Here, time is of
 essence (both in the past and future). We have a set of
dels that can be shown to be (more or less) behavioural
en current observations, even if we suspect that they
not all be realistic when more than one model or
ameter set is consistent with observations and when

 specification of past boundary conditions is uncertain
 cannot go back and check past estimates of boundary
ditions and forcing data, but model calibration is
ays conditional on these estimates). We would also

nt our models to be instrumentally behavioural in
re but know very well that success in this sense will
end heavily on any future estimation of the boundary
ditions, boundary conditions that might be quite
erent (or with different error characteristics) than seen
model calibration. This issue was first raised in
rology by Stephenson and Freeze (1974); discussed
r by Konikow and Bredehoeft (1992) and Anderson and
essner (1992); then considered by professional philo-
hers in Oreskes et al. (1994). We also cannot be sure
t such nonlinear systems will not exhibit mode
nges.
As with any inference from induction, we will not know

 model is instrumentally behavioural or not until the
re evolves. This suggests that, as a result of epistemic
ertainties, we should expect surprises in prediction.
s might include following good modelling practice in
rying out a split record test model evaluation (Klemeš,
6; Refsgaard, 1997; Refsgaard and Henriksen, 2004)

ce the epistemic errors of the forcing data and
ervations used in model calibration might be quite
erent to those in the additional evaluation period.
A common strategy to deal with this is to treat future
dictions only as uncertain scenarios. We are not sure of
se future boundary conditions (and all those for global
nge models were estimated before the 2008 global
ncial crisis); they are presented as potential future

narios of unknown probability. Many of these scenarios
y not turn out to be realistic as the future evolves but

 model itself does not need to be questioned if it has
ady been declared to be fit on the basis of consistency
h past observations according to some conditions of
eptability (perhaps relaxed in the case of current

ate models, although we can be sure that the models
d in the next IPCC5 report will also have evolved
her). At any point in time, therefore, the focus has to be
(conditional) hypothesis testing with respect to past
ervations, but we should bear in mind that what until

 has appeared to be behavioural, might turn out to
e been in some important sense non-behavioural all

ng.
The aims of the environmental modeller are both realist

 instrumentalist in nature. They are realist in the sense
ishing to have some verifiable representation of how

 real system works. They are instrumentalist in the
se of wishing to make predictions that will be
sistent with future observations. It has been seen in

 above discussion, however, that neither aim is readily

achievable in practice. Thus, any degree of belief in a
current model as a true representation of reality might be
low, but still (consensually or empirically) stronger that
that of other possible model representations. It has
therefore been suggested that most environmental mod-
ellers hold a form of ‘‘pragmatic realist’’ philosophy while
being predominantly instrumentalist in practice (Beven,
2002a). A pragmatic realist knows very well that models
are code running on silicon processors but would like to
think that the variables in a model represent real water, or
real populations, or real chemical masses, or real
atmospheric gases. In particular, we would like to think
that as process understanding improves, the models will
get closer to representing these real variables.

The difficulties of testing models as hypotheses out-
lined above seem to impose some strong constraints on
how far this process can proceed since in postulating and
testing improvements to model structures based on
improved understanding it might be very difficult to show
that a particular model performs better than another given
the uncertainties in inputs and evaluation observations.
This will remain the case unless critical measurements can
be made that can specifically differentiate between one
model as hypothesis and another (or at least allow the
probabilities/verisimilitude measures associated with
particular models to be modified in a way that reflects
the limited information content in the uncertain boundary
conditions and observations with which predictions will
be compared).

It would appear, therefore, that both realist and
instrumentalist ambitions may be thwarted in real
applications. It may be that we can only aspire to the
more limited ambition of assessing degrees of verisimili-
tude (see Section 3 above) to the available observations,
and that any such assessment is likely to be rather
subjective, whether done by a consensus of experts or by
the choice of some quantitative likelihood measure (albeit
that it is not clear how to represent the information
content of the available observations or model residuals
and therefore what is an appropriate belief measure on
which to base any assessment of verismilitude). That is
how environmental modelling current works in practice,
whatever the philosophical leanings of its practitioners.
This leaves many environmental modelling activities
verging on ‘‘trans-science’’ (see Philip, 1980). Indeed,
while there is a demand to be internal consistent in this
type of pragmatic realism, there should be no expectation
(at least, as yet) of bivalent correspondence with reality.
While Taylor (2006, see also Groff, 2004) suggests that this
is, in effect, an anti-realist stance, that is not how it is
thought of by practitioners. It is certainly not evident in the
way that many models are marketed for real applications
(that may not consider any representation of uncertainty).

This is the conclusion of my active engagement in the
process of environmental modelling that has involved
consideration of multiple sources of uncertainty and
complex error structures in practical applications. It is a
conclusion that many environmental modellers prefer not
to think about, in part because it inevitably undermines
confidence in future predictions, especially when such
predictions are being used as evidence for framing future
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policy (as in the case of the IPCC global climate
predictions). In such circumstances, it is generally better
to argue that the predictions provide the best scenarios
currently available and that we expect to be able to
improve them further (in terms of both realism and
instrumentalist performance) as both understanding and
computer power increases. The arguments here are not
incompatible with that view but suggest that a framework
is needed for taking account of different sources of
uncertainty in testing models as causal hypotheses, and
in encouraging the thoughtful search for critical experi-
ments as a way of doing science in this important domain.
Otherwise decisions might (or should) be made in other
ways (see Beven, 2011).

8. A final reflection on the as if issue.

One of referees on this paper (quite rightly) asked what
is the problem of treating modelling errors as if they are
aleatory in nature? Treating a variable as if it is a
(potentially complex) stochastic process is convenient,
even if we know very well that the ultimate causes of the
variability might not be random in nature. And, as noted
above, such an approach can be objective in that the
assumptions that are made about that variability can be
checked for validity. He then contrasted such an approach
with his perception of the subjectivity of the limits of
acceptability approach suggested here.

I think that there are two issues that are compounded in
these comments. One is the issue of how assumptions
about error structures lead to formal likelihood functions
when the errors are treated as aleatory. Thus, I would like
to stress again that doing this in the standard way will
overestimate the information content of a series of model
errors when epistemic errors are important and therefore
lead to over-conditioning of the model space. As noted
earlier this is not necessarily an argument against using a
Bayesian framework, but rather an indication that the
specification of likelihood functions should be revisited.
Howson (2003), for example, argues that Bayes provides
the only useful philosophical framework for dealing with
the problem of induction (without being specific about the
definition of likelihood) while Tarantola (2005, 2006)
points out that the L2 norm originated by Gauss that is
commonly used in formulating likelihood functions is only
a choice that became popular because of its analytical
convenience in the 19th and early 20th centuries. Other
norms could be used that might be less sensitive to the
effects of individual large epistemic errors (see, for
example, the plot in Beven and Westerberg, 2011).
However, if it is desired to reflect the role of epistemic
error in reducing information content, the definition of a
suitable function will then become less objective (precisely

because of the lack of knowledge about the nature of the
epistemic errors), even if any assumptions can still be
checked.

The second (and complementary) issue is the supposed
subjectivity of the limits of acceptability approach. I am
not suggesting here that the limits of subjectivity should
be chosen arbitrarily but rather that they should be

model. I do not doubt that this requires new methodologi-
cal developments but I actually see only one reason why
such an approach should not be objective and that (again)
is precisely because of the lack of knowledge about the
nature of the epistemic errors, particularly the input
errors discussed earlier. Such an approach would also
remain objective in the same sense of being able to check
the assumptions on which the choice of limits has been
based.

Thus, lack of knowledge will remain a constraint on
being fully objective. In fact, if we start to think more
deeply about the nature of epistemic errors (which is the
primary purpose of this paper) we should not expect to be
able to be fully objective. This is not a new insight. In
hydrology, it was implicit in the discussion of Stephenson
and Freeze (1974) in discussing the problem of validating a
causal model of hillslope hydrology when there was
limited information (i.e. epistemic error) about the
boundary conditions and internal states. It is, however,
an insight that has largely been disregarded in hydrological
modelling in the decades since Stephenson and Freeze.
How best to be as objective as possible remains, however,
an open question. It is to be hoped that the reader might at
least allow that it is a question that is still worth asking and
that requires new research.
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Le Moine, N., Andréassian, V., Perrin, C., Michel, C., 2007. How can rainfall-
runoff models handle intercatchment groundwater flows? Theoreti-
cal study over 1040 French catchments. Water Resour. Res. 43,
W06428, doi:10.1029/2006WR005608.

Liu, Y., Freer, J.E., Beven, K.J., Matgen, P., 2009. Towards a limit of
acceptability approach to the calibration of hydrological models:
extending observation error. J. Hydrol. 367, 93–103, doi:10.1016/
j.jhydrol.2009.01.016.

Manning, R., 1891. On the flow of water in open channel and pipes. Trans.
Instn. Civ. Engrs. Ireland 20, 161–207.
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