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rfectionnement de la méthode de l’ondelette de Morlet pour l’analyse multipériodes

s données climatiques

a Yi a,b,*, Hong Shu c

partment of Mathematics, Jinggangshan University, Ji’an, Jiangxi Province, 343009, People’s Republic of China

ool of Mathematics and Statistics, Wuhan University, Wuhan, People’s Republic of China

 State Key Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, People’s Republic of China

 T I C L E I N F O

le history:

ived 6 December 2011

pted after revision 28 September 2012

lable online 10 November 2012

ented by Michel Petit

ords:

let wavelet

ssian window

e-to-frequency formula

elet variance

ti-period

s clés :

elette de Morlet
ˆtre gaussienne
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A B S T R A C T

The multi-level dynamics of an atmosphere system exhibits temporal structures in different

types of climate data. This article addresses two issues in multi-period analysis of climate

data. Firstly, the advantages of the modified Morlet wavelet transform (MMWT) for

analyzing multi-period structure of time series over Morlet wavelet transform (MWT) are

emphasized. Secondly, the multi-period issues of temperature data are studied with MMWT

through four steps: the four dominant periods of 60 year temperature data are determined

with the wavelet variance; by analyzing the real part of MMWT, the warm and cold stages of

the temperature data at different scales are determined, and the time intervals of the warm

and cold interchange are singled out; the amplitude of each periodic component is

quantitatively characterized by the amplitude of wavelet coefficients; the most intensive

oscillation time intervals are computed by the squared modulus of the MMWT (MMPS).

� 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

La dynamique multiniveaux d’un système atmosphérique indique des structures

temporelles dans différents types de données climatiques. Cet article concerne deux

aspects relatifs à l’analyse multipériodes des données climatiques. D’abord, les avantages

de la transformée modifiée d’ondelette de Morlet (MMWT) pour analyser la structure

multipériodes des séries temporelles sur transformée d’ondelette de Morlet (MWT) sont

mis en évidence. Ensuite, les aspects multipériodes des données sur la température sont

étudiés par la méthode MMWT en quatre étapes : les quatre périodes dominantes sur les

mesures de température annuelle sont déterminées par la variance d’ondelette ; par

l’analyse de la part réelle de MMWT, les phases de température chaudes et froides à

différentes échelles sont déterminées, et les intervalles de temps dans l’échange chaud–

froid distingués ; l’amplitude de chaque composant périodique est caractérisée par

l’amplitude des coefficients d’ondelette ; les intervalles de temps d’oscillation les plus

intenses sont calculés par le module carré de MMWT (MMPS).

� 2012 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

The determination of multi-period structures of time
series is an important part of meteorological data mining.
Complex geographical phenomena are mostly the result of
dynamic interaction at different scales and different times
(location), and the strength of dynamic action may differ
from one scale to another. A specific time (or space) and
scale (or frequency) can characterize in detail the temporal
and spatial structure of geographical phenomena. More-
over, the complexity of the local climate change may be
aggravated by the interplay of global phenomena such as
the widely studied sunspot number (Chattopadhyay and
Chattopadhyay, 2012) and total ozone (Chattopadhyay
et al., 2011). Therefore, the effective methods for determi-
nation of multi-period structures of time series are useful.

Wavelet analysis is one such powerful tool well-suited
to study multiscale, nonstationary processes occurring
over finite spatial and temporal domains. During the
1990s, it has been successfully used in signal processing,
such as image coding, compressing and edge detection. In
the recent years, wavelet transform (WT) has found
numerous applications in Geophysics. In 1993, Meyers
et al. have studied the dispersion of Yanai waves and the
relationship between the equivalent Fourier period and the
wavelet scale for Morlet wavelets was derived (Meyers
et al., 1993). Torrence and Compo (1998) have given a
practical step-by-step guide to wavelet analysis, with
examples taken from time series of the El Niño-Southern
Oscillation (ENSO), and have written a program for
computing the continuous wavelet transform (CWT) of
time series (Torrence and Compo, 1998).

The Morlet wavelet is a periodic function enveloped by a
Gaussian function. Therefore, the Morlet wavelet transform
has been widely used to identify periodic oscillations of real-
life signals (Issac et al., 2004; Labat, 2005; Labat et al., 2005;
Werner, 2008). However, all of the aforementioned papers
adopted WT with respect to the L2 norm and this convention
can be traced back to the pioneering work of Grossmann and
Morlet (1984) about the wavelet.

On the other hand, to the best of our knowledge, the
first application of WT w.r.t the L1 norm was studied by
Guillemain et al. (1991). Then, this sort of WT was used to
explore the frequency and amplitude modulation laws by
using the phase of the WT (Delprat et al., 1992; Saracco
et al., 1991), and this method was also used to extract
orbital frequencies for palaeomagnetic/palaeoclimate data
(Saracco et al., 2009).

Considering the extensive use of WT with the two
norms, more attention should be paid to the comparisons
between the two methods. The work of Shyu and Sun
(2002) states that conducting Morlet wavelet transform
(corresponding to the L2 norm) for signals with the same
amplitude but different frequencies may produce the
squared modulus of Morlet wavelet transform (MPS) with
different amplitudes. In contrast to MWT and MPS,
conducting the modified Morlet wavelet transform
(MMWT, corresponding to the L1 norm) for signals with
the same amplitude, but different frequencies can get
MMPS with the same amplitude. Then the results are
demonstrated by Yi et al. (2010) under the condition that

time parameter b is an arbitrary value while the results of
Shyu and Sun (2002) are obtained by experiments under
the condition that time parameter b is equal to 0.
Furthermore, not only are the above results summarized
in Yi et al. (2010), but also the quantitative characteriza-
tions between the signal amplitude, frequency and wavelet
power spectrum are given.

The Morlet wavelet is obtained through the Gaussian
window frequency modulation. So, we can introduce a shape
parameter s2 to control the shape of the Gaussian window,
and balance the time resolution and the frequency resolution
(Mallat, 2009). In order to choose the optimal parameter s2,
wavelet entropy is introduced, and the parameter s2, upon
which the wavelet entropy obtains its minimum, is chosen as
the ideal parameter (Lin and Qu, 2000). In this article, we
have studied the properties of the Morlet wavelet with the
shape parameter. Furthermore, by varying the shape
parameter s2 and center frequency h defined in (1), the
Morlet wavelets can be given a broad range of characteristics
so that they can be fitted to practical data.

The results concerning the Morlet wavelet without shape
parameter in Yi et al. (2010) are composed of two parts, one
is that MMWT maintains the same amplitude between the
original frequency component and the wavelet coefficients;
therefore, the intensity of oscillation of periodic component
of signal can be accurately characterized by the amplitude of
the corresponding wavelet coefficients. On the contrary, the
maximum of MPS is proportional to the squared amplitude
of the frequency component, and is inversely proportional to
the size of the frequency. In this article, we make a
generalization of the results in Yi et al. (2010) by using the
Morlet wavelet with the shape parameter. Furthermore, we
can have a concise demonstration in this article by
calculating integral in frequency domain instead of the
integral in time domain in Yi et al. (2010).

Based on the theory of Yi et al. (2010), Yi and Fan (2010)
gave an algorithm to distinguish the multi-period struc-
ture of 55 years of temperature data and Matlab generated
data. In this article, the method of Yi et al. is improved.
Furthermore, the theory based on the Morlet wavelet with
shape parameter will make for a more complete theoretical
foundation of this method.

This article focuses on the comparisons between MWT
and MMWT, which will deepen our understanding of WT.
To sum up, it is an advantage to use MMWT if we analyze
the features of data because this analysis can focus all the
attention to the characteristic of the data without
concerning the inverse wavelet transform (IWT), while
it is better to use WT w.r.t L2 norm if IWT is concerned due
to the orthonormal basis of L2 space. In addition, we pay
more attention to the quantitative description of data and
the mother wavelet, which may not be much concerned,
and may be a complement to those papers about the
frequency and amplitude modulation laws by using the
phase of the WT.

In other words, we think the main contribution of this
article is described in Section 3, in which the advantage of
MMWT is demonstrated when analyzing the character-
istics of data. At the same time, Section 2 gives the
necessary concept about the wavelet; Section 4 is just an
experimentation in order to support the arguments of
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tion 3, in which the multi-period structure of tempera-
e data for No. 50978 station of Heilongjiang, China is
lyzed; Section 5 gives the conclusion of this article.

orlet wavelet and wavelet transform

 The Morlet wavelet with shape parameter

The Morlet wavelet consists of a sinusoidal wave
dified by a Gaussian envelope, so it is given as (Mallat,
9):

Þ ¼ Ce
�t2

2s2 eiht; (1)

ere h is the center frequency, s the shape parameter,
 C is a constant which should be chosen on different
asions. The Fourier transform of Morlet wavelet defined
1) is

Þ ¼ C �
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

p
� e�

s2ðv�hÞ2
2 ; (2)

n we have ĉðvÞ � 0 for v � 0 if s2h2� 1. So the Morlet
velet is approximately admissible and analytic (or
gressive)1.
A family of time-frequency atoms are obtained with
ling c by a(a > 0) and translating it by b:

bðtÞ ¼ 1ffiffiffi
a
p c

t � b

a

� �
: (3)

se atoms remain normalized: L2-norm ca;bðtÞ
��� ���

2
¼

ðtÞk2 ¼ 1 when the constant C of (1) is defined
1

ðs2pÞ
1
4

. On the other hand, different normalization may

ound in the literature (Carmona et al., 1998). If we define
 family c̄a;b as

b ¼
1

a
c̄ðt � b

a
Þ; (4)

 can get c̄a;b

��� ���
1
¼ c̄ðtÞ
��� ���

1
¼ 2, and in this case, the c

ned in (1) should be

Þ ¼
ffiffiffiffiffiffiffiffiffiffi

2

ps2

r
e
�t2

2s2 eiht: (5)

The parameter s in Eqs. (1) and (5), which is related to
 standard deviation of c(t), controls the shape of the
ther wavelet. The parameter s balances the time
olution and the frequency resolution of the Morlet
velet. Increasing s will increase the frequency resolu-

 but it will decrease the time resolution. When s tends
nfinity, the Morlet wavelet becomes a cosine function
ich has the finest frequency resolution, and when s
ds to 0, the Morlet wavelet becomes a Dirac function
ich has the finest time resolution (Lin and Qu, 2000).

The conclusion given in the previous paragraph can also
be given in a quantitative way. In fact, in a time-frequency
plane (t,v), the energy spread of the time frequency atom
ca,b(t), defined in Eqs. (3) or (4), denoted by the Heisenberg
rectangle, centers at ðb; haÞ, with time width sa;b;t ¼ asffiffi

2
p , and

frequency width sa;b;v ¼ 1ffiffi
2
p
�as. Then the area of the

rectangle remains

sa;b;t � sa;b;v ¼
1

2
(6)

at all scales but the resolution in time and frequency
domains depends on the scale a. We can say that the
Morlet wavelet has the optimal time-frequency resolution.

2.2. Morlet wavelet transform and wavelet power spectrum

In this section, we will give two definitions of the
continuous wavelet transform: one is related to time-
frequency atoms (3), known as MWT, the other is related to
(4), known as MMWT.

MWT of signal f(t) at time b and scale a is calculated:

W f ða; bÞ ¼ h f ; ca;bi ¼
Z þ1
�1

f ðtÞ 1ffiffiffi
a
p c�ðt � b

a
Þdt: (7)

By applying the Fourier-Parseval formula, it can be written
as a frequency integral:

W f ða; bÞ ¼ 1

2p
h f̂; ĉa;bi

¼ 1

2p

Z þ1
�1

f̂ðvÞeibv
ffiffiffi
a
p

ĉ
�
ðavÞdv;

(8)

where

ĉa;bðvÞ ¼ e�ibv
ffiffiffi
a
p

ĉðavÞ; (9)

and

ĉðvÞ ¼ ð4ps2Þ
1
4 � e�

s2 �ðv�hÞ2
2

is the Fourier transform of c. As a result of (8), the time-
frequency resolution of MWT depends on the time-
frequency spread of the wavelet atoms ca,b. Therefore,
MWT, which is an analytic wavelet transform, defines a
local time-frequency energy density PWf, which measures
the energy of f(t) in the Heisenberg box of each wavelet ca,b

centered at ðb; j ¼ h
aÞ:

PW f ða; bÞ ¼ jW f ða; bÞj2: (10)

This energy density is called Morlet power spectrum (MPS)
(or a scalogram) (Mallat, 2009; Yi et al., 2010).

Next we define MMWT as

W f ða; bÞ ¼ h f ; ca;bi ¼
Z þ1
�1

f ðtÞ1
a
c
� t � b

a

� �
dt: (11)

It can also be written as a frequency integral according
to the Fourier Parseval formula:

W f ða; bÞ ¼ 1

2p
h f̂;
bca;bi

¼ 1

2p

Z þ1
�1

f̂ðvÞeibv bc�ðavÞdv; (12)

If we modify the wavelet defined in as:c ðtÞ ¼ C � ðe�
t2

2s2 eiht

t2

2s2 e�
s2h2

2 Þ; thenĉ ðvÞ ¼ C �
ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2
p

� ðe�
s2 ðv�hÞ2

2 � e�
s2v2

2 e�
s2h2

2 Þ:
So this wavelet is admissible by calculation that ĉð0Þ ¼ 0. Further-

e, the theoretical analyses in the following part of this article for two

nitions of mother wavelet are almost the same.



H. Yi, H. Shu / C. R. Geoscience 344 (2012) 483–497486
where

bca;b ¼ e�ibv bcðavÞ; (13)

and

bcðvÞ ¼ 2 � e�
s2 ðv�hÞ2

2 (14)

is the Fourier transform of c. Then MMWT also defines a
local time-frequency energy density PW f , which measures
the energy of f(t) in the Heisenberg box of each wavelet
ca;b centered at ðb; j ¼ h

aÞ:

PW f ða; bÞ ¼ jW f ða; bÞj2: (15)

This energy density is called the modified Morlet power
spectrum (MMPS) (Shyu and Sun, 2002; Yi et al., 2010).

3. The analysis of multi-period of signals with MWT and
MMWT

In this section, several desirable properties of MMWT
compared with MWT are derived: the existence of a unique
relationship between scale and frequency; the accurate
characterization of the amplitude and the oscillation trend
of the periodic components of signal by wavelet coeffi-
cients w.r.t MMWT.

3.1. Mapping scale to frequency

It is common practice to consider the scale a as being
proportional to an inverse frequency. However, it is critical
to keep in mind that any assignment of frequency to scale
is an interpretation, and there is in fact more than one valid
interpretation. The ideal wavelet transform should make
these different interpretations consistent, such that there
is no ambiguity in assigning frequency to a given scale
(Lilly and Olhede, 2009).

There are two frequencies related to scale a, and the
first is known as the Morlet wavelet frequency, the second
as the Fourier frequency (Huang, 2004). Firstly, we can
consider the Morlet wavelet frequency v, which is related
to scale a, is equal to the frequency center h

a of the time-
frequency atom ca,b, because we can see according to
Eq. (8) that the wavelet coefficient Wf(a,b) depends on the
value f̂ðvÞ in the frequency region where the energy of ĉa;b

is concentrated and the wavelet atom ca,b is symbolically
represented by a rectangle centered at ðb; haÞ. We, thus, have
that

v ¼ h
a

(16)

defines a mapping of scale to frequency for the MWT. As for
the MMWT, we can also deduce

v ¼ h
a

(17)

in the same way as long as we notice that the time-
frequency center and time width and frequency width of
c̄a;b are the same with ca,b.

Secondly, the relation between the scale and its
equivalent Fourier frequency can be derived analytically
by substituting a wave of known frequency and calculating

the scale at which the MPS (or MMPS) reaches its
maximum (Huang, 2004; Meyers et al., 1993; Torrence
and Compo, 1998). For a cosine function of unit amplitude
and angular frequency, v0, x0(t) = cos(v0t), its Fourier
transform is

x̂0ðvÞ ¼ p � ðdðv � v0Þ þ dðv þ v0ÞÞ: (18)

Also, we can get its MWT and MMWT respectively
according to Eqs. (8) and (12):

W0ða; bÞ ¼ 1

2
ĉ
�
a;bðv0Þ ¼ 1

2
eibv0

ffiffiffi
a
p

ĉ
�
ðav0Þ; (19)

W0ða; bÞ ¼ 1

2
bc�a;bðv0Þ ¼ 1

2
eibv0

bc�ðav0Þ: (20)

Its MPS is

P0ða; bÞ ¼ jW0ða; bÞj2 ¼ ðps2

4
Þ

1
2

� a � e�s2ðav0�hÞ2 : (21)

The maximum of MPS occurs at @jP0ða;bÞj
@a

¼ 0, which yields

a ¼ sh þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2h2 þ 2

p
2sv0

(for details, see (30) and (31)). So, we can get that the
relationship for the MWT between scale a and frequency v
is

a ¼ sh þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2h2 þ 2

p
2sv

; (22)

which is related to wavelet shape parameter s. If we let
s = 1, we have

a ¼ h þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ 2

p
2v

; (23)

which is a widely used scale-to-frequency formula in the
literatures (Huang, 2004; Meyers et al., 1993; Torrence and
Compo, 1998).

As for MMWT, its MMPS according to (20) is

P0ða; bÞ ¼ jW0ða; bÞj2 ¼ 1

4
jbcðav0Þj2 ¼ e�s2ðav0�hÞ2 : (24)

The maximum of MMPS occurs at a ¼ h
v0

. So, we can get
that the relationship for the MMWT between scale a and
frequency v is

a ¼ h
v
; (25)

which is not related to wavelet shape parameter s.
From (16), (17), (22) and (25), we see that there is a

unique and unambiguous interpretation of scale as
frequency for the MMWT, while difference exists for the
MWT.

3.2. The analysis of multi-period structure of signal with MPS

Generally, observation data is a composite of linear
trend, periods, and random signal. And the periodic
components of real-life signal can be represented as a
finite Fourier series because the length of data and the
sampling frequency are finite. Without loss of generality,
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us suppose the periodic items of a time series f f ðtiÞgT
i¼1

h length T as

Þ ¼ c0 þ
XN

n¼1

cncosðvntÞ þ dnsinðvntÞ (26)

ere vn = n � 2p/T, n = 1, 2, . . ., N, and N is determined by
 sampling period. Due to the linearity of the wavelet
sform and the vanishing moments of wavelet, we have

f ðtÞ; cðtÞ > ¼
XN

n¼1

cn < cosðvntÞ; cðtÞ >

þ dn < sinðvntÞ; cðtÞ > :

we can determine the periodic components of f(t) from
 wavelet transform of f(t) provided we can characterize
 feature of the transform of sine and cosine functions.

orem 1. MPS of f(t) = C � cos(vnt) and g(t) = C � sin(vnt)
e the same value. And when v = vn and whenever b is any

e, the value obtains its maximum

C2

dt � vn
; (27)

ere dt is the sampling period, andffiffiffiffi
p
p
ðsh þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2h2 þ 2

p
Þ

4
e�s2ðshþ

ffiffiffiffiffiffiffiffiffiffiffi
s2h2þ2

p
2s �hÞ2 (28)

 constant.

of Without loss of generality, we assume that C = 1 and
 1 (in fact, dt � vn is also a frequency. For example, the

ual frequency will be 1 Hz if vn = 400 Hz and dt =
00). Then according to (19) and (21),

a; bÞ ¼ jW f ða; bÞj2 ¼ ðps2

4
Þ

1
2

� a � e�s2ðavn�hÞ2 : (29)

In the same way, we have

a; bÞ ¼ P f ða; bÞ ¼ ðps2

4
Þ

1
2

� a � e�s2ðavn�hÞ2 : (30)

In order to obtain the maximum of Pg(a,b), let
ða;bÞÞ
a ¼ 0, then we have

2

Þ
1
2

� e�s2ðavn�hÞ2 � ð2s2v2
na2 � 2s2vnha � 1Þ ¼ 0: (31)

By solving this equation, we have a ¼ shþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2h2þ2
p
2svn

, and

n the maximum of Pf(a,b) and Pg(a,b) are K � C2

dt�vn
, where

 defined as (28).
Here, we focus on Matlab generated data to illustrate
orem 1. As shown in Fig. 1, the data is a synthetic signal

length 1024. The first half contains sinusoidal signal
erimposition with three different frequencies, and
ious amplitudes, namely 0.8sin(30pt) + sin(60pt) + 1.2
(120pt). The latter half contains the 60 Hz sinusoidal

al with amplitude 0.6, namely 0.6 sin (120pt). Here,
 sampling frequency is 400 Hz. From the absolute value
oefficients of MWT, which is a function w.r.t time b and
le a, shown in Fig. 2, we can see that there are three local

and 15 Hz signals, in the first 512 sampling points. The
amplitude of the 15 Hz signal is 0.8 and is the smallest
among the three frequency components; however, its
amplitude of the absolute value of coefficients is the largest
among the three. The amplitude of the 60 Hz signal, is 1.2
and is the largest among the three frequency components’;
however, the maximum of its absolute coefficients is the
smallest among the three. At the same time, this
phenomenon can also be explained in a quantitative
way (see Table 1 for details2).

3.3. The analysis of multi-period structure of signal with

MMPS

Theorem 2. MMPS of f(t) = C � cos(vnt) and g(t) = C � sin(vnt)
have the same value. The value obtains its maximum C2, when

v = vn and whenever b is any value3.

Proof Without loss of generality, we assume that C = 1.
According to (24) and (25),

P f ða; bÞ ¼ jW f ða; bÞj2 ¼ 1

4
jbcðavnÞj2 ¼ e�s2ðavn�hÞ2 : (32)

0 200 400 600 800 1000 1200
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Fig. 1. A synthetic signal with length 1024. The first half contains

sinusoidal signal superimposition with three different frequencies,

namely 0.8 sin (30pt) + sin (60pt) + 1.2 sin (120pt). The latter half

contains the 60 Hz sinusoidal signal with amplitude 0.6, namely 0.6 sin

(120pt). Here the sampling frequency is 400 Hz.

Fig. 1. Signal synthétique de longueur 1024. La première moitié comporte

la superposition du signal sinusoı̈dal avec trois fréquences différentes.

L’autre moitié comporte le signal sinusoı̈dalde 60 Hz avec une amplitude

de 0,6. La fréquence est ici de 400 Hz.

2 The introduction of the sampling frequency is necessary when we

analyze the discrete signal. In fact, if we neglect the sampling frequency dt

in Theorem 1 or in the equation (27), some errors may be produced. For

example, in Table 1, the quantitative values of the row ‘‘the amplitude

w.r.t MWT’’ is calculated from Eq. (27), and in this calculation, dt, the

sampling time of the signal in Fig. 1 of this paper, is 1
400. It is obvious that if

the sampling time in Eq. (27) is not introduced, the corresponding values

in Table 1 will be wrong, and will contradict with Fig. 2.
3 It is not necessary to introduce the sampling time dt in Theorem 2

while it is necessary in Theorem 1, which may be another merit of MMWT
pared with MWT.
ximums, which respectively correspond to the 60, 30 com
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In the same way,

Pgða; bÞ ¼ P f ða; bÞ ¼ 1

4
jbcðavnÞj2 ¼ e�s2ðavn�hÞ2 : (33)

It is obvious that P f ða; bÞ obtains its maximum C2, when
a ¼ h

vn
.

Now, we turn to Fig. 3, the absolute value of coefficients
of MMWT of the data in Fig. 1. There are three local
maximum, which respectively correspond with the 60, 30
and 15 Hz signal, in the first 512 samples. We can clearly
see that the size of the amplitudes of these three frequency
components are consistent with the amplitudes of the
corresponding coefficients of MMWT, and this phenome-
non is also illustrated in Table 1. Therefore, we can reach
the conclusion that MMWT is suitable for identifying the
amplitudes of frequency component embedded in the data.
This is the second merit of MMWT compared with MWT.

3.4. The wavelet transform coefficients of periodic function

manifest periodic phenomenon w.r.t time variable for each

scale

Let us suppose that the periodic signal is infinitely long.
For the time series ft : ft = ft+T(t 2 Z), according to Eq. (11),

we have

W f ða; bÞ ¼ 1

a

Z þ1
�1

f ðtÞc̄�ðt � b

a
Þdt

¼ 1

a

Z þ1
�1

f ðt � TÞc̄�ðt � T � b

a
Þdt

¼ 1

a

Z þ1
�1

f ðtÞc̄�ðt � T � b

a
Þdt

¼ W f ða; b þ TÞ

(34)

Thus we can say that the wavelet coefficients are also
periodic w.r.t the time variable b (Yi and Fan, 2010).

From Eqs. (19) and (20), we can see the MWT and
MMWT of the period function x0(t) = cos(vot), are periodic
functions w.r.t time variable b with angular frequency v0,
as long as we notice that ĉ

�
ðav0Þ and

bc�ðav0Þ are real.
The property is also valid for the signal with finite

length, as long as the sampling frequency is high enough.
Therefore, by analyzing the wavelet coefficients, we can
obtain the periodicity of the signal.

3.5. The determination of the first and second periods by

wavelet variance

The wavelet variance w.r.t MWT is defined (Yi and Fan,
2010) as

VðaÞ ¼
X

b

PW f ða; bÞ ¼
X

b

jW f ða; bÞj2; (35)

which measures the energy of f(t) at scale a because each
PWf(a,b) measures the energy of f(t) in the Heisenberg box
of each wavelet ca,b centered at ðb; j ¼ h

aÞ. In the same way,
we can define the wavelet variance w.r.t MMWT as

VðaÞ ¼
X

b

PW f ða; bÞ ¼
X

b

jW f ða; bÞj2; (36)

with which we will distinguish the first, second and other
periodic components of the signal.

Fig. 2. The absolute value of coefficients of MWT of the data of Fig. 1.

Fig. 2. Valeur absolue des coefficients de MWT des données de la Fig. 1.

Table 1

The comparison of the original amplitudes of the periodic components

and the corresponding amplitudes w.r.t MWT and MMWT, where the

calculation is based on Theorems 1 and 2.

Tableau 1

Comparaison des amplitudes d’origine des composants périodiques et

amplitudes correspondentes w.r.t. MWT et MMWT, quand le calcul est

basé sur les Théorèmes 1 et 2.

15 Hz 30 Hz 60 Hz 60 Hz

The original amplitude 0.8 1 1.2 0.6

The amplitude w.r.t MWT 3.4864 3.0815 2.6148 1.8489

The amplitude w.r.t MMWT 0.8 1 1.2 0.6
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For a given signal, we have assumed the periodic items
he signal f f ðtiÞgT

i¼1 with length T as

Þ ¼ c0 þ
XN

n¼1

cncosðvntÞ þ dnsinðvntÞ (37)

ere vn = n � 2p/T, n = 1, 2, . . ., N, and N is determined by
 sampling period. We consider that the first period
ong all periodic components of the signal is the one
h the most powerful energy that is determined by the
illation amplitude and duration of the component.

, we can distinguish the first, second periodic
ponents of this signal with wavelet variance w.r.t
PS (Yi and Fan, 2010). In fact, we have the following
clusion:

orem 3. For the periodic items (37) of a signal, let us

ote the scale corresponding to the frequency vi, i = 1, 2, . . .,
y ai, i = 1, 2, . . ., N, then the wavelet variance VðaiÞ w.r.t

WT is proportional to the duration of the frequency vi,

 is also proportional to the squared amplitude of the

uency component.

of Before calculating VðaiÞ, we will make MMWT for
) = cos(vnt), and we can obtain Wg1

ða; bÞ ¼ eivnbA,

ere A ¼ e�
s2ðavn�hÞ2

2 , according to (20). And we can also

 Wg2
ða; bÞ ¼ �ieivnbA for g2(t) = sin(vnt). From Eq. (36),

 see the wavelet variance of f w.r.t MMWT is

Þ ¼
X

b

jW f ða; bÞj2 ¼
X

b

j
XN

n¼1

Aeivnbðcn � idnÞj2 (38)

ere b = t1, t2, . . ., tT. Because the scale corresponding to
 frequency vi is ai, we have ai ¼ h

vi
according to Eq. (25).

 we will calculate V(ai). When the index n of the

mation is not equal to i, the value of A ¼ e�
s2ðaivn�hÞ2

2 is
tively small and can be temporarily neglected. When

 index n of the summmation equals i, we have A = 1. So

iÞ � T � jci � idiÞj2 ¼ T � ðc2
i þ d2

i Þ.
Therefore, the wavelet variance at scale ai is propor-
al to the duration of the frequency component, and is
 proportional to the squared amplitude of the
uency component, and as a result, we can estimate

 much energy the signal with the frequency vi has by
ulating VðaiÞ. In the following part of this paper, we will

 wavelet variance w.r.t MMWT to distinguish the first
 other periods of the time series while the wavelet

iance w.r.t MWT can not achieve this goal.
In Fig. 3, the absolute value of coefficients of MMWT of a
al, physical activity is indicated at many scales, though

 signal is locally monochromatic. For example, the
. 3, has nonzero values at many scales, but there are only
ee frequency components in the data. Although there is

est’’ choice for the scale ða ¼ aiÞi¼1;2;3 in the modulus,
 nonzero correlations between the wavelets and data
duce nonzero transform values at scales away from ai.
s can lead to confusion when trying to determine which
iod is present in the data; one method for dealing with

 problem is that we can obtain all the periodic
ponents of the time series by seeking for all the

ximums of wavelet variance w.r.t MMWT instead of

distinguishing the first and second periodic components
strictly in accordance with the size of the wavelet variance
(Yi and Fan, 2010).

We can obviously observe that the first period is the
60 Hz frequency component, whose amplitude is 1.2 in the
first 512 samples and 0.6 in the latter 512 samples from the
analytical expression of the original signal. And the second,
third periods are the 30 Hz, 15 Hz components, whose
amplitude is 1, 0.8 respectively, only appearing in the first
512 samples. However, the wavelet variance w.r.t MWT of
15 Hz, is larger than the wavelet variance of 30 Hz,
according to the figure of wavelet variance w.r.t MWT in
Fig. 4. At the same time, we can identify the size of the
energy of each periodic component according to the figure
of the wavelet variance w.r.t MMWT in Fig. 4. This is the
third merit of MMWT compared with MWT.

So, in the following part of this article, we will only
analyze the signal with MMWT.

4. Multi-period analysis of temperature data

Experiments have been made for daily average
temperature measurements from January 1, 1951 to
December 31, 2010, and the experimental site is No.
50978 weather station which is geographically set in
Heilongjiang, in the Northeast of China. In geography,
Heilongjiang is located in the East of continental Eurasia.
In meteorology, Heilongjiang typically belongs to the
warm climate zone with a continental monsoon climate,
and is mainly distributed over the transition zone of east
monsoon and arid inland. Economically, Northeast China
is an important rice product base as well as a largest forest
area in China. It is known that paddy rice and forest
growth are heavily influenced by climate conditions.
Obviously, the study of climate changes is valuable for
agriculture and forest development in Northeast China.
Furthermore, these local multiple periods can be used for
creating multi-level spatiotemporal meteorological asso-
ciation rules in the system of spatiotemporal data mining
Shu et al. (2009).

4.1. Global trend analysis

Generally, data preprocessing is necessary and impor-
tant due to the nonlinear and nonstationary property of
temperature time series. For example, as claimed by
Capparelli et al. (2011), ‘‘long-term correlations can be
masked by trends that can be generated by anthropic
processes, e.g., the well-known urban warming, the
increase of concentration of gases in the atmosphere,
etc. For these effects, even uncorrelated data in the
presence of long-term trends may appear correlated,
and, on the other hand, long-term correlated data may
look like uncorrelated data influenced by a trend.’’ So,
detrended fluctuation analysis (DFA) was used to examine
and compare the long-range correlations of fluctuations of
total ozone and tropospheric brightness temperature and
to determine if they exhibit persistent long-range correla-
tions (Varotsos and Kirk-Davidoff, 2006). DFA was also
applied on springtime daily column ozone (Varotsos,
2005). Furthermore, even if the DFA is used, the DFA
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result may be affected by the method of data preproces-
sing. For example, Capparelli et al. (2011) compared the
DFA results for temperature anomalies defined in the
classical way and through the empirical mode decomposi-
tion (EMD).

On the other hand, the advantage of the wavelet
transform is that linear tendencies do not affect the
transform. In fact, the wavelet transform is blind to
lower-order polynomial behavior due to the vanishing
moments of wavelets. As for the Morlet wavelet, the
absolute value of MMWT of f(t) = 1 and f(t) = t, calculated
according to (11), is so small compared with the computer
round-off error that it is negligible as long as s2h2� 1. In
spite of the theory analyzed above, linear trend is analyzed
and removed before the identification of multi-scale time
information of the data due to the fact that temperature data

are generally a composite of a linear trend, periods, and a
random signal.

From Fig. 5, we can calculate that the temperature was
increasing over the last 60 years with an increasing rate of
0.002878C/month. Unfortunately, the linear trend is not
statistically significant, which may be caused by the 12
month period, the natural period, of the monthly
temperature data.

From Fig. 6, we see that the temperature was increasing
with an increasing rate of 0.3179 8C every ten years, which
may be caused by intensive urban development in recent
years. Moreover, the linear trend is statistically significant.
In addition, Fig. 6 depicts the presence of the quasi-
biennial oscillation (QBO) and the 11-year solar cycle in the
time-series. In fact, local climate change must respond to
the influence of global phenomena. The effect of solar cycle

Fig. 3. The absolute value of coefficients of MMWT of the data of Fig. 1.

Fig. 3. Valeur absolue des coefficients de MMWT des données de la Fig. 1.
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Fig. 4. Wavelet variance w.r.t MWT and wavelet variance w.r.t MMWT for data of Fig. 1.
Fig. 4. Variance d’ondelette w.r.t MWT et variance d’ondelette w.r.t MMWT pour les données de la Fig. 1.
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climate has also been thoroughly discussed by Varotsos
89) and Varotsos and Cracknell (2004).

 The multi-period structure of the monthly average

perature data for No. 50978 station

The data analyzed in this section are the monthly
rage temperature data, and the length of data is 720
nths, from January, 1951 to December, 2010 for No.
78 station. After the removal of the linear trend, the
WT of data is made. Fig. 7 is the contour of the real part

MMWT of temperature data. The rectangle in Fig. 7
hlights the negative and positive 12 month periodic
illation, which is also illustrated in Fig. 8. The periodic

oscillation of 12 months, which is the obvious periodic
component in the data, is so strong that other periodic
components cannot be detected with this method. Still, the
ups and downs in the ridge of 12 month, shown in Fig. 8,
indicate there exists other periodic components in the
temperature data. Therefore, the annual average tempera-
ture data, which hides the 12 month periodic component,
the natural period, will be analyzed in the following part.

4.3. The multi-period structure of the annual average

temperature data for No. 50978 station

The data analyzed in this section are the annual average
temperature data, and the length of data is 60 years, from
1951 to 2010 for No. 50978 station. The data and the trend
line are shown in Fig. 6. Still, the linear trend is removed
before MMWT of the data is done. Then the possible
periods range from 2 year to 60 year by Nyquist sampling
theorem since the sampling period is 1 year and the length
of data is 60 years (Yi and Fan, 2010). Instead of the method
proposed by Yi and Fan (2010), the scales adopted in this
experiment are determined by periods of 21+0/96, 21+1/96,
21+2/96, . . ., 21+471/96 years according to scale-to-frequency
formula (25), which means that there are 96 intermediate
scales in each octave [2j,2j+1] (Mallat, 2009). Then the
wavelet variance w.r.t MMWT of the data is shown in Fig. 9
and the periodic components embedded in the data are
obtained by seeking for all the maximums of wavelet
variance. Instead of the integer periodic components
obtained in Yi and Fan (2010), the 4.0290, 6,5357,
14.9933, 32.2319 year periods are obtained and the first,
second, . . ., fourth approximate integer periods are 4, 7, 15,
32 year according to the size of their wavelet variance. The
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Fig. 7. The contour of the real part of wavelet coefficients of the monthly

average temperature of No. 50978 station. In this figure, the coefficients

with negative values, which means the temperature is in cold stage, are

plotted with dotted, blue line. While the coefficients with positive values,

which means the temperature is in warm stage, are plotted with dashed,

red line. And so it is easily seen that the 12 month period lasts 60 cycles as

long as we notice that an interchange between warm stage and cold stage

means a cycle.

Fig. 7. Contour de la part réelle des coefficients d’ondelette de la

température moyenne mensuelle de la station 50978. Dans cette figure,

les coefficients qui ont des valeurs négatives – ce qui signifie que les

températures corréspondent à une phase froide – sont représentés par

une ligne bleue pointillée, tandis que les coefficients à valeur positive – ce

qui signifié que les températures correspondent à une phase chaude –

sont représentés par une ligne rouge tiretée. Ainsi, il est facile de constater

qu’une période de 12 mois dure 60 cycles, si l’on considère que le

changement entre phase chaude et phase froide constitue un cycle.
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rectangles in Fig. 10, the contour of the real part of MMWT
of the data, highlight the four dominant periodic oscilla-
tions. In fact, in Fig. 10, the coefficients with negative

values are plotted with dotted, blue line, which means that
the temperature is in cold stage. And the coefficients with
positive values are plotted with dashed, red line, which
means that the temperature is in warm stage. And so the
negative and positive oscillation of local time structures of
the annual average temperature, the different dominant
time scales in different time intervals, are visualized
clearly, and can be analyzed through four aspects.

First of all, it is seen from Fig. 10 that besides the four
dominant periods, the other periods are transitional
periodic components, and almost all periods are globally
apparent and undergo cold and warm interchanging time
intervals. In particular, the isolines of the negative
coefficients for almost all periods in recent years are not
closed, and this indicates that the temperature in the cold
stage may be predicted in the upcoming years for all time
scales.

Secondly, for some time intervals, it may manifest a
warm stage for a certain scale, and may manifest a cold
stage for another scale. The result is listed in Table 2.

Thirdly, we give a detailed analysis for the four
dominant periods. The first map of Fig. 11, a local part
of Fig. 10, focus on the regularly 4 year periodic
oscillations, and the second map of Fig. 11, the real part
of the wavelet coefficients of 4.0290 year periodic
component, vividly mimic the 4 year temperature

Fig. 8. The MMPS of the monthly average temperature.

Fig. 8. MMPS de la température moyenne mensuelle.

Table 2

The periodic transitions between the periods.

Tableau 2

Transitions périodiques entre les périodes.

Period (year) 4–7 15 32–54 Period (year) 4 7 11–48

1953–1955 Warm Cold Warm 1958–1959 Warm Cold Warm

Period (year) 4 6–24 28–60 Period (year) 11–15 17–32

1985–1986 Warm Cold Warm 2002–2006 Warm Cold

Period (year) 11–23 24–52

1973–1980 Warm Cold

0 4 6.5 14.9933 24 32.2319 50 60
0

200

400

600

800

1000

1200

1400

period / year

M
M

P
S

−
V

ar

Fig. 9. The wavelet variance w.r.t MMWT of the annual temperature data

for No. 50978 station.

Fig. 9. Variance d’ondelette w.r.t MMWT des données de température

annuelle pour la station 50978.
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tuation and last about 15 cycles. The minimum
ative coefficient is �6.5778 (unit: 0.18C) occurring in
9, the maximum positive coefficient 6.8375 (unit:

 8C) occurring in 19674. The comparisons between the

maximum and minimum wavelet coefficients of the four
dominant periods are listed in Table 3.

From the first map of Fig. 12, a local part of Fig. 10,
focusing on the 6.5357 year periodic oscillations, it can be
concluded that this period component lasts about nine
cycles as long as we notice that an interchange between
cold and warm takes place in a cycle in the contour map.
The second map of Fig. 12 gives us an image of periodic
fluctuation.
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10. The contour of the real part of coefficients of MMWT of the annual average temperature for No. 50978 station. In this Figure, the coefficients with

tive values are plotted with dotted, blue line, while the coefficients with positive values are plotted with dashed, red line.

10. Contour de la part réelle des coefficients de MMWT de la température moyenne annuelle pour la station 50978. Les coefficients à valeur négative

 représentés par une ligne bleue pointillée et les coefficients à valeur positive par une ligne rouge tiretée.
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fact that the quantitative depict of each period of data is given by

ng advantage of MMWT.
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The third period, the 14.9933 year periodic oscillations,
is depicted in Fig. 13. The very regular cycle oscillation is
apparent.

The fourth period, the 32.2319 year periodic oscilla-
tions, is depicted in Fig. 14. The cycle oscillations last very
regularly about 2 cycles, and the warm, cold and warm,
cold interchanges are apparent in this figure.

Unlike the Fourier periodic components such as
sinusoidal signals, which have constant amplitudes
through all the time, the amplitudes of the four dominant
periods fluctuate in a small range from time to time. We
can distinguish the most striking time intervals of periodic

time / year

pe
rio

d 
/ y

ea
r

The contour of real part of wavelet coefficients of 6.5357 year period

1951 1960 1970 1980 1990 2000 2010

5.5

6

6.5357

7

7.6

1951 1960 1970 1980 1990 2000 2010
−4.8

−4
−3
−2
−1

0
1
2
3
4

4.8

te
m

pe
ra

tu
re

 / 
0.

1 
de

gr
ee

The real part of complex wavelet coefficients of 6.5357 year period

Fig. 12. The wavelet coefficients of 6.5357 year period.

Fig. 12. Coefficients d’ondelette de période de 6,5357 ans.
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Fig. 13. The wavelet coefficients of 15.1020 year periodic components.

Fig. 13. Coefficients d’ondelette des composants à période de 15,1020 ans.

Table 3

The maximum and minimum wavelet coefficients for the four dominant

periods. The unit of wavelet coefficients is 0.18C.

Tableau 3

Coefficients d’ondelette maximum et minimum pour les quatre périodes

dominantes. L’unité utilisée pour les coefficients d’ondelette est 0,18C.

Number

of years

Minimum

coefficient

Time Maximum

coefficients

Time

4 �6.5778 1969 6.8375 1967

7 �4.2296 1969 4.0977 1989

15 �2.1422 1968 2.1341 1960
32 �1.3380 1977 1.4984 1993

oscillations by resorting to Fig. 15, the contour of MMPS of
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 annual average temperature for No. 50978 station, and
 result is listed in Table 4.

 The relationship between wavelet coefficients of the

ual average temperature and the monthly average

perature for No. 50978 station

A comparison between the real part of wavelet
fficients of 48.3480 month (4.0290 year) period,

obtained from the monthly average temperature, and of
4.0290 year period, obtained from the annual average
temperature, is given in Fig. 16, because of the fact that the
periodic oscillation of 12 month, analyzed in Section 4.2, is
the only one periodic component in the monthly average
temperature, and in Section 4.3, the first period of the
annual average temperature is 4.0290 year. It is seen that
the amplitudes and oscillation trends of two maps in
Fig. 16, are similar except that the first map is composed of
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14. The wavelet coefficients of 32.2319 year periodic components.

14. Coefficients d’ondelette des composants à période de 32,2319 ans.

15. The contour of MMPS of the annual average temperature for No. 50978 station.
15. Contour de MMPS de la température moyenne annuelle pour la station 50978.
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720 points (month) and the second 60 points (year). So it is
necessary that MMWT should be tested by removing the
12 month period and analyzing the residuals.

5. Conclusion

The multi-period analysis is important for the study of
climate change. Up until now, the efficient methods are
lacking for this work. In this regard, We make some
explorations and obtain some new findings.

Firstly, by introducing Morlet wavelets with shape
parameter, the following results are given:

	 there is a unique and unambiguous interpretation of
scale as frequency for the MMWT, while difference exists
for the MWT;
	 MMWT maintains the same amplitude between the

original frequency component and the wavelet coeffi-
cients;
	 the wavelet transform coefficients of periodic function

manifest periodic phenomenon w.r.t time variable for
each scale;
	 the wavelet variance w.r.t MMWT is proportional to the

duration of the frequency component and is also
proportional to the amplitude squared of the frequency
component. The four results are useful in multi-period
analysis of time series.

Secondly, the multi-period structure of temperature
data for No. 50978 station are analyzed. For the monthly
average temperature data, the 12 month period is so strong
that other periodic components can not be detected. For
the annual average temperature data, the 4, 7, 15, 32 year
periods are the four dominant periods and the amplitudes
of these periods are quantitatively given by wavelet
coefficients by taking advantage of MMWT. The inter-
changes between the cold and warm oscillation of
temperature are apparent in the real part of MMWT. The
temperature in the cold stage may be predicted in the
upcoming years for all time scales. In our system of
spatiotemporal data mining, these local multiple periods
can be used for creating multi-level spatiotemporal
meteorological association rules.
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Fig. 16. Relation entre coefficients d’ondelette réels de la température moyenne mensuelle et de la température moyenne annuelle pour la station 50978.

Table 4

The most striking time intervals of periodic oscillations for the four

dominant periods.

Tableau 4

Intervalles de temps des oscillations périodiques les plus marquants pour

les quatre périodes dominantes.

Period (year) 4.0290 14.9933

Time intervals 1964–1971 and 2003–2010 1954–1983

Period (year) 6.5357 32.2319

Time intervals 1961–1966 and 1981–1994 1975–2010



Gros

Guil

Hua

Issa

Laba

Laba

Lilly

Lin, 

Mal
Mey

Sara

H. Yi, H. Shu / C. R. Geoscience 344 (2012) 483–497 497
smann, A., Morlet, J., 1984. Decomposition of hardy functions into
square integrable wavelets of constant shape. Soc. Indust. Appl. Math.
15, 4093–4100.
lemain, P., Kronland-Martinet, R., Martens, B., 1991. Estimation of
spectral lines with the help of the wavelet transform: application in
the NMR spectroscopy. In: Meyer, Y. (Ed.), Research Notes in Applied
Mathematics: Wavelet and Applications. Masson-Springer-Verlag,
Paris, pp. 48–60.
ng, M., 2004. Wave parameters and functions in wavelet analysis.
Ocean Engin. 31, 111–125.
c, M., Renuka, G., Venugopal, C., 2004. Wavelet analysis of long period
oscillations in geomagnetic field over the magnetic equator. J. Atmos.
Solar Terrest. Phys. 66, 919–925.
t, D., 2005. Recent advances in wavelet analyses: Part 1 – a review of

concepts. J. Hydrol. 314, 275–288.
t, D., Ronchail, J., Guyot, J., 2005. Recent advances in wavelet anal-

yses: Part 2 – Amazon, Parana, Orinoco and Congo discharges time
scale variability. J. Hydrol. 314, 289–311.
, J., Olhede, S., 2009. Higher-order properties of analytic wavelets.
IEEE Trans. Signal Process 57, 146–160.
J., Qu, L., 2000. Feature extraction based on Morlet wavelet and its
application for mechanical fault diagnosis. J. Sound Vib. 234, 135–148.
lat, S., 2009. A wavelet tour of signal processing. Academic Press.
ers, S., Kelly, B., O’Brien, J., 1993. An introduction to wavelet analysis
in oceanography and meteorology: With application to the dispersion
of Yanai waves. Month. Weather Rev. 121, 2858–2866.
cco, G., Sessarego, J., Sageloli, J., Guillemain, P., Kronland-Martinet, R.,
et al., 1991. Extraction of modulation laws of elastic shells by the use

of the wavelet transform. In: Meyer, Y. (Ed.), Wavelets Appl. Masson-
Springer, pp. 61–68.

Saracco, G., Thouveny, N., Bourlès, D., Carcaillet, J., 2009. Extraction of
non-continuous orbital frequencies from noisy insolation data and
from palaeoproxy records of geomagnetic intensity using the phase of
continuous wavelet transforms. Geophys. J. Int. 176, 767–781.

Shu, H., Guo, K., Zhang, H., 2009. Multiscale analysis of climate data in
ChangChun, Proceedings of SPIE. Int. Soc. Opt. Eng. 7498.

Shyu, H., Sun, Y., 2002. Construction of a Morlet wavelet power spectrum.
Multidimensional Syst. Signal Process. 13, 101–111.

Torrence, C., Compo, G., 1998. A practical guide to wavelet analysis. Bull.
Am. Meteorol. Soc. 79, 61–78.

Varotsos, C., 1989. Comment on connections between the 11-year solar
cycle, the qbo and total ozone. J. Atmos. Terrest. Phys. 51, 367–370.

Varotsos, C., 2005. Power-law correlations in column ozone over
Antarctica. Int. J. Remote Sensing 26, 3333–3342.

Varotsos, C., Kirk-Davidoff, D., 2006. Long-memory processes in ozone
and temperature variations at the region 60̊S-60̊N. Atmos. Chem.
Phys. 6, 4093–4100.

Varotsos, C.A., Cracknell, A.P., 2004. New features observed in the 11-year
solar cycle. Int. J. Remote Sensing 25, 2141–2157.

Werner, R., 2008. The latitudinal ozone variability study using wavelet
analysis. J. Atmos. Solar Terrest. Phys. 70, 261–267.

Yi, H., Fan, Q., 2010. An algorithm for the determination of multi-period
structure of time series, IEEE International Conference on Information
and Automation (ICIA) 1684–1689.

Yi, H., Shu, H., Zhang, T., Fan, Q., 2010. Applications of Morlet wavelets in
time-frequency localization of signals. Math. Appl. 23, 395–400.


	The improvement of the Morlet wavelet for multi-period analysis of climate data
	1 Introduction
	2 Morlet wavelet and wavelet transform
	2.1 The Morlet wavelet with shape parameter
	2.2 Morlet wavelet transform and wavelet power spectrum

	3 The analysis of multi-period of signals with MWT and MMWT
	3.1 Mapping scale to frequency
	3.2 The analysis of multi-period structure of signal with MPS
	3.3 The analysis of multi-period structure of signal with MMPS
	3.4 The wavelet transform coefficients of periodic function manifest periodic phenomenon w.r.t time variable for each scale
	3.5 The determination of the first and second periods by wavelet variance

	4 Multi-period analysis of temperature data
	4.1 Global trend analysis
	4.2 The multi-period structure of the monthly average temperature data for No. 50978 station
	4.3 The multi-period structure of the annual average temperature data for No. 50978 station
	4.4 The relationship between wavelet coefficients of the annual average temperature and the monthly average temperature fo...

	5 Conclusion
	Acknowledgment
	References


