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dèles de nappes
´ thodes numériques itératives

efficient d’accélération
´ thode de surrelaxation
´ thode symétrique de surrelaxation
´ thode du gradient préconditionné
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A B S T R A C T

When running a groundwater flow model, a recurrent and seemingly subsidiary question

arises at the starting step of computations: what value of acceleration parameter do we

need to optimize the numerical solver? A method is proposed to provide a practical

estimate of the optimal acceleration parameter via a geostatistical analysis of the spatial

variability of the logarithm of the transmissivity field Y. The background of the approach is

illustrated on the successive over-relaxation method (SOR) used, either as a stand-alone

solver, or as a symmetric preconditioner (SSOR) to the gradient conjugate method, or as a

smoother in multigrid methods. It shows that this optimum acceleration factor is a

function of the standard deviation and the correlation length of Y. This provides an easy-

to-use heuristic procedure to estimate the acceleration factors, which could even be

incorporated in the software package. A case study illustrates the steps needed to perform

this estimation.

� 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Lors de l’exécution des modèles de nappes, l’utilisateur est invité à faire le choix d’un

solveur numérique dont le fonctionnement optimal requiert, lui-même, le choix d’un

préconditionneur. Une méthode est proposée pour que ce choix soit réalisé à partir d’une

analyse géostatistique de la variabilité spatiale du champ des transmissivités du système

aquifère. Le principe de la méthode est illustré sur la méthode itérative de la surrelaxation

(SOR) et de sa variante la méthode SSOR utilisées, soit comme méthodes de résolution, soit

comme auxiliaires de la méthode du gradient préconditionné ou de celle des méthodes

multigrilles. Les simulations réalisées mettent en évidence une variation du coefficient de

surrelaxation optimal vopt avec les paramètres caractéristiques de l’hétérogénéité du

logarithme des transmissivités. Un catalogue de courbes caractéristiques de vopt est

proposé pour que ce choix soit réalisé moyennant la donnée de l’écart-type et de la

longueur de corrélation du logarithme des transmissivités. Une illustration en est donnée

sur un exemple.

� 2012 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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. Introduction

The development of computer science has greatly
nhanced the use of numerical methods to provide
olutions of the flow equation of natural groundwater
ystems. Recent trends on groundwater models dealing
ith heterogeneity (Marsily et al., 2005) underline this
ct. Unfortunately, increasing grid resolution increases
e size of the corresponding matrix equations.
To face this problem, earlier flow solvers used the

ethod of successive over-relaxation to accelerate the
onvergence of Southwell’s original relaxation matrix
946). Nevertheless, a quick analysis shows that a
eaningful representation of the variability of the
garithmic transmissivity implies a computational re-

uirement which involves a number of finite difference
locks N on the order 104 for a two-dimensional flow and
f 106 for a three-dimensional one (Ababou et al., 1985).

That is to say that, respectively 106 and 109 iterations
re needed to reach this numerical accuracy with SOR
hose convergence grows as N3/2, whereas the conver-

ence of multigrid methods grows as N log N and involves
 � 104 and 6 � 106 iterations.

Consequently, standard numerical methods are un-
ractical in terms of time and storage to tract such matrix
izes, which is why most groundwater modelling software

 now using preconditioned conjugate gradient methods
ill, 1990) and multigrid methods (Mehl and Hill, 2001;

tüben and Klees, 2005) which can give a new use to SOR as
 preconditioner.

However, it is a matter to regret that these new solvers
re less users-friendly despite the increasing conviviality
f the current software packages and the potentialities of
e new graphical user interfaces. Currently, the context-

ensitive help given in these packages to users unfamiliar
ith groundwater modelling refers still to textbooks such

s Chiang et al. (1998).
An easy-to-use governing criterion for the selection of a

reconditioner to the flow solvers remains a sensitive
uestion for the users.

This article attempts at giving a preliminary response to
ome of these perceived weaknesses. A qualitative
eological concept is linked to a mathematical one in
rder to provide an understanding of the numerical solver

 a manner that will enable users of groundwater models
 make these choices based on their original background,

e. geology.
We will use SOR to support the illustration of this task

r four reasons:

 its simplicity allows us to give a straightforward idea on
the relationship between statistical hydrogeological
parameters and convergence issues;

 SOR is still an efficient iterative stand-alone solver for
small-size problems, as was very well shown by Ehrlich
(1981);

 SOR is an effective preconditioner for Preconditioned
Gradient (PCG) methods handling symmetric successive
over-relaxation (SSOR);

 contrary to existing belief, SOR may be a suitable
smoother (Popa, 2008) in the strategy of multigrid

dealing with moderate anisotropy (Yavneh, 1996) or for
solving 2-D Poisson equations (Zhang, 1996).

Investigating the efficiency of SOR as a stand-alone
solver, as a preconditioner and as a smoother for heteroge-
neous fields is the subject of this article. The smoothing
property is only formally examined herein. It will be
experimented in further work. In the following, Monte Carlo
simulations are performed to compute the spectral radii of
flow matrices arising in groundwater flow modelling
through multiple replications of a non-homogeneous
aquifer. These are considered as different equiprobable
realizations of a random function. Inspection of the optimal
relaxation factor of the SOR method is pursued following an
analytical determination in the homogeneous case and
through the Young formula in the heterogeneous case. Then,
variations of the optimum relaxation factor are expressed as
a function of the standard deviation of the logarithm of the
transmissivity field Y and parameterized on the correlation
lengths of this field.

2. On the flow model

In steady state conditions, the groundwater flow is
described by Poisson’s equation (Bear, 1972):

div T grad hð Þ ¼ q (1)

with appropriate boundary conditions reflecting the
prevailing hydrogeological context.

In Eq. (1) h is the dependant variable, the hydraulic
head, and T is a distributed parameter called transmissivi-
ty, whereas q is a source term. The equivalent finite
difference form of Eq. (1), derived with the centred
difference scheme, can be compacted, and expressed in
matrix notation (Golub and Van Loan, 1996) as:

Bh ¼ q (2)

where B is a square matrix called the flow matrix, h a
column matrix of unknown heads hij, and q a column
matrix involving source terms and boundary conditions.

A quick inspection of B shows that it is a real irreducibly
diagonally dominant symmetric matrix with negative
diagonal entries and non-negative off-diagonal entries.

3. Preliminary numerical considerations

3.1. On the numerical solver

When a numerical solver of Eq. (1) is selected, it needs
to be efficient for solving the set of linear algebraic Eq. (2).
Although SOR performs well for small-size problems, it
cannot efficiently solve large ones. However, it is useful to
evaluate its efficiency either as a convergence accelerator
in PCG or as an error smoother in multigrid algorithms.

3.2. Optimized relaxation

SOR may be defined from the regular splitting of the
flow matrix B:

B ¼ D � E þ Et� �
(3)
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here matrices D, and E represent the diagonal and the
ictly-lower triangular parts of matrix B, and Et is the
nspose of E.
Then the iterated heads are:

nþ1 Þ ¼ £vh nð Þ þ v D � vEð Þ�1q (4)

ith the parameter v as relaxation factor. They are
nerated with the over-relaxation matrix:

¼ D � vEð Þ�1 1 � vð ÞD þ vEt� �
(5)

hereas the iterates:

nþ1 Þ
S ¼ £GSh nð Þ þ D � Eð Þ�1q (6)

e obtained with the Gauss-Seidel matrix by letting:

S ¼ D � Eð Þ�1Et (7)

provement of the SOR with respect to the Gauss-Seidel
ethod appears strictly controlled by v since the over-
laxed heads at iteration (n + 1):

nþ1 Þ ¼ vh nþ1ð Þ
GS þ 1 � vð Þh nð Þ (8)

ay be viewed as a weighted average between the Gauss-
idel iterates and the previous iterates. These observa-
ns agree also with the corresponding block iterative

ethods (Varga, 1962). For matrices B such as B–1> 0,
ger blocks always induce a lower spectral radius and in
rn imply larger asymptotic rates of convergence than
at of the corresponding point iteration matrices.
Therefore, SOR would be a fair way to increase the

nvergence rate of the iteration matrix £v if the
laxation factor v was chosen according to Kahan’s
eorem, i.e. in the interval]0, 2[and near its optimal
lue vopt. The convergence rate may even be faster than
e convergence rate of the symmetric successive over-
laxation method (SSOR) which combines two succes-
e SOR sweeps together, one performed with the matrix

 (forward sweep), the second one with the same
atrix £v but with the roles of E and Et reversed
ackward sweep).
Practically, both convergence rates of SOR and SSOR

ay deviate from the optimum when v is greater than

pt. Then, either oscillations occur, as the head change
peatedly reverses to compensate for the overshoot, or
nvergence slows down monotically or worse becomes
generate in that the closure criterion is not satisfied
erywhere. This should be kept in mind when regarding
e choice of v, otherwise there would be little under-
nding of why one value of v performs better than
other.
For simple problems, this value of vopt could be

mputed from Young’s formula:

pt ¼
2

1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ r2 Jð Þ

p (9)

ce the spectral radius of the Jacobi matrix J is
termined (Varga, 1962). However, computing r (J) still
mains a difficult and prohibitive problem, this expres-
n is intractable. Therefore, the usual way is either to use

mine vopt or to choose an empirical value for vopt already
tested on several well-documented trials, and then to
infer its reliability. These values of vopt are often chosen so
that:

vopt ¼ 2 � 0 Dxð Þ (10)

where Dx is the mesh spacing. The term 0 (D x) accounts
for the influence of the discretization. It indicates how
close to 2 is vopt as a function of Dx. In the context of
groundwater modelling, it means that vopt should be
larger for finely discretized grids than for coarser ones.
Unfortunately, estimating vopt from rough estimates of r
(J) has drastic effects as shown by the following example
(Varga, 1962):

Let r(J) = 1–10–4 then by (9) vopt = 1.972. An estimate
v = 1.9 would reduce by seven the rate of convergence of
the iteration matrix £v.

3.3. Preconditioning for conjugate gradient

When solving (2), conjugate gradient methods are
known to yield the exact result after n iterations. In the
hypothetical context of infinite floating point precision,
this number is at most equal to the number of distinct
eigenvalues. The convergence is even faster when these
eigenvalues are clustered together. A well-known result on
convergence issue states that:

Nv �
1

2

ffiffiffiffiffiffiffiffiffiffi
g Bð Þ

p
� 1ffiffiffiffiffiffiffiffiffiffi

g Bð Þ
p

þ 1

" #m

e 0ð Þ�� �� (11)

where g(B) is the spectral condition number of B.
To reduce the norm of the error by a factor e, that is:

e mð Þ�� �� ¼ e
ffiffiffiffiffiffiffiffiffiffiffiffi
e 0ð Þk k

q
(12)

the maximum number of iterations required is:

Nv �
1

2

ffiffiffiffiffiffiffiffiffiffi
g Bð Þ

p
Log

2

3

� 	
(13)

That it is to say, Nv is bounded by a constant times the
square root of the condition number.

The complexity of the CG method is evaluated through
the number of matrix-vector multiplications, which is of
order O nz

ffiffiffiffiffiffiffiffiffiffi
g Bð Þ

p� �
whereas that for condition number g(B)

is O(n). Thus, the complexity for CG used to solve a two-
dimensional problem (2) is of order O

ffiffiffi
n3
p� �

.
According to this, CG methods should almost

always be used with a preconditioner for large scale-
applications. The resulting matrix noted M–1B should
be much better conditioned than B or its eigenvalues
should be better clustered, i.e. with less distinct ones.
Finding such preconditioners is an ongoing research
(Saad, 2000).

Following is an illustration of the improvement:

� that SOR brings to the Gauss-Seidel (GS) iterative method
when an optimal acceleration factor is used and;
� that a diagonal preconditioner effectively brings to

reduce the rate of convergence of the flow matrix

involved in the numerical experiments (Table 1).
sophisticated parameter estimation method to deter-
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.4. Smoothing in multigrids

The fundamental idea behind multigrid algorithms
tûben, 1999) is to process a sequence of relaxations —
ansfers to successively coarser grids and then to get back

 finer grids in a recursive way corresponding to what is
nown as a V-cycle. The smoother plays a key role in this
trategy. Usually it is chosen among the classical iterative
ethods provided that it satisfies a so-called smoothing

roperty. The SOR method satisfies this smoothing
roperty (Popa, 2008) for a constant a � 0 such that:

ẽ k2 � ek k2 � a r̃k k2 (14)

here ẽ ¼ h � h�, r = Bh – q = £ve and ẽ ¼ hð1Þ � h;
*stands for an approximation of the exact solution h
hereas h(1) stands for the first iterate of h.

The constant a � 0 is given by:

 ¼ v 2 � vð Þ
1 þ d� Bð Þð Þ 1 þ dþ Bð Þð Þ (15)

here:

� ¼ max
1 � i � n

X
j < i

bi; j



 


bi; ib j; j

; dþ max
1 � i � n

X
j > i

bi; j



 


bi; ib j; j

The aim of relaxation is to smooth errors rather than to
educe them. Many relaxation schemes have this smooth-

g property, i.e. filtering the oscillatory Fourier modes and
amping the smooth ones. Coarsening lets these modes
ppear more oscillatory. Thus, on coarser grids, relaxation
ill be more effective on these modes.

Although using a relaxation parameter may improve
e smoothing property, it has been carefully avoided

ecause the V-cycle does not appear to be sensitive to
cceleration for the Laplace operator. In fact, an efficient
se of a relaxation parameter in a V-cycle should be
erformed under-relaxation during the first cycle and
ver-relaxation during the second one. This cross-use of
nder-relaxation and over-relaxation avoids smoothing to

deteriorate and may induce a slight improvement in the
smoothing properties (Zhang, 1996). Thus, a SOR smoother
as presented in Eq. (8) may improve the Gauss-Seidel
smother (6) although it is quite sensitive to the choice of v.
The storage requirement of a V-cycle is on the order of that
of the fine grid. It increases only linearly with the problem
size. The computational cost for obtaining a solution
whose error is on the order of the discretization error is
O(n2Log n).

This is clearly much better than that required by
standard iterative methods.

Further, statistical results are provided through Monte
Carlo simulations.

4. Monte Carlo simulations and the transmissivity
geostatistical model

The geostatistical terminology characterizes the trans-
missivity as a regionalized variable which may be
described by a small number of statistical parameters
(Gehlar, 1993). Usually, the mean, the variance and the
correlation length are sufficient to represent such vari-
ables. The aforementioned characterization is enhanced by
using the consensual lognormal probability density
function (pdf) Y = Log T (Gehlar, 1993).

The geostatistical model of heterogeneities is thus
summarized by the pdf of Y and its autocovariance
function, both used to infer how the values of Y correlate
in space and to represent the spatial continuity in the
distribution of Y. The exponential autocovariance model is
adopted here, although several others well-established
models allow a comparable level of flexibility (Gehlar,
1993):

C xð Þ ¼ s2
Y exp �aY xj jð Þ (16)

where aY = 1/lY is the correlation coefficient and xt = [x y].
According to (16), the correlation length scale lY is the

distance at which the autocorrelation function C=s2
Y takes

a value of e�1.

able 1

fluence of the space increment on the spectral characteristics of the flow matrix (B), the Jacobi matrix (J) and the preconditioned flow matrix (D�1B).

ableau 1

fluence du pas d’espace sur les caractéristiques spectrales de la matrice B, de la matrice de Jacobi (J) et de la matrice préconditionnée (D�1B).

M 6 9 14 24 31 36

r(B) 7.604 7.804 7.913 7.968 7981 7.990

7.604

g(B) 19.80 39.86 90.52 252.6 414.3 1053

19.20ffiffiffiffiffiffiffi
g Bð Þ
p

�1ffiffiffiffiffiffiffiffiffiffi
g� Bð Þ
p

þ1
0.63 0.73 0.81 0.88 0.91 0.94

0.63

r(J) 0.901 0.951 0.978 0.992 0.995 0.998

0.901

vo pt 1.395 1.528 1.655 1.776 1.818 1.881

1.395

r(D�1B) 1.901 1.951 1.978 1.992 1.995 1.997

1.901

g(D�1B) 19.80 39.82 89.92 248.99 399.0 991.0

19.20ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g D�1Bð Þ

p
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

g D�1Bð Þ
p

þ1
0.63 0.73 0.81 0.88 0.90 0.94

0.63
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Defined in this way, heterogeneity and correlation
gths are such that:

a low variability occurs within one correlation length;
an estimated value of Y within one correlation length
fluctuates less and varies less than over several correla-
tion lengths.

Long correlation length (i.e. small aY) will represent low
terogeneity for Y whereas shorter correlation length (i.e.
ger aY) will express higher heterogeneity for Y. Such a

presentation of Y has greatly stimulated the develop-
ent of techniques to generate synthetic equiprobable Y-
lds with prescribed geostatistical properties. An up-to-
te improvement of such random field generators is
scribed by Fenton (1990).
Monte Carlo simulations are used successively with

. (3) and such synthetic matrices B in view to examine
e variations of the over-relaxation coefficient v as a
nction of the heterogeneities of the log T field.

 Numerical experiments

The numerical experiments were performed on a non-
mensional form of Eq. (1):

0 T
@h0

@x0

� 	
þ @

@y0
T
@h0

@y0

� 	
¼ q0 (17a)

¼ x=L ; y0 ¼ y=Lx0 ¼ x=L

¼ h=H ; q0 ¼ q=Th ; T 0 ¼ T=EðTÞ (17b)

here L is a characteristic length of the flow domain, H a
escribed head and E(T) an expected value of T.

The associated boundary conditions are:

ðx0; 1Þ ¼ 1

ðx0; 0Þ ¼ 0

ð0; y0Þ ¼ 1

ð0; y0Þ ¼ 1

9>>>=
>>>;

(17c)

The homogeneous case is the starting point of the
merical experiments performed with Eqs. (17). Then,
e impact of the heterogeneity of the Y-fields on the
timum relaxation factor is explored by varying both the
lues of the standard deviation sY and the correlation
efficient aY. The chosen values are typical of slowly
riable fields. In this case, sY are taking values in the
terval [0.0, 2.0] incremented by 0.2, whereas 0 � aY� 1
r correlated fields. Uncorrelated fields are generated
ith a ! 1 corresponding to a correlation length scale
= 0.

. Homogeneous fields

The only case where the evaluation of the optimum
laxation factor can be made directly is the one dealing
ith a rectangular grid domain (p, q). It allows one to verify
e algorithms used for the numerical computations of r

analytical formula which takes the form:

rðBÞ ¼ 8cos2 ðp=2ðM þ 1ÞÞÞ (18)

for a square domain. In this expression, M is the number of
equal subdivisions in the x and y directions. Therefore, the
spectral radius of the Jacobi matrix can be obtained from
that of B according to:

J ¼ I � D�1B (19a)

rðJÞ ¼ cos ðp=2ðM þ 1ÞÞ (19b)

The analytical expression of the optimal acceleration
parameter derived with this value of

r (J) reduces to:

vopt ¼ 2 1 þ sinðp=M þ 1Þ½ 	�1

So far, the numerical results for N = 6 agree with those
obtained with the expressions (18), (19b) and (20)
reported in column 2 of Table 1. For the other space
increments, the values of the spectral radii r(B), r(J) and
the associated vopt are just computed to infer their
behavior with respect to N.

The optimum relaxation factor appears to increase
when the mesh size decreases, in agreement with the
expressions (10) and (20). Indeed, it lies in the inter-
val]0,2[.

The above result may be illustrated once again by
examining the performance of SOR. Let NIT be the number
of iterations measured to reach the precision e = 10–8

satisfying the closure criterion and Vv the asymptotic rate
of convergence, then since:

rNe ¼ e i:e: Ne ¼ � 1

Vv
Log e

The product V � NIT should be near –Log e = 18.42
whenever v 6¼ vopt. The results are presented in Table 2.
Only the row corresponding to v = vopt differs, since for
vopt = 1.39 the value of Vv� NIT (24.15) is greater than –
Log e.

5.2. Heterogeneous fields

In all the other cases but the last one, the spectral radius
r (B) is unknown. Then, the optimum relaxation factor vopt

should be determined from Young’s relationship via the
determination of r (J).

Table 2

Numerical performances of SOR for different values of the over-relaxation

coefficient for uniform flow.

Tableau 2

Performances numériques de SOR pour différentes valeurs du coefficient

de surrelaxation.

v rv Vv 1/Vv NIT Vv� NIT % 1/Vv % NIT

1.00 0.8118 0.2085 4.7960 76 15.85 4.45 4.00

1.30 0.6288 0.4639 2.1556 38 17.63 2.02 2.00

1.35 0.5612 0.5776 1.7313 32 18.48 1.61 1.68
.39 0.3950 0.9289 1.0766 26 24.15 1. 1.37

) and r (J). The spectral radius of B is given by an

1
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In the following application, the determination of the
pectral radius is performed with Matlab. To perform these
omputations, matrix B is given with entries generated by

e LLt decomposition scheme. Fig. 1 depicts the results for
ome of the Monte Carlo simulations of these autocorre-
ted fields. They summarize the influences of both the

tandard deviation, sY and the correlation length lY on vopt.

. Results

Fig. 2 describes the variation of vopt with the standard
eviation and the correlation length, compared to the one
omputed for the homogeneous field N(0; 0.0, 2.0). Only a
w values of vopt, typical of some realizations of the

andom function Y, are extracted from the population N(0;

Y, lY). The CPU time needed to solve Eqs. (17) with the
ptimized SOR method is increasing with the standard
eviation sY.

Overestimation of vopt of a given amount increases the
PU time less than an underestimation of v by a same
mount. This behaviour is re-enforced when sY increases.
his variation of vopt anticipates its evolution shown on
ig. 3 where it can be seen that vopt increases when
eterogeneity sY increases. For the simulated heteroge-
eous fields, the optimal over-relaxation factor lies
etween 1.397 and 1.707.

On the contrary, the correlation length of Y acts in the
pposite direction than the standard deviation sY. An
crease of heterogeneity due to a decrease of the

heterogeneous and strongly correlated fields (0.5 � lY� 0.9),
vopt varies much less with the correlation length. For
uncorrelated fields, vopt varies much more with sY than for
correlated fields.

Fig. 4 displays the error-bars associated with the
experimental results of Fig. 3. It shows an increase of

ig. 1. Effect of the correlation length on the log T field (a) N (0, 0.2, 01) (b) N (0, 0.2, 09).

ig. 1. Effet de la longueur de corrélation sur le champ de log T (a) N (0, 0.2, 01) (b) N (0, 0.2, 09).

Fig. 2. Influence of the over-relaxation on the CPU time.
ig. 2. Influence de la surrelaxation sur le temps CPU.
orrelation length increases the values of vopt. For weakly F
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e spread on the estimates vopt around the mean value
hen the standard deviation sY increases. This spread
creases as the correlation length decreases (Fig. 5). This
ger spread is due to the larger dispersion of the spectral

dius observed when sY increases. It would be smaller if a

greater number of realizations had been used in the
numerical experiments.

6.1. Influence of the sample size

The recurrent critical question addressed by Monte
Carlo sampling deals with the number of realizations

. 3. Influence of the standard deviation on the optimum coefficient of

er-relaxation.

. 3. Influence de la déviation standard sur le coefficient de surrelaxation.

. 4. Error bar on the optimum over-relaxation factor for different correlation lengths.

Fig. 5. Influence of the standard deviation of Y on the standard deviation

of vopt for different correlation lengths.

Fig. 5. Influence de la déviation standard de Y sur la déviation standard de

vopt pour différentes longueurs de corrélation.
. 4. Intervalle de variation du coefficient de surrelaxation optimal pour différentes valeurs de la longueur de corrélation.
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equired to obtain a reliable estimate of the optimal over-
elaxation factor. This number is likely to depend on the
roblem and on the heterogeneities incorporated into the
odel. A general rule often used is to reach ergodicity by

erforming computations until some ensemble statistics
o not significantly change. Then, a consensual rule-of-
umb is to stop the simulations when the standard error

f the mean, sv=
ffiffiffiffiffiffiffi
NR
p

, is less than 1%. With NR = 200 runs,
is rule implies sv� 0.14.
A Latin Hypercube sampling would achieve the same

egree of accuracy with much less trial runs than the
onventional Monte Carlo sampling used here. Neverthe-
ss, the dependence of the standard deviations of the
ptimal over-relaxation factor on the standard deviation of Y

ig. 6) confirms the dependence of NR on the heterogeneity
f the Y field. Fortunately, additional computations made
ith 300 and 400 realizations do not really change the

esults obtained with NR = 200. Table 3 reports the values of
e optimum over-relaxation coefficient computed for some

transmissivity fields. They confirm the good stability of the
statistics made on vopt since the ratio of the asymptotic
convergence rates R=Vv/V200 is not very sensitive to the
sample size and is stable around 1.25.

6.2. Influence of the mesh size

There is no significant difference with respect to the
observations already made for the homogeneous field: a
slowly increasing shape of the spectral radius r (J) with the
grid resolution induces an increase of vopt (Fig. 7). This
increment seems linear for homogeneous fields while it
deviates from a linear shape once heterogeneities are
incorporated in the model (8). This deviation seems minor
since a least-squared straight line might still be drawn if
more data were provided.

6.3. Functional relationship

The optimal over-relaxation coefficient vopt appears as
being a function of the standard deviation sY, of the
correlation length lY and of the mesh size a = Dx. For a given
configuration of the mesh, this function may be approxi-
mated by a polynomial expression of the 5th degree in sY:

vo pt ¼ ðsy; ly; Dx ¼ aÞ ¼
X5

i¼1

piðlyÞs5�i
y (21)

whose coefficients pi are a function of the correlation
length. The discrete values of these functions are given in
Table 4 for sY increasing from 0 to 0.9. The influence of the
mesh size may even be incorporated in the expressions of
pi as a mixed-polynomial in lY and Dx.

6.4. SSOR as a preconditioner

The performance of the preconditioned conjugate
gradient method depending heavily on the preconditioner
and in turn on the condition number, a comparison was
made for increasing heterogeneities. Two preconditioners
are tested: Jacobi and Evans (SSOR).

Fig. 8 shows the variations of the condition numbers of
the corresponding preconditioned matrices. The data are
those of the uncorrelated field since the influence of the
standard deviation sY, of the correlation length lY and of the
mesh size a = Dx are already known.

The condition number of the SSOR preconditioner is
smaller than for the Jacobi preconditioners. Fig. 8 shows
the efficiency of SSOR as the standard deviation of Y

increases. Hence, as could be expected, once an optimal
value for v is available, the SSOR preconditioner provides a
faster rate of convergence than the Jacobi preconditioner.
The number of iterations is thus reduced. As mentioned
earlier, SSOR is given in a factored form, so since it is given
a priori, there is no possibility of breakdown as in the phase
of construction in the incomplete factorisation methods.

On Fig. 9, the flow model represented by Eq. (17) is solved
successively with PCG, preconditioned with SSOR and with
optimized SOR. The improvement that SSOR brings to the
conjugate gradient method is much more important than
optimizing the SOR used as a stand-alone solver.

ig. 6. Influence of the number of realizations on the optimum over-

laxation factor.

ig. 6. Influence du nombre de réalisations sur le coefficient de

rrelaxation optimal.

able 3

fluence of the number of realizations on the mean optimum over-

laxation coefficient (sY = 0.1;0.3 lY = 0.5;0.7).

ableau 3

fluence du nombre de réalisations sur le coefficient de surrelaxation

ptimal moyen (sY = 0.1;0.3 lY = 0.5;0.7).

Number of realizations

30 50 100 200 300 400 500

v25 1.396 1.396 1.397 1.396 1.396 1.396 1.396

Vv 0.926 0.926 0.924 0.926 0.926 0.926 0.926

R 1 1 0.998 1 1 1

v29 1.394 1.394 1.396 1.395 1.395 1.394 1.394

Vv 0.931 0.931 0.926 0.929 0.929 0.931 0.931

R 1.002 1.002 0.997 1. 1.002 1.002

v155 1.458 1.479 1.479 1.466 1.466 1.471 1.469

Vv 0.781 0.736 0.736 0.764 0.764 0.753 0.757

R 1.022 0.963 0.963 1. 0.986 0.991

v159 1.414 1.429 1.434 1.424 1.424 1.424 1.422

Vv 0.881 0.846 0.835 0.858 0.858 0.858 0.863

R 0.974 0.986 0.973 1. 1. 1.001
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. SOR as a smoother

Early applications of SOR as a smoother in a multigrid
rategy did not discriminate between low and high-
quency modes although restriction and interpolation

 not affect them in the same way. Thus, the gain in one
lf cycle of the V-cycle is lost in the second one.
cording to the value of the over-relaxation coefficient

 the reduction factor m accelerates either the reduction
 the low-frequency errors or the reduction of the high-
quency ones.
Following Zhang (1996), under-relaxation with values

 v between [2/3,1] accelerates the reduction of the

low-frequency errors, and over-relaxation with values of
v between [1,5/4] accelerates the reduction of the high-
frequency errors. Our results show a link between v and
sY i.e. between m and sY which makes us believe that

. 7. Effect of grid spacing on the optimum over-relaxation factor (homogeneous and heterogeneous Y-fields).

. 7. Effet du pas d’espace sur le coefficient de surrelaxation optimal (cas homogène et cas hétérogène).

ble 4

efficients of the functional relationship of vopt.

bleau 4

efficients de la relation fonctionnelle de vopt.

y p1 p2 p3 p4 p5

. 0.04483 �0.2418 0.4169 �0.07128 1.4

.1 0.03713 �0.2054 0.3641 �0.0625 1.4

.3 0.008414 �0.06146 0.144 �0.02676 1.397

.5 �0.003455 �0.0005301 0.04549 �0.008926 1.396

.7 �0.00306 0.02592 0.02592 �0.01034 1.396
Fig. 8. Comparative shape of Evans and Jacobi preconditioners.

Fig. 8. Evolution comparée des préconditionnements d’Evans et de
.9 �0.004023 0.01313 0.005726 �0.005724 1.396
Jacobi.
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OR may be a suitable smoother in the smoothing
trategy of multigrid applied to weak heterogeneity.

. Application

Due to the importance of good estimates of vopt on the
erformance of the numerical solver SOR, we attempted to
ilor an available groundwater flow model to this
dividual need by modifying and adding menus to the

ser main menu. The programs that we added incorporate
ATAPREP to read data used by PREVAR to pre-process
ARIO which is a variogram analysis and modelling
rogram of the US-EPA (Englund and Sparks, 1991). This
ackage provides the parameters sY and lY of the field. Then
ig. 2 allows the evaluation of the correct optimum
elaxation factor as a function of these values. In fact, we
ave to deal with sY and lY, which concern the gridded data.
o, it would be better to use KRIGE after VARIO to produce
e sample of input data, then to run PREVAR and VARIO

nce again to get the ad hoc sY and lY to estimate vopt.
The above protocol has been used to estimate the

ptimal over-relaxation factor of the groundwater model
f the Land aquifer of Mostaganem, Algeria (Benali et al.,
008) (Fig. 10).

.1. Case study

The routines involve:

 estimating the omnidirectionnal variogram of the fitted
log T field;

 rescaling the parameters of the variogram to provide sY

and lY to infer the optimum relaxation factor;
 extrapolating the experimental curve vopt via a prelimi-
nary fitting process;

 taking into account the influence of the mesh size.

The value of vopt obtained in this way is equal to 1.93,
hich is relatively different from the value of 1.85

btained with experimental trials. This difference may

be due to the inadequate characterization of Y, even if the
experimental variogram can be fitted by an exponential
function. Moreover, much of the uncertainty is induced by
the extrapolation process.

8. Conclusion

The optimum value of the over-relaxation factor v for
the best convergence rate of SOR lies between 1 and 2 and
is commonly between 1.6 and 1.9 (Trescott et al., 1980). In
heterogeneous fields, this optimum over-relaxation factor
should be chosen greater than the ones used in less
heterogeneous fields.

The correlation length of Y, the log-tranmissivity field,
strengthens this fact, since a short correlation length is
symptomatic of a high heterogeneity and a long correlation
length of a low heterogeneity. The standard deviation sY as
well as the correlation length lY and the mesh spacing Dx

appear as the controlling factors for estimating the over-
relaxation coefficient.

According to the heuristic estimate used in Eq. (10), the
optimal over-relaxation factor vopt may be estimated by
the expression:

vo pt ¼ 2 � 0ðDx0; s�1
Y ; lY ÞÞ (22)

where the term 0ðDx0; s�1
Y ; lY Þ accounts for the influences

of:

� the mesh size Dx0;
� the standard-deviation sY; and
� the correlation length lY of the distribution Y.

This expression is shown on Fig. 2 as a family of curves
vðDx0; s�1

Y ; lY Þ parameterized on lY for the particular case
Dx ¼ a ¼ 0:2. A functional relationship expresses these
curves as a polynomial of the 5th degree of the standard-
deviation sY.

The reliability of SSOR and diagonal preconditioners
were experimented for increasing values of the

ig. 9. Comparative rate of PCG (Evans) and SOR optimized.

ig. 9. Evolution comparée des vitesses de PCG (Evans) et SOR optimisée.

Fig. 10. Variogram of the logarithmic transmissivities of the Land aquifer

of Mostaganem: y xð Þ ¼ 0:6 þ 1:57 1 � exp �3 x
12

� �� �
.

Fig. 10. Variogramme de log T de la nappe du plateau de Mostaganem.
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andard-deviation sY. SSOR is quite sensitive to v but
rforms better than the other methods if a correct value

 v is chosen. The Jacobi method, although slightly less
ficient, is quite robust with respect to increasing values
 sY. An analysis of the spatial variability of Y can
ovide the parameters sY and lY which in turn will
sign a narrow interval to infer reliability of vopt from
g. 3, for a given size of the mesh. Moreover, only the
wer half interval was investigated since overestimates
 vopt, i.e. vopt� v, have a lower negative impact on the
ficiency of over-relaxation than underestimates. Then,
 the spirit of equation (22), the following guidelines
ay be given to over-relax the heads with the SOR
ethod: greater values of vopt should be selected when:

the porous medium is more heterogeneous;
the Y-field is less correlated and;
the grid is finer.

Thus, a preliminary geostatistical study to evaluate the
atial variability of Y would be a convenient and judicious
ay to get a rough estimate of vopt as it did to identify
nsmissivity (Roth et al., 1998). Therefore, it would be
lpful to have an algorithm that assigns values to vopt

ding to an improved practical use of SOR either as an
timized solver or as a preconditioner for others iterative
ethods via a forward SOR sweep followed by a backward
R sweep. Such an algorithm is relevant to expert systems
d is presently beyond the state of the art in groundwater
odelling. The case study showed here that relatively
expensive rough geostatistical estimates of sYand lY can
eld reasonable estimates for the optimal value of the over-
laxation factor v. The above procedure, together with
corporating Latin Hypercube Sampling into existing
onte Carlo simulation software, can be extend to other
rative and optimisation methods. The formal investiga-
n made here on the smoothing property of SOR suggests a
omising way to improve both Gauss-Seidel and Jacobi
oothers.
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