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Correlation Analysis is used for making MME (referred as Multi Model Canonical
Presented by Michel Petit Correlation Analysis or MMCCA) for the prediction of Indian summer monsoon rainfall
(ISMR) during June-July-August-September (JJAS). This method has been employed on the
rainfall outputs of six different GCMs for the period 1982 to 2008. The prediction skill of

{;egggrgjmmer Monsoon Rainfall (ISMR) ISMR by MMCCA is compared with the simple composite method (SCM) (i.e. arithmetic
Prediction mean of all GCMs), which is taken as a benchmark. After a rigorous analysis through
Canonical Correlation Analysis (CCA) different skill metrics such as correlation coefficient and index of agreement, the
Simple Composite Method (SCM) superiority of MMCCA over SCM is illustrated. Performance of both models is also
Extreme years evaluated during six typical monsoon years and the results indicate the potential of
MMCCA over SCM in capturing the spatial pattern during extreme years.
© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
RESUME
Mots clés : Les avancées émergentes des tout derniers modéles de circulation générale (GCMs)
ISMAR (pluviosité de mousson d'été conduisent au développement de différentes techniques d’ensemble multimodéle (MMEs)
i)n‘ﬂije_“?e) pour la prévision de la pluviosité de mousson d’été en Inde. Dans I’étude abordée ici, le
rediction

concept d’analyse de corrélation canonique, référencée comme analyse de corrélation
canonique multimodéle (MMCCA), est utilisé. A ce propos, six groupes de résultats calculés
a partir du modéle GCM pour la pluie, avec comme valeurs initiales celles du mois de mai,
pour une simulation juin-juillet-aotit-septembre (JJAS) sont disponibles. La capacité de
prédiction de la pluviosité de mousson d’été dans le modéle MMCCA est comparée a celle
d’un simple ensemble multimodéle pris comme référence. Aprés une analyse approfondie,
grace au coefficient de corrélation et a I'index d’accord, la supériorité de MMCCA sur MME
est avérée. La performance des deux modéles est aussi évaluée au cours de six années de
mousson typique et les résultats indiquent le potentiel de MMCCA par rapport a MMC dans
la saisie de la configuration spatiale pendant les années extrémes.
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1. Introduction

The summer monsoon over India during the months of
June, July, August and September (JJAS) is making the
major contribution (80%) to the annual rainfall; therefore,
this analysis is conducted for the summer monsoon season.
As the primary source of water for agricultural production
and water resource management, the prediction of Indian
Summer Monsoon Rainfall (ISMR) is of great concern as it
can affect the economy of the country. After the pioneer
work by Sir Gilbert Walker (1923), many attempts have
been made for the development of new statistical models
(Acharya et al., 2011a; Gowariker et al., 1989; Rajeevan
and McPhaden, 2004; Rajeevan et al, 2007). These
statistical/empirical models are based on the teleconnec-
tion of ISMR with several atmospheric parameters like the
Nifilo 3.4 Sea Surface Temperature (SST) anomaly, the
North Atlantic surface pressure anomaly, the Equatorial
Indian Ocean SST anomaly, etc. In recent times, the
predictability of such models is limited as the relationship
between ISMR and most of the atmospheric variables are
weaker (Kumar et al., 1999).

Another alternative is the dynamical model which
provides the summer monsoon rainfall prediction using
coupled ocean-atmosphere or atmosphere general circu-
lation models (GCMs). These models have been improved a
lot in recent decades, which opens a hope in the field of
ISMR prediction. The dynamical models also have limited
skills, due to a large systematic bias which comes from the
internal variability of the models (Kang et al., 2004). These
GCMs are critically analyzed in terms of the predictability
of rainfall over the Indian domain (Acharya et al., 2011a;
Kang et al., 2004; Kumar et al., 2005; Singh et al., 2012a).
They found that the proficiency of these GCMs is not
satisfactory for the prediction of Indian monsoon rainfall.
The uncertainties and limitations in GCMs produce the
importance of a statistical post-processing which may
improve the performance of GCMs. Due to the availability
of a number of GCMs, several techniques are available for
the multi model ensemble (MME) forecast (Acharya et al.,
2011b; Krishnamurti et al., 2000, 2006; Nair et al., 2012;
Sahai et al., 2008; Singh et al., 2012b). Simplest of all MMEs
is the simple composite method (SCM) which is a simple
arithmetic mean of all GCMs and proved better than the
skill of individual models. The lucidity behind the success
of such MME techniques in seasonal forecast is described
in detail in Hagedorn et al. (2005). Therefore, a more
sophisticated statistical technique is always needed to
obtain a better combination of the multi model outputs.

Recently, the Canonical Correlation Analysis (CCA) has
been used as a sophisticated statistical model for predicting
ISMR. In CCA the original set of variables is transformed into
a new set of variables having maximum linear relationship
between them (Wilks, 1995), and it is one of the
sophisticated statistical techniques. These new sets of
variables are independent between them, due to the
orthogonality property. This property of CCA has been
widely used in the field of rainfall prediction using the
atmospheric variables which project the spatial pattern of
the predictand on the predictor (Barnston and Smith, 1996;
Yuetal, 1997). On the other hand, the analysis has also been

applied on GCM outputs in various studies (Landman et al.,
2005; Lim et al., 2011; Tippett et al., 2005). Tippett et al.
(2005) applied the CCA on each of the GCM output to correct
the model forecast in terms of hindcast skill. However, here
these GCMs are at a very low resolution that should be
downscaled at the domain of interest. The present study
uses CCA on the atmospheric variables predicted by several
GCMs for improved MME schemes.

The concept of CCA is also used over the Indian domain
for the development of a statistical model (Prasad and
Singh, 1996). In a recent study, the CCA is applied on
individual GCM outputs for rainfall and the post-processed
outputs of each GCM are then combined at Indian grid
points (Singh et al., 2012b). The skillfulness was found to
be better as compared to SCM, i.e. the arithmetic mean of
all GCMs. The present study is an extension of the work of
Singh et al. (2012b) in which a new MME technique using
CCA is developed for ISMR prediction. In the present study,
the probabilistic prediction skill, as well as the perfor-
mance of the prediction model during individual extreme
years, is analyzed in details, which were not explored in
the previous study.

Therefore, in view of the above studies highlighting the
importance of CCA for the development of MME, the
present study undertakes the following three major
objectives as defined now:

o the main objective of the present study is to apply a new
sophisticated multi model ensemble using CCA
(MMCCA) to develop a prediction scheme for monsoon
rainfall. The performance of MMCCA is then compared
with the simple composite method (SCM);

o the probabilistic skill of the two schemes is examined
and compared for the prediction ISMR;

o the skill of the two prediction schemes (i.e. SCM and
MMCCA) is also examined critically during the Indian
monsoon extreme years.

In view of the above-defined objectives, the entire study
is separated in subsequent sections. Section 2 deals with
the detailed description regarding data sets and the
methodology used to develop the prediction model.
Section 3 discusses the outcomes of the study in detail.
Finally, the entire study is concluded in view of the major
findings of the study in the last section of the article.

2. Data description, the prediction schemes, and skill
metrics

2.1. Data

The observed rainfall data for the specified season (JJAS)
is obtained from the India Meteorological Department
(IMD) starting from 1982 to 2008. The data setisat 1° x 1°
latitude-longitude grid boxes on the landmass, which are
based on the 2140 rain gauge stations (Rajeevan et al.,
2006). This observed data is used for the development of
prediction models as well as for the verification purpose.
On the other hand, rainfall values over the extended
domain excluding Indian grid points (10°S to 50°N and
50°E to 120°E) are obtained from CPC (Climate Prediction
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Centre) Merged Analysis of Precipitation (CMAP) estimat-
ed precipitation (Xie and Arkin, 1995). This data is merged
with IMD data in order to obtain the predictand values over
the extended domain covering all the monsoon features
following Singh et al. (2012b).

Among the six GCMs used in the study, five are the
products of data from the International Research Institute
for Climate and Society (IRI), Columbia University, USA and
remaining models are from the National Center for
Environmental Prediction (NCEP).

The coupled models from IRI are the ECHAM4.5GML
(referred to GML), ECHAM4.5MOM3AC1 (referred to
MOM3AC) and ECHAM4.5MOM3DC2 (referred to
MOM3DC). ECHAM4.5-GML is a slab-ocean mixed layer
model having ECHAMA4.5 as an atmospheric component,
which is coupled to a slab-ocean mixed layer model, with
CFS-predicted SSTs prescribed over the tropical Pacific basin.
The other two fully coupled models are the ECHAM4.5MO-
M3AC1 and ECHAM4.5MOM3DC2, which are having the
same atmospheric (ECHAMA4.5) and oceanic components
(Modular Ocean Model, version 3), while the first is anomaly
coupled and the other is directly coupled. Both atmospheric
models are the product of IRI having ECHAMA4.5 as
atmospheric GCM, which is forced with constructed analog
SST in ECHAM4.5casst (referred to ECHcasst) and with CFS-
predicted SST in ECAHMA4.5cfssst (ECHcfssst). The Climate
Forecast System version 1 coupled model of NCEP is also
used in the analysis (referred to CFS). The model configura-
tion and literature review are described by Acharya et al.
(2011a) and Singh et al. (2012a). Table 1 gives a brief
summary of each GCM including references from the
relevant literature. These GCM outputs are extracted for
the lead 1 forecast of rainfall for JJAS (that is, May start JJAS)
for the common period of 27 years (1982-2008).

2.2. Prediction schemes

The GCM outputs used in this study are at very low
resolution as compared to the observation. Therefore,
these GCMs should go through the refined statistical
processes to downscale at Indian grid points in view of the
removal of inherent systematic bias. The other important
aspect is to obtain a robust forecast by the combination of
these GCMs. Therefore, in view of the objective two MME

techniques are applied. In one of the simplest way, the
GCM'’s output is subjected to a bilinear interpolation at
Indian grid points (1° x 1° latitude-longitude); the equally
weighted multi model ensemble is then prepared. The
technique is well known as the simple composite method
(SCM). Another approach used for multi model ensemble is
the Multi Model Canonical Correlation Analysis (MMCCA).
In this technique the concept of CCA is used for
downscaling and combining the GCM outputs over Indian
grid points. CCA is a multivariate statistical technique in
which the observed spatial (temporal) pattern is projected
on the GCM spatial (temporal) pattern. In the present
study, the temporal coefficients of the truncated empirical
orthogonal function (EOF) known as principal component
time series are obtained which are concatenated to obtain
a single predictor matrix. This predictor matrix explains
the maximum inherent spatial variability in the GCMs. The
newly transformed predictor matrix enters in the CCA. The
major steps followed for the multi model combination of
GCMs are now listed:

o leading principal components (PC) (temporal coefficients
of EOFs) corresponding to each of the GCM (mainly 8 to 9
EOFs) output for rainfall are obtained;

e a new predictor matrix is obtained by concatenating the
PC time series corresponding to each of the GCM. This
predictor matrix contains maximum spatial variability
explained by all GCMs;

e the corresponding predictor matrix is entered in the
canonical correlation analysis. The details of the steps in
CCA in order to obtain the reconstructed values of
predictand variable is very well described and formulated
in Wilks (1995), Yu et al. (1997), and Singh et al. (2012b).

The above stated methods (SCM and MMCCA) make a
forecast in a deterministic way which cannot represent the
inherent uncertainty of the predictions. Therefore, in this
study an effort has been made to convert such MME
predictions into probabilistic form. For prediction of Indian
summer monsoon rainfall, a few studies (Acharya et al,,
2011b; Kulkarni et al., 2012) have raised the issues of
probabilistic forecast in the context of MME techniques.
The probabilistic predictions are generated for tercile
categories:

Table 1
General Circulation Models (GCM) outputs used in the study.
Tableau 1
Résultats calculés a partir de GCM utilisés dans cette étude.
Model Resolution AGCM OGCM Ensemble Reference
Member
CFS (T62) ~1.8° x 1.8° GFS(2003 version) MOM3 15 Saha et al. (2006)
MOM3AC (T42) ~2.7° x 2.8° ECHAMA4p5 MOM3 (anomaly coupled) 24 Roeckner et al. (1996)
Pacanowski and Griffes, 1998
MOM3DC (T42) ~2.7° x 2.8° ECHAM4p5 MOMS3 (direct -coupled) 12 Roeckner et al. (1996)
Pacanowski and Griffes, 1998
GML (T42) ~2.7° x 2.8° ECHAMA4p5 CFS-predicted SSTs 12 Roeckner et al. (1996)
prescribed over the tropical Lee and De Witt, 2009
Pacific basin (semi-coupled)
ECHcasst (T42) ~2.7° x 2.8° ECHAM4p5 Constructed Analog SST 24 Roeckner et al. (1996)
ECHcfssst (T42) ~2.7° x 2.8° ECHAM4p5 CFS-predicted SST 24 Roeckner et al. (1996)
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e below normal;

e near-normal and;

e above normal, which are based on the observed
climatology (Kharin and Zweirs, 2003).

Both the MME based prediction are used as the mean of
the forecast distribution for the probabilistic method,
whereas the spread is calculated by the correlation method
(CR) proposed by Tippett et al. (2003). The detailed
description of making probabilistic prediction on the basis
of MME forecast is discussed by Kulkarni et al. (2012). The
present study follows the same procedure to convert SCM
and MMCCA forecast in probabilistic space.

The above-developed prediction scheme is verified in the
leave-one-out cross validation mode prescribed by World
Meteorological Organisation (WMO). In this procedure, one
yearisretained and the model is developed for the rest of the
26 years (as the time period of the present study is short,
thatis 27 years i.e., 1982-2008) and the predictand variable
is estimated for the retained year. In this way, the cross-
validated series for the predictand variable is generated,
which is then validated against the observed series of
rainfall on the basis of skill scores defined as below.

2.3. Skill scores

In the present study, the prediction schemes are
generated in both ways, viz., deterministic and probabilis-
tic. Therefore, skill scores used for the validation of the
prediction scheme are broadly separated in deterministic
and probabilistic skill measures which are summarized
here.

2.3.1. Deterministic skill score

In the present study, we have used two skill measures
for the evaluation of prediction schemes in deterministic
way viz. correlation coefficient and index of agreement
which are defined as below.

2.3.2. Root mean square error

The root mean square error is one of the basic measures
used in the present analysis. The RMSE quantifies the
difference between the estimated and the observed value.
In the present study, RMSE is used as one of the skill
measure of GCM in the Taylor (Taylor, 2001) diagram.

n . N.)\2

i=1 n

RMSE =

2.3.3. Correlation coefficient

It is very well known that the skill score is the measure
of extent of linear relationship between two time series
and is defined as:

_ Covariance(P, 0)

(2)
Var(P)Var(0)

Here, the numerator is the covariance between the
predicted (P) and observed (O) time series, on the other
hand, Var(P) (Var(0)) shows the variance of predicted
(observed) series.

2.4. Index of agreement (d)

The skill score like RMSE and the correlation coefficient
have the limitation that they are not bounded and are
unstable for very small (near zero) climatology of
observation (Willmott, 1982). Therefore, in view of the
limitation Willmott (1982) suggested a new skill matrix
called index of agreement “d”, which is defined as:

N
> (P - 0y)?

d=1- i1 (3)
N _ N2

<|Pi—0| + \o,»fo|)
=1

1

Here, P; and O; are the predicted and observed variables.
This skill metric is relative and bounded between 0 and 1
(0 <d < 1) where the closest value to 1 indicates the most
efficient forecast.

2.4.1. Probabilistic skill score

The probabilistic skill measure of the prediction scheme
is made using the Rank Probability Skill Score (RPSS). The
RPSS measures cumulative squared error between cate-
gorical (i.e., tercile category) forecast probabilities and the
reference categorical probabilities (Weigel et al., 2007). In
common practice, climatological probability (i.e. 1/3 for
each of the tercile category) is used for generating
reference forecast. If the RPSS value is positive, the forecast
is better than climatological forecast; on the other hand, if
it is negative then the forecast is worse than the
climatological forecast (Kulkarni et al., 2012; Weigel
et al., 2007). The RPSS is defined as:

RPS
RPSciim

Here, RPS is the Rank Probability Skill (RPS = le(ﬂ
(P; — Oi)z) where K is the number of categories and RPScv
shows the climatological RPS.

RPSS =1 — (4)

3. Results and discussion

Before examining the skill of MME methods, the
individual GCM is examined and the skills are discussed
in the forthcoming section.

3.1. Performance of individual GCM at all India level

At the outset, a Taylor diagram (Taylor, 2001) is
presented in Fig. 1. The figure shows the skill of individual
GCMs for prediction of ISMR at an all India level in terms of
correlation, root mean square error (RMSE) and standard
deviation. The effectiveness of the Taylor diagram is due
to its compact representation. A single diagram is used
because the cosine properties between RMSE, correlation
and standard deviation all can be presented in a single
figure. Therefore, the Taylor diagram is used to present
individual GCM skill at an all India level in Fig. 1. The
figure clearly indicates the significant correlation skill of
three coupled GCMs used in the study with less RMSE. On
the contrary, the GCMs highly under-predicted the
observed standard deviation except of GML. GML
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Fig. 1. Taylor diagram for the prediction skill of GCMs at all India level.

Fig. 1. Diagramme de Taylor pour la capacité de prédiction de GCMs au niveau de I'’ensemble de I'Inde.

predicted the standard deviation closer to the observed
value with best correlation and least RMSE as compared to
other GCMs. From the figure, a large variation in the
prediction of ISMR is observed, whereas a smaller, or even
negative, correlation is observed in the case of atmo-
spheric GCMs with very large RMSE. Therefore, in the
present study a multi model concept is developed to
obtain a robust prediction for rainfall over India. The
prediction skill of the two techniques will be discussed in
detail in the forthcoming sections.

As described above, the prediction models are based on
SCM and MMCCA where SCM is the simple composite
method (SCM), which is the equal weighted mean of
interpolated GCM at Indian grid points. On the other hand,
MMCCA uses the concept of CCA to downscale the GCM
rainfall values at Indian grid points. Both the models are
verified in leave-one-out cross validation mode. To begin

with, individual GCM performance for ISMR prediction is
illustrated which is continued by the detail discussion of
deterministic and probabilistic skill of the two prediction
models.

3.2. Area averaged skill at all India level

Fig. 2 represents cross-validated time series for
standardized rainfall anomaly at all India level for SCM
and MMCCA. The black bars in the figure correspond to the
observed rainfall anomalies, with the predicted rainfall
anomalies from SCM (gray shaded) and MMCCA (white
bars). The correlation between the observed and SCM
predicted rainfall anomaly is found to be 0.32, whereas
with the MMCCA, it is found to be 0.43. The skill is found
significant at 95% confidence interval with higher skill in
MMCCA at all India level.

Anomaly time series
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Fig. 2. Time series in standardized anomaly for rainfall for the country as a whole. Black bars show the observed time series with the unfilled bar for MMCCA
and texture filled for SCM. The correlation for the MMCCA and observed time series is 0.43 whereas, for SCM its 0.32.

Fig. 2. Séries temporelles dans 'anomalie standardisée de pluviosité pour la région considérée comme un tout. Les barres noires correspondent aux séries
temporelles observées, les barres blanches aux données de MMCCA, les barres grisées aux données de MME. La corrélation entre les séries temporelles
observées et les données de MMCCA et de MME sont de 0,43 et 0,32, respectivement.
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The critical evaluation of the models is made on the
basis of rainfall anomaly pattern during excess/deficit
rainfall years. The years having standardized rainfall
anomaly greater than 1 are considered as excess years,
while years having less than —1 standardized rainfall
anomaly are defined as deficit years. Therefore, among
27 years, there are 5 years coming in the category of deficit
rainfall and 3 excess rainfall years. The SCM and MMCCA
both were able to predict the negative rainfall anomaly
while the magnitude is found less in MMCCA during 1982,
which is a deficit year. During 1986, MMCCA captured well
the deficit rainfall but in 1987 it underestimated the
observed rainfall. During the recent decade, MMCCA
predicts well the observed rainfall anomaly for deficit
rainfall years. On the other hand, there are some of the
years in which SCM gave a false alarm of a deficit year,
mainly during 1983 (highly negative rainfall anomaly), and
1985, but MMCCA predicted well the excess rainfall years.
As it is observed in some of the studies (Singh et al., 2012a)
during excess years the models are not able to predict the
observed rainfall, which highly influenced the perfor-
mance of SCM. On the other hand, MMCCA is found better
during excess years, although the observed magnitude of
rainfall is not captured in the model.

3.3. Grid point-wise cross-validated skill of the models

Fig. 3 shows the grid point-wise skill of two prediction
schemes SCM and MMCCA on the basis of correlation with
observed rainfall. From the figure, significant skill of both
the schemes over some parts of the hilly region can be
observed with higher skill in SCM over the north-eastern
and some the parts of the southern parts of the country. On
the other hand, MMCCA exhibits better skill over some
parts of the northwest region like Punjab, Haryana, and
Delhi, etc. also over the parts of Gujarat. The positive skill is
also found over the west coast areas. On the other hand,
positive skill over Tamilnadu is deteriorated in MMCCA.
For the evaluation of year-to-year variation in spatial skill,

an anomaly correlation coefficient (ACC) is evaluated
(figure not shown). ACC shows the pattern correlation for
each year. The analysis suggests that the model is able to
predict observed spatial patterns better than SCM.
Specifically, during deficit years the anomaly correlation
coefficient is found to be quite high as compared to SCM
(above 0.85 in MMCCA, 0.6 in SCM).

The model’s spatial skill is also analyzed on the basis of
index of agreement, which is shown on Fig. 4. In the case of
the comparison of predicted values with the observed
values it is more valuable and senseful to focus on this
measure, which is defined by Willmott (1982). In terms of
index of agreement (“d”), it is observed in Fig. 4 that in
the case of SCM the value does not cross 0.5; that is,
the scheme has not so much variation with respect to the
observed climatology. In other words, SCM is not able to
predict the extremes at grid point scale. Although the
overall spatial pattern for index of agreement is found
similar to that of the correlation in MMCCA, it is not the
case for SCM. In SCM, the index of agreement is found very
low over the areas having significant correlation skill.
Therefore, the spatial and all India statistical skill
measures suggest that MMCCA shows a consistent
behaviour in all skill measures, which proves its potenti-
ality as compared to SCM.

Onthe basis of the above analysis, it is seen that there is
an improvement in the predictability of Indian summer
monsoon rainfall using the MMCCA as compared to SCM.
The skill scores, like the index of agreement, show that the
SCM does not have much variation at grid point level. In
the present section, the percentage improvement is
quantified in MMCCA with reference to SCM. For the
purpose, the number of grid points for the Indian domain
having correlation skill greater than a certain threshold is
evaluated and the results are presented in Fig. 5. A similar
kind of analysis is made for the index of agreement. From
the figure, a clear increase in the total number of points for
a correlation threshold of 0.3 (significant at 95% signifi-
cance level) can be noticed. For example, the number of
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.5
30N E e )
ol
o3
102
1SN |-
-0

90E

90F

Fig. 3. Leave-one-out cross-validated correlation skill is shown for SCM in left panel (a) and MMCCA in right panel (b).

Fig. 3. La capacité de corrélation a validation croisée leave-out est présentée pour SCM dans le panneau de gauche (a) et pour MMCCA dans le panneau de

droite (b).
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Fig. 4. Skill of the prediction scheme in terms of index of agreement shown for (a) SCM and (b) MMCCA.

Fig. 4. Capacité du schéma de prédiction en termes d’index d’accord pour SCM (a) et MMCCA (b).
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black line).

Fig. 5. Nombre de points de la grille dépassant le seuil pour la capacité correspondante dans le modéle SCM (ligne pointillée) et MMCCA (ligne noire).

grid points having skill greater than 0.3 is observed at 40
grid boxes in SCM while in MMCCA, it is 50 (that is about
25% more). Similarly, for the correlation threshold 0.4, the
number of grid points exceeding the corresponding
threshold is found very large as compared to SCM (13
points having correlation skill greater than 0.4 whereas
there are 27 points in MMCCA). The figure shows that in
MMCCA the maximum skill is found to be 0.6, but is 0.5 in
the case of SCM. The results clarify the picture of the
noticeable improvement in MMCCA as compared to SCM.
The areas with non-significant or even negative skills are
more deteriorated in MMCCA, which affected the perfor-
mance of the prediction model. On the other hand, the
other skill measures like the index of agreement as shown
in Fig. 5(b) also show similar kinds of results. There is
much more improvement in the index of agreement, as is
already seen in the grid point-wise skill. In SCM, none of
the grid points show the value of d even close to 0.5,
whereas in MMCCA almost 100 grid points show d values

greater than the 0.5 threshold, which may be a good sign
for the prediction model.

3.4. Skill of probabilistic prediction

So far, it has been seen that the deterministic skill is
improved in multi model canonical correlation analysis. In
the present section, the probabilistic skill of the two
schemes are analyzed in view of the emerging importance
of probabilistic prediction in which the uncertainty in the
prediction can be conveyed. For the purpose, empirical
cumulative distribution function (cfd) for the observed and
predicted normalized rainfall anomaly is evaluated at all
India level and presented in Fig. 6. From the figure, it is
observed that the SCM under-predicted the probabilities
for rainfall anomaly specifically, for normal and excess rain
categories. The less rain probabilities are well predicted by
SCM. The empirical cdf predicted by MMCCA is presented
in grey solid line, which shows an improvement in the
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Fig. 6. Empirical cdf at all India level for observed rainfall (black solid
line), for SCM (solid line in mud), for MMCCA (solid line in grey).

Fig. 6. Courbe cumulative de distribution empirique (cdf) au niveau de
I'ensemble de I'Inde, pour la pluviosité observée (ligne noire), calculée a
partir de SCM (ligne gris foncé) et de MMCCA (ligne gris clair).

technique in view of estimation of observed cdf. The
probability for deficit years is found almost similar to
the observation. Although, there is an overestimation for
the normal rain anomalies, but the extent of overestima-
tion is quite less than that of SCM. For excess rain
anomalies, the probabilities derived from MMCCA are
much closer to the observation.

In view of the prediction of the distribution function, we
evaluated the skill in terms of Rank Probability Skill Score
(RPSS). As already discussed earlier, RPSS is a similar kind
of skill measure as RMSE for deterministic skill measure-
ment. Therefore, the probabilistic skill measure in terms of
RPSS is shown in Fig. 7. The evaluation of the skill measure
is described in detail in Kulkarni et al. (2012) and Weigel
et al. (2007). The pattern of RPSS is similar to the
correlation pattern over the hilly areas, and over the
eastern coastal areas in SCM whereas over the northeast
and Gujarat region RPSS it is found to be negative
irrespective of positive correlation. On the other hand, in

(a) SCM

MMCCA the pattern is quite similar to SCM but the
probabilistic skill is a little enhanced in MMCCA, in almost
all parts. In view of the figure, we can say that the model
has the ability to give a probabilistic forecast having skill
better than climatology.

3.5. Performance of the prediction model during extreme
years

The extreme years selected for the analysis are 1982,
1986, and 2002 as deficit years and 1983, 1988, and 1994
as excess monsoon years which is based on the amount of
rainfall +1 standard deviation of the long-term mean
(normal) values at all India level. The rainfall standardized
anomaly predicted by the prediction models along with the
observed values are shown in Fig. 8. The first row in the figure
is for the observation (referred as Obs); the second row
corresponds to SCM and the last row to MMCCA. From the
figure, the negative rainfall anomalies are observed over all
parts of the country, which experienced less rainfall during
1982. Some positive anomalies are found over some parts of
northeast and west central India. The rest of the parts of the
country experienced less rainfall as compared to climatolog-
ical value. On the other hand, the prediction model SCM
predicted less rainfall almost over all parts of the country,
whereas MMCCA is not able to predict deficit rainfall over the
southern, as well as over the west central parts of the country.
During another deficit year 1986, the all India rainfall
anomaly is found on the negative side (-1.2). The SCM
predicted normal rainfall over the southern belt including the
west central areas. On the contrary, the year is well predicted
by MMCCA in which the spatial pattern is well captured in
the model. In MMCCA some positive rainfall anomalies over
the northeast and west central parts are almost captured
with the negative rainfall anomalies in the remaining parts of
the country where SCM predicted rainfall anomalies in the
normal category (between —0.5 and 0.5). During year 2002,
almost all parts of the country experienced very much less
rainfall except some parts of the northeast. High negative
rainfall anomalies were observed over northwest India and
the coastal parts of the country. The prediction model SCM is

(b) MMCCA

90 E

Fig. 7. Rank Probability Skill Score for (a) SCM and (b) MMCCA.

Fig. 7. Score de capacité par rang de probabilité pour (a) SSM et (b) MMCCA.
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Fig. 8. Standardized rainfall anomaly during the extreme deficit years (1982, 1986, 2002). The first panel in the figure corresponds to observed features,

second panel to SCM, and the third panel to the MMCCA.

Fig. 8. Anomalie de pluie standardisée pendant les années de déficit extréme de pluie (1982, 1986, 2002). Le premier panneau de la figure correspond aux
caractéristiques observées, le deuxiéme aux données de SCM et le troisiéme a celles de MMCCA.

unable to show the observed spatial structure as it predicted
a normal rainfall. On the other hand, during this year the
MMCCA performed better as compared to SCM as it predicted
the observed rainfall anomalies. Therefore, from the figure it
can be concluded that MMCCA is able to capture the observed
spatial structure reasonably well except of 1982.

Similarly the model’s performance during three excess
rainfall years are evaluated and shown on Fig. 9. During
1983, an entirely opposite spatial structure is predicted by
SCM, which gave a very strong wrong signal for an
extreme deficit year. The model MMCCA performed better
as compared to SCM, whereas the pattern over the
southern region is predicted in the opposite direction.
During the years 1988 and 1994, the performance of SCM
is not found to be satisfactory especially during 1988. The
spatial variability is not very well captured in the SCM. For
the same year, MMCCA predicted less rain over the
northwest, parts of west central and southern parts of the

country. The spatial pattern is not well predicted by SCM
besides the fact that SCM predicted all India rainfall
reasonably well. In view of the figures, we can say that the
MMCCA has some potential to predict the spatial variation
during the excess/deficit years while, over some parts the
model does not show the observed variability, such as in
Tamilnadu in the southern part where there was no skill in
the model.

The analysis suggests that there is an improvement in
the performance of multi models using canonical correla-
tion analysis. In the approach, the leading PCs correspond-
ing to each GCMs are concatenated and entered in the
analysis. These PCs represents the whole spatial variability
of the system and then the canonical analysis is used to
obtain the best-correlated pairs of predictor and pre-
dictand. The canonical correlation between the canonical
variables was found to be very high (of the order of 0.9).
This fact may be reason for the improvement in the multi
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Fig.9. Standardized rainfall anomaly during the extreme excess rain years (1983, 1988, 1994). The first panel in the figure corresponds to observed features,

second panel to SCM, and the third panel to the MMCCA.

Fig. 9. Anomalie de pluie standardisée pendant les années d’excés extréme de pluie (1983, 1988, 1994). Le premier panneau de la figure correspond aux
caractéristiques observées, le deuxiéme aux données de SCM et le troisiéme a celles de MMCCA.

model performance, as the predictor contains the maxi-
mum rainfall characteristics over the entire domain.

4. Summary and conclusions

The present study focuses on developing a CCA-based
multi model ensemble scheme prediction system prediction
model to improve the ISMR prediction. For the purpose, six
general circulation model outputs for rainfall from year
1982 to 2008 are used. These GCM hindcast for rainfall is
extracted for lead 1 that is the model’s forecast initialized in
the month of May for JJAS. Canonical correlation analysis is
applied on these GCMs to obtain a skilful multi model
ensemble of the GCM output. As a benchmark, the rainfall
obtained from the developed model (MMCCA) is compared
to the SCM, which is the arithmetic mean of the interpolated
GCM outputs. Deterministic and probabilistic, both type of

prediction skill are compared. In order to achieve the second
objective of the study, the performance of the prediction
models are examined during the Indian monsoon extreme
years. The main findings of the study are summarized in the
following few major points:

o the deterministic as well as probabilistic prediction skill
on the basis of correlation and index of agreement
suggests an improvement in the MMCCA as compared to
SCM for Indian summer monsoon rainfall prediction;
the results are well supported by the quantification of
improvement in the MMCCA compared to SCM. The
anomaly correlation mainly during the extreme mon-
soon years shows a noticeable improvement in MMCCA
at all India level;

in view of the performance of prediction models during
extreme years, the underestimation is observed in SCM.
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The prediction model MMCCA is able to predict the
observed spatial pattern during deficit years while this is
not the case for excess years.

In view of the above objectives, however, the prediction
skill is improved in MMCCA, but there are some limita-
tions. In the case of the estimation of unknown parameters,
the number of training sets should be large in order to
obtain a robust estimation. The present study suffers from
the short length of the training period (27 years). It is
planned that the present work will be expanded by using
CCA for downscaling rainfall from different large-scale
features (SST, wind component, Outgoing Long Wave
Radiation, etc.) obtained from GCM.
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