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vestigation of power-law correlations within daily total ozone time
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1. Introduction

Discovery of the springtime ozone hole over Antarctica
in the mid-1980s (Farman et al., 1985) shed light on ozone
dynamics, especially over high and polar latitudes. The
intrinsic spatial and temporal irregularity of emission
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A B S T R A C T

In the study reported in this paper we have dealt with the intrinsic complexity of the daily

total ozone time series over Mumbai, India (198230N, 72 158000E) by means of detrended

fluctuation analysis and phase portrait analysis. From the detrended fluctuation analysis of

first order it is revealed that the said time series is characterized by persistent power-law

correlation which is stronger in shorter time scale than in the longer time scale. The phase

portrait analysis is based on a non-linear autonomous system generated from regression

equations; infinitely many stable nodes are found along the straight line x = 273.556 and

from the behaviors of the contours, it has been revealed that the daily total ozone

concentration is unlikely to go beyond 315 DU (approximately) and it is almost stable.

� 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

R É S U M É

L’étude présentée dans cet article a concerné la complexité intrinsèque des séries

temporelles quotidiennes d’ozone total au-dessus de Mumbai, Inde (198230N, 72 158000E),

au moyen d’une analyse de fluctuations redressées et de portrait en phase. À partir de

l’analyse de fluctuations redressées, il apparaı̂t que la série dite temporelle est caractérisée

par une corrélation en loi de puissance persistante, qui est plus forte à l’échelle de temps

courts qu’à celle de temps plus longs. L’analyse de portrait de phase est basée sur un

système autonome non linéaire, généré par des équations de régression; de très nombreux

nœuds stables sont répertoriés le long de la ligne droite et, d’après les comportements des

contours, il s’avère que la concentration journalière en ozone est peu encline à baisser au-

dessous de 315 DU (approximativement) et est presque stable.

� 2013 Publié par Elsevier Masson SAS pour l’Académie des sciences.
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concentrations, the influence of weather conditions, and
uncertainties associated with initial and boundary condi-
tions have made it a difficult task to model, calibrate and
validate ozone variations (Chattopadhyay and Chattopad-
hyay, 2009). Sources of complexity within the total ozone
have been summarized in many reports (e.g., WMO, 2010).
In this regard, and studies (e.g. Chattopadhyay and
Chattopadhyay-Bandyopadhyay, 2007) as follows:

� total ozone comprises tropospheric and stratospheric
ozone. Both atmospheric layers contribute degrees of
complexity to the corresponding ozone layer;
� formation of ozone is a complex photochemical reaction;
� formation of ozone depends upon a number of meteoro-

logical variables that may have their own complexities.

Chen et al. (1998) carried out a multidimensional phase
space analysis of the observed ozone concentration and
developed a powerful predictive model after investigating
the trajectories on a phase space reconstructed for hourly
ozone time series. Several non-linear approaches, till date,
have been proposed to develop predictive models for
tropospheric ozone based on the dealing with the intrinsic
complexities. Some remarkable works in this direction
include the studies of Jorquera et al. (1998), Koçak et al.
(2000), Novara et al. (2007), Sousa et al. (2007), Heo and
Kim (2004) and Feng et al. (2011). The total ozone (TO) is
the integral of the ozone concentration with respect to
height (Bandyopadhyay and Chattopadhyay, 2007). Asso-
ciation between climate and TO has been investigated by
Reid et al. (1994), Varotsos et al. (1994), Efstathiou et al.
(2003), Kondratyev and Varotsos (2000, 2002) and De et al.
(2011). The necessity of considering the intrinsic com-
plexity of the ozone dynamics has been emphasized in
references like Kondratyev and Varotsos (1995, 2001),
Varotsos et al. (2001) and Brandt et al. (2003).

In recent years, there has been growing evidence
indicating that many physical systems have no charac-
teristic length scale and exhibit long-range power-law
correlations (Chen et al., 2002). Traditional approaches
such as the power-spectrum and correlation analysis are
suitable for stationary time series. However, many time
series, which pertain to complex geophysical systems are
non-stationary. This means that the mean, standard
deviation and higher moments, or the correlation func-
tions are not invariant under time translation (Stratono-
vich, 1981). To realize the essential dynamics of a given
system, it is imperative to analyze and correctly interpret
the associated time series. One of the frequent challenges
is that the scaling exponent is not always constant
(independent of scale) and the value of the scaling
exponent fluctuates for different ranges of scales (Chen
et al., 2002; Ivanov et al., 1999). Non-stationarity, which is
an essential aspect of a complex variability, is often
related to different trends in the signal or heterogeneous
segments with different local statistical properties
(Ivanov et al., 1999). The detrended fluctuation analysis
(DFA) addresses this problem to accurately quantify long-
range power-law correlations embedded in a non-
stationary time series.

A classical approach is to use qualitative differential
equations to characterize the orientation flow field by
considering it as the velocity field of a particle in a
dynamical system (Cohen and Herlin, 1996, 1999).
Modeling the orientation flow field by a dynamical system
allows us to characterize the flow field through the
particles trajectories and their stationary points. Dynam-
ical system approach is very common in bio-mathematical
modeling (e.g. Jiang et al., 2007 and references therein
Kelleher et al., 2003) and cosmological modeling (e.g. Jamil
and Debnath, 2011; Szydłowski and Krawiec, 2003 and
references therein). However, limited works are available
in the area of geophysical studies, where dynamical system
approach has been adopted to deal with the intrinsic
complexity. We carried out a survey of the literature
considering geophysical problems in the view of dynam-
ical system. Gurol and Singer (1982) studied the kinetics of
ozone decomposition in aqueous solution under dynamic
conditions; ozone decomposition is a second-order reac-
tion with respect to ozone concentration. A remarkable
approach towards time series modeling of ozone concen-
tration from dynamic point of view is by Chen et al. (1998),
who emphasized the complexity of ozone dynamics due to
the inherent spatial and temporal variability of emission
concentrations, influence of meteorological concentra-
tions, and uncertainties associated with the initial and
boundary conditions. In Chen et al. (1998), a phase space
reconstruction was presented to model and predict hourly
ozone concentration time series. Jayawardena and Gurung
(2000) adopted non-linear dynamical systems and linear
stochastic approaches to analyze synthetic and hydrome-
teorological time series, where the analysis by dynamical
systems approach included computation of the correlation
dimension, noise reduction and non-linear prediction.
Ruzmaikin et al. (2004) presented a simple dynamic model
of solar variability influence on climate based on three
ordinary differential equations controlled by two param-
eters. Different techniques and concepts of chaotic theory
were adopted by Ng et al. (2007) to enhance our
understanding of the phenomena of outliers for daily
extreme hydrological observations.

Purpose of the present paper is twofold. We can
specifically state the aims and motivation behind this
study as follows: this work deals with the daily total ozone
(TO) concentration over Mumbai, India. Mumbai is
situated about midway on the western coast of India
(198230N,72 158000E) and is a peninsular city joined to the
mainland at its northern end (Venkataraman et al., 2002).
Mumbai has a tropical monsoon climate with diurnal land
and sea breezes of daytime onshore winds from the west
and northwest and nighttime offshore winds from the
north, east and northeast. An extensive analysis of various
meteorological parameters and aerosol characteristics
over Mumbai is available in Venkataraman et al. (2002).
Two noteworthy studies by Srivastava (2004) and Srivas-
tava et al. (2006) show the significant dominance of
volatile organic compounds over Mumbai. Association
between formation of ozone and VOC is discussed in Carter
(1994), Kondratyev and Varotsos (2001) and Varotsos
(2002). Due to the radiative and dynamic coupling
between the stratosphere and troposphere, any change
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the climate influences the evaluation of ozone layer
ough multiple changes in transport, chemical composi-

 and thermal character (Pal, 2010). In an attempt to
d light on aforementioned complexity, scaling analysis
atmospheric data certainly is felt an important
roach. Consideration of the decay of correlations in
e has often been used to look into the dynamics of
plex systems. A randomly forced first-order linear

tem with memory has an autocorrelation function
aying exponentially with lag time, but a higher order
tem will tend to have a different decay pattern.

ever, direct calculation of the autocorrelation function
ffected by noise superimposed on the data (Varotsos

 Kirk Davidoff, 2006). Following Varotsos and Kirk
idoff (2006) we investigate the pattern of the decay of

ocorrelation within the daily TO with increasing time
 by means of detrended fluctuation analysis (DFA).
erwards, we have generated an autonomous system

 regression equations and considered the daily TO as a
amic system. Sources of complexity in TO has already
n discussed in the works of Varotsos and Kirk Davidoff
06), Chattopadhyay and Chattopadhyay-Bandyopad-
y (2007, 2008), De et al. (2011). This approach have
n adopted because we have tried to shed light into the
insic complexity of the time series of daily TO by means

 phase portrait analysis.

nvestigation of power-law correlation

 Overview of detrended fluctuation analysis

Temporal correlations within the climate system are
physical and practical interest. Daily and seasonal
relations enable weather and climate prediction, and
relations on longer time scales characterize the
eraction of climate components. Therefore, the
lysis of correlations within the different compart-
nts of the climate system and its realistic physical
deling are fundamental in climate research (Fraedrich

 Blender, 2003). Detrended fluctuation analysis (DFA)
ng et al., 1993) has recently been extensively
lemented in the various physical processes. Several

dies have reported that the DFA measure provides
rmation that could not have been otherwise

ained, or that it is intrinsically a better measure to
sting techniques (Heneghan and McDarby, 2000). The

 is a scaling analysis method used to estimate long-
ge power-law correlation exponents in a time series.
s method has been described in detail in the papers

 Hu et al. (2001), Kantelhardt et al. (2002) and Chen
l. (2002). A brief overview of DFA is presented in this
tion. Peng et al. (1994) originally proposed DFA as a
hnique for quantifying the nature of long-range
relations. In recent years this method has become a
ely used technique for the detection of long-term

relations in noisy, non-stationary time series (e.g.
de et al., 2002, Chen et al., 2002, Kantelhardt et al.,
6). In DFA, the data are first converted to non-

tionary by generating the non-stationary profile Y(i)Xi

Kirk Davidoff, 2006), for the data series fk of size N. Thus,
the reconstructed time series has the entries:

y 1ð Þ ¼ f1 � faverage

h i
y 2ð Þ ¼ f1 � faverage

h i
þ f2 � faverage

h i
y 3ð Þ ¼ f1 � faverage

h i
þ f2 � faverage

h i
þ f3 � faverage

h i
..
.

y Nð Þ ¼
XN

k¼l

fk � faverage

h i
(1)

The integration:

� exaggerates the non-stationarity of the original data;
� reduces the noise level;
� generates a time series corresponding to the construc-

tion of a random walk that has the values of the original
time series as increments (Varotsos and Kirk Davidoff,
2006).

The new time series, however, still preserves information
about the variability of the original time series. In the next
step, we divide the reconstructed time series Y(i) into
Nl = int(N/l) non-overlapping segments of equal length l. The
length N of the series being not a multiple of the considered
timescale l, a small part at the end of the reconstructed time
series may remain outside the segments generated above. In
order not to disregard this part of the series, Kantelhardt
et al. (2006) proposed to repeat the same procedure starting
from the opposite end. Hence, 2Nl segments are obtained
altogether. For each of the 2Nl blocks by fitting a polynomial
of order n to the data we determine the variance for each
block as (Kantelhardt et al., 2006)

s v; lð Þ ¼ 1

l

Xl

i¼1

Y v � 1ð Þl þ ið Þ � pv ið Þ½ �2 (2)

where v varies from 1 to 2Nl and pv(i) is the fitting
polynomial representing the local trend in the segment.
The local trend in each block is defined to be a linear least-
squares fit to the samples in that block. Linear, quadratic,
cubic, or higher-order polynomials can be used in the
fitting procedure. When linear polynomials are used, the
fluctuation analysis is called DFA1, for quadratic poly-
nomials we have DFA2. In the present work, we have
experimented DFA1. A detrended signal is defined for each
block as the difference between the original signal and the
local trend for that block and the detrended fluctuation
function is derived as (Kantelhardt et al., 2006)

F2 lð Þ ¼ 1

2Nl

X2Nl

v¼1

s v; lð Þ (3)

The detrended fluctuation function is computed for
different values of l. It has been shown by Buldyrev et al.
(1995) that F(l) varies as a power-law in l, for sequences
with power-law long-range correlations. This means that if
data series fk is characterized by long-term power-law
correlation, F(l) increases, for large values of l, by a power-
, notably F(l)al
a

(Kantelhardt et al., 2006). When the
erated by Y ið Þ ¼
k¼1

fk, i = 1, 2, 3,. . ..,N (Varotsos and law



P. Chakraborthy et al. / C. R. Geoscience 345 (2013) 55–6158
autocorrelation function decreases faster than 1/l in time,
we asymptotically have F(l)al

a
. Conventionally, an expo-

nent a 6¼ 1/2 in a certain range of l values implies the
existence of long-range correlations in that time interval.
In Varotsos (2005), the types of correlation present in a
time series implied by the value of a is thoroughly
discussed. A straight line fit to the log-log plot of the log-
log graph indicates statistical self-affinity expressed as
F(l)al

a
. The scaling exponent a is calculated as the slope of

a straight line fit to the log-log graph of l against F(l5) using
least-squares. If 0.5 < a �1, then persistent long-range
power-law correlations exist in the time series, if
0 < a < 0.5, then the time series is characterized by
power-law anticorrelations (antipersistence) and when
1 < a < 1.5, then there are correlations again. A Brownian
noise is indicated by a = 1.5(Varotsos, 2005).

2.2. Discussion on the data under consideration

In the present work, we have dealt with the daily total
ozone (TO) concentration over Mumbai, India. The data are
derived from the measurements made by the Earth Probe
Total Ozone Mapping Spectrometer (EP/TOMS) and are
available at the website http://ftp://jwocky.gsfc.nasa.gov/
pub/eptoms/data/overpass/OVP206_epc.txt. For executing
DFA we have considered the daily TO spanned over 1999–
2000. Based on the discussion presented in the previous
section we have first detrended the time series of daily TO
and then divided the data series into several non-
overlapping boxes of different sizes. The box size l has
varied from 2 to 50. For each box size we have removed the
local trend by means of removing the first order as well as
second order trend. This means that, in Eq. (2) we have
used pv(i) in the linear form. Thus, DFA1 is executed. For
different ranges of the box length we fit straight lines to the
log-log graph of l against F(l) by least square method.
Results are presented in the Table 1. It is observed from
Table 1 and from the Fig. 1(a-c) that the scaling exponent a
is always above 0.5 and never becomes equal to 1.5. Hence,
it is concluded that for the time interval ranging from
about 2 days to more than one month, the time series of
daily TO over Mumbai is characterized by persistent
power-law correlations. However, from the decreasing
behavior of the R2 it may be interpreted that the power-law
correlation is stronger in shorter time scale than in the
longer time scale. Moreover, no prominent periodicity is
observed in this power-law correlation. Based on the
observation of Varotsos and Kirk Davidoff (2006) this may
be interpreted as an indicator of existence of dynamical
links between long and short time-scale behavior. In the
subsequent section, we shall consider the said daily TO

time series as a dynamic system by generating a set of
differential equations and subsequently studying the
behaviors of the critical points within the phase portrait.

3. Dynamical system approach

Two systems of first order autonomous differential
equations are said to be topologically equivalent if an
invertible mapping exists between one phase portrait onto
the other while preserving the orientation of the trajecto-
ries. Phase portraits are created using isoclines, vector
fields, and eigenvectors. A non-linear autonomous system
is considered in the form (Lynch, 2010):

ẋ ¼ P x; yð Þ (4a)

ẏ ¼ Q x; yð Þ (4b)

where at least one of P and Q is non linear in x and y. The
critical points (u, v) is obtained by solving ẋ ¼ 0 ¼ ẏ. The
non-linear system is linearized by computing the following
Jacobian matrix at every critical point (u, v):

J u;vð Þ ¼

@P

@x

@P

@y
@Q

@x

@Q

@y

0
BB@

1
CCA (5)

In the present work, we shall view the daily TO time
series as a dynamical system. To do the same, it is needed
to generate two-dimensional linear differential equations
in the forms presented in (1a) and (1b). Now we consider
polynomial regressions as:

x ¼ j tð Þ (6)

y ¼ h xð Þ (7)

where j(t) and h(x) denote second degree polynomials in t

and x respectively, t denotes time, x denotes the observa-
tions corresponding to t, and y denotes the time series
lagged by 1 time point. By means of least square regression
we estimate the regression constants and coefficients as:

a = 250.91, b = 0.1346, c = –0.0002, d = –283.66,
e = 3.2806 and f = –0.0045.

Subsequently, the non-linear autonomous system is
generated as:

dx

dt
¼ b2 � 4ac þ 4cx
h i1=2

(8)

dy

dt
¼ b2e2 þ 4ce2 x � að Þ þ 4b2 f y � dð Þ

þ16c f �a þ xð Þ �d þ yð Þ

" #1=2

(9)

Table 1

Nature of the series self-correlations based on least square fit to the log-log graph of l against F(l).

Tableau 1

Nature des auto-corrélations basées sur l’ajustement des moindres carrrés au graphique log-log de l en fonction de F(l).

Range of l Straight line fit Value of a Nature of the series self-correlations

2 to 15 y = 1.4436x + 1.4378 (R2 = 0.9587) 1.4436 Persistent long-range power-law correlations

2 to 30 y = 1.0238x + 1.7741 (R2 = 0.8006) 1.0238 Persistent long-range power-law correlations

2 to 45 y = 0.8158x + 1.9676 (R2 = 0.3242) 0.8158 Persistent long-range power-law correlations

http://ftp%3a//jwocky.gsfc.nasa.gov/pub/eptoms/data/overpass/OVP206_epc.txt
http://ftp%3a//jwocky.gsfc.nasa.gov/pub/eptoms/data/overpass/OVP206_epc.txt
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 0 occurs when x = 273.556. With this value of x, the dy
dt

pens to be 0 for any value of y. Thus, we get infinitely
ny critical points along the straight line x = 273.556.
ce we are considering density of TO, we shall consider y

e positive. The Jacobian matrix comes out to be:

2cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac þ 4cx

p 0

2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 4d f þ 4 fy

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac þ 4cx

p 2 f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac þ 4cx

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2 � 4d f þ 4 fy

p

0
BBB@

1
CCCA (10)

Using the values of the regression constants and
ameters the eigenvalues are:

¼ � 0:0004ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:218845 � 0:0008x
p (11)

l2 ¼ �0:009
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:218845 � 0:0008x
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:65646 � 0:015y

p (12)

Since both of the eigenvalues are real and negative
along for all of the critical points, we conclude that the
eigenvectors represent stable situations that the system
converges towards, and the intersection is a stable node.
For a system of n first-order ordinary differential equations
(or more generally, Pfaffian forms), the 2n-dimensional
space consisting of the possible values of
(x1; ẋ1; x2; ẋ2::::::; xn; ẋn) is known as its phase space
(Weisstein, 2011). For a function with 2 degrees of
freedom, the 2-dimensional phase space that is accessible
to the function or object is called its phase plane. A phase
portrait is a plot of multiple phase curves corresponding to

(a)
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1. Straight line fits to various ranges of l. The first panel corresponds to the range 2 to 15, the second panel corresponds to the range 2 to 30 and the third

el corresponds to the range 2 to 45.

1. La ligne droite est ajustée aux différentes amplitudes de l. Le premier panneau correspond à la gamme de 2 à 15, le deuxième à la gamme de 2 à 30 et

oisième à la gamme de 2 à 45.
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different initial conditions in the same phase plane
(Weisstein, 2011). For the present dynamical system, the
phase portrait is presented in Fig. 2. We find that all the
trajectories are directed towards the line x = 273.556 and the
situation being stable it may be interpreted that the daily TO
over Mumbai has the tendency to be in the vicinity of 273
DU. Now we consider the contours within the phase portrait.
These contours pertain to different initial conditions. From
the nature of the contours we see that all of them are
converging towards the point (273, 310). The values of y are
first increasing with increase in x. This means that the
concentration of daily TO is increasing as well as the
concentration at time point lagged by 1 is also increasing. In
the vicinity of (273, 315), both variables get confined and
thus it may be interpreted that the concentration of the daily
TO concentration is unlikely to go beyond 315 DU (approxi-
mately) and it is almost stable.

4. Concluding remarks

In the study explained in the previous sections, we have
dealt with the intrinsic complexity of the daily total ozone
time series over Mumbai, India by means of detrended
fluctuation analysis and phase portrait analysis. In the
introductory part of the paper we have thoroughly
discussed the motivation behind adopting the above
methodologies to deal with the daily total ozone over
Mumbai, where the atmospheric environment is dominat-
ed by volatile organic compounds. The detrended fluctua-
tion analysis has been implemented by using first order
polynomials to the non-overlapping blocks. It is revealed
that for the time interval ranging from about 2 days to
more than one month, the time series of daily total ozone

over Mumbai is characterized by persistent long-range
power-law correlations. However, from the decreasing
behavior of the coefficient of determination with block
length it has been understood that the power-law
correlation is stronger in shorter time scale than in the
longer time scale. In the next part of the study, we have
created an autonomous system by means of ordinary
differential equations based on non-linear regression
equations fit to the time series first with time t as the
independent variable and the corresponding observation xt

as the dependent variable and then by xt as the
independent and xt+1 as the dependent variable. Subse-
quently we have created the phase portrait where it has
been found that there are infinitely many stable nodes
along the vertical axis. Observing the fact that all the
trajectories on the phase portrait are directed towards the
line x = 273.556 and the situation being stable it may be
interpreted that the daily TO over Mumbai has the
tendency to be in the vicinity of 273 DU. It is further
observed that all of contours along the phase portrait are
converging towards the point (273, 310). This leads us to
conclude that the concentration of daily total ozone is
increasing as well as the concentration at time point lagged
by 1 is also increasing. In the vicinity of (273, 315), both
variables get confined and thus it may be interpreted that
the concentration of the daily total ozone concentration is
unlikely to go beyond 315 DU (approximately) and it is
almost stable. Based on the time series under consider-
ation we have constructed a phase portrait and obtained a
stable node based on the autonomous system. The
trajectories are tending towards the said point and hence
it is an approximate stable node. If longer time series are
considered then more complexity would be explored and
we propose to study this in future.
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