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 Introduction

The summer monsoon during the months of June to
ptember (JJAS) is the major rainfall season for India.
nce, the prediction of Indian summer monsoon rainfall
MR) is always in high demand as its high variability has
nificant impact on economy of the country. However,

e job of prediction of such erratic phenomenon is one of
e multifaceted climatological problems because of the

intrinsic intricacy of the physical processes associated with
it. Considering the uncertainty associated with the said
climate system, probabilistic forecast in monthly and
seasonal scales has gained attention in recent years. Most
of the statistical forecasting techniques available till
dates – e.g. Thapliyal (1981), Gowariker et al. (1991),
Sahai et al. (2003), Rajeevan et al. (2007) and Acharya et al.
(2012a) – have concentrated only in generating a
deterministic prediction without any measure of its
inherent uncertainty. Deterministic prediction gives a
specific value that is considered most likely to occur in
the future. Due to the inability of such predictions to grab
the variability to a large extent, they have mostly failed in
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A B S T R A C T

Probabilistic prediction has the ability to convey the intrinsic uncertainty of forecast that

helps the decision makers to manage the climate risk more efficiently than deterministic

forecasts. In recent times, probabilistic predictions obtained from the products from

General Circulation Models (GCMs) have gained considerable attention. The probabilistic

forecast can be generated in parametric (assuming Gaussian distribution) as well as non-

parametric (counting method) ways. The present study deals with the non-parametric

approach that requires no assumption about the form of the forecast distribution for the

prediction of Indian summer monsoon rainfall (ISMR) based on the hindcast run of seven

general circulation models from 1982 to 2008. Probabilistic prediction from each of the

GCM products has been generated by non-parametric methods for tercile categories (viz.

below normal (BN), near-normal (NN), and above normal (AN)) and evaluation of their skill

is assessed against observed data. Five different types of PMME schemes have been used

for combining probabilities from each GCM to improve the forecast skill as compared to

the individual GCMs. These schemes are different in nature of assigning the weights for

combining probabilities. After a rigorous analysis through Rank Probability Skill Score

(RPSS) and relative operating characteristic (ROC) curve, the superiority of PMME has been

established over climatological probability. It is also found that, the performances of

PMME1 and PMME3 are better than all the other methods whereas PMME3 has showed

more improvement over PMME1.

� 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

 Corresponding author.

E-mail address: nachiketaacharya@gmail.com (N. Acharya).

Contents lists available at SciVerse ScienceDirect

Comptes Rendus Geoscience

w ww.s c ien ced i rec t . c o m
31-0713/$ – see front matter � 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

p://dx.doi.org/10.1016/j.crte.2013.01.006

http://dx.doi.org/10.1016/j.crte.2013.01.006
mailto:nachiketaacharya@gmail.com
http://www.sciencedirect.com/science/journal/16310713
http://dx.doi.org/10.1016/j.crte.2013.01.006


th
is
r
c
a
q
m
1
s
c
p
K
p
w
r
y
ti
P
ti
d
(2
R
R
s
R
A
(A
p
e
r
K
o
m
c
u
n
In
d
c
p

p

T

G

N. Acharya et al. / C. R. Geoscience 345 (2013) 126–135 127
e extreme years (Gadgil et al., 2005). As Indian economy
 highly dependent on agriculture, there is greater need to

epresent uncertainties in seasonal predictions and to
ommunicate these uncertainties to the agricultural
gencies. As probabilistic predictions have the ability to
uantify the uncertainty, it has more potential to decision
akers than deterministic forecasts (Krzysztofowicz,

983). Zwiers (1996) and Kharin and Zwiers (2002) have
hown that the level of uncertainty of the climate system
an be appropriately viewed in a quantitative way by a
robability density function. In subsequent studies by
umar et al. (2001) and Palmer et al. (2004), the
robabilistic forecast has been established to be a better
ay to disseminate a seasonal forecast as it potentially

epresents the uncertainty of the prediction. In recent
ears, the probabilistic forecast based on general circula-
on model (GCM) has drawn considerable attention.
lethora of studies has considered GCM-based probabilis-
c approach for seasonal forecast. Examples in this
irection include the works of Kharin and Zwiers
003a), Palmer et al. (2005), Tippett et al. (2005, 2007),

ajagopalan et al. (2002), Robertson et al. (2004), Doblas-
eyes et al. (2000) and Min et al. (2009). In addition to the
aid studies, some of the operational centers (International
esearch Institute for Climate and Society (IRI), USA; The
sia–Pacific Economic Cooperation (APEC) Climate Center
PCC), Korea) routinely provide probabilistic forecast to

roduce seasonal forecasts (Barnston et al., 2010; Sohn
t al., 2012). In the context of Indian summer monsoon
ainfall (ISMR), only a few studies (Acharya et al., 2012b;
ar et al., 2011; Kulkarni et al., 2012) have raised the issues
f making probabilistic forecast using GCMs. The studies
entioned above described the parametric way to

alculate the probabilistic forecast along with its inherent
ncertainty. However, no systematic study exists on
onparametric method for seasonal prediction of the
dian summer monsoon rainfall. The present work is

eviated from the earlier studies in the sense that it
oncentrated only on the nonparametric approaches for
redicting ISMR in detail.

The main purpose of the present study is to develop a
robabilistic multi-model ensemble based prediction of

ISMR using non-parametric ways. The novelty of the
present study lies in the fact that it attempts:

� to generate probabilistic prediction of ISMR from each of
the GCM by non-parametric ways and compare them;
� to apply different multi-model ensemble schemes for

assigning weights to the probabilities obtained from
each GCM;
� to compare the performance of such different multi-

model schemes for probabilistic prediction of ISMR.

The rest of the present manuscript is planned as
follows: Section 2 describes the observed data and GCM’s
products used in the study. Methodology for probabilistic
prediction and multi-model ensemble schemes for com-
bining probabilities is described in Section 3. Section 4
presents the result and discussion part. Based on the result,
summary and conclusion are discussed in Section 5.

2. Data

2.1. General Circulation Model (GCM) products

In the present study, outputs from seven general
circulation models of different organizations like Interna-
tional Research Institute (IRI, USA), National Center for
Environmental Prediction (NCEP, USA) and Japan Agency
for Marine-Earth Science and Technology (JAMSTEC, Japan)
have been used. Among those seven GCMs, two are only
atmospheric models and the remaining five are atmo-
spheric-ocean coupled models. For this study, we used
lead-1 (initial conditions of May start) hindcast runs
(1982–2008) of the models for summer monsoon seasonal
rainfall (i.e. mean rainfall of June-July-August-September
which is abbreviated as JJAS). The products of all the GCMs
have been downloaded from IRI website (http://portal.ir-
i.columbia.edu/portal/server.pt). A brief summary of each
model including members, resolution and relevant cita-
tions is presented in Table 1. Detailed descriptions of these
GCMs are presented in the works of Acharya et al. (2011),
which also dealt with the deterministic skills of GCMs and
their real-time skills in predicting the 2009 drought. This

able 1

CM outputs used in the study.

Model Resolution AGCM OGCM Ensemble

member

Reference

CFS (T62) GFS (2003 version) MOM3 15 Saha et al. (2006)

E4p5 (ca sst) (T42) ECHAM4p5 Constructed Analog SST 24 Roeckner et al. (1996)

GML (T42) ECHAM4p5 CFS-predicted SSTs prescribed over

the tropical Pacific basin (semi-coupled)

12 Roeckner et al., 1996;

Lee and De Witt, 2009

JAM (T106) ECHAM4 OPA 8.2 9 Luo et al. (2005)

MOM3AC (T42) ECHAM4p5 MOM3 (anomaly-coupled) 24 Roeckner et al., 1996;

Pacanowski and Griffes, 1998

MOM3DC (T42) ECHAM4p5 MOM3 (direct-coupled) 12 Roeckner et al., 1996;

Pacanowski and Griffes, 1998
E4p5-CFS (T42) ECHAM4p5 CFS-predicted SST 24 Roeckner et al., 1996

http://portal.iri.columbia.edu/portal/server.pt
http://portal.iri.columbia.edu/portal/server.pt
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dy showed that these GCMs have varying skills in
ulating climatology and interannual variability of

served rainfall due to their inherent large bias. This
dy also pointed out that, in spite of good skill in

oducing sea surface temperature (SST), the GCMs are still
able to reproduce the observed teleconnection between
T and rainfall. It could be one of the reasons behind the
ability of the GCM for accurate prediction of drought over
dia during monsoon 2009.

. Observational reference

The high-resolution (18�18 latitude-longitude) gridded
infall data, based on 2140 rain gauge stations with
inimum 90% data availability, prepared by the National
imate Centre of India Meteorological Department (IMD)
ve been used as observational reference for the present

ork. The station data have been interpolated to the
ecific grid points using objective analysis, where, in
dition to a distance factor, a direction factor has also
en introduced for defining the weights for interpolation.
e detailed methodology for the preparation of such
idded data has been discussed by Rajeevan et al. (2006).

ong these data there are 357 grid points (18�18) over
e landmass of the country. The temporal resolution of
is rainfall dataset is 1 day, i.e. this dataset is available for
ch day. For the present study, a dataset of seasonal mean
e., JJAS) has been created from the original daily data.
is observed seasonal mean data is created for 1982–
08 constrained by the availability of the GCM products.

 the resolution of these GCMs is very coarse compared to
servations, all ensemble members of each individual
M are bilinearly interpolated at observed data grid
8�18 latitude-longitude).

 Methodology

Probabilistic prediction is commonly formulated in
rms of tercile-based categories such as below normal
N), near-normal (NN) and above normal (AN). These
ually likely, mutually exclusive and collectively exhaus-
e categories are constructed based on the observed

infall climatology. The forecast probability of each
tegory is estimated as portion of the cumulative
obability of a forecast sample associated with this
tegory based on tercile boundaries (Min et al., 2009).
ere are two ways of estimating the tercile-based
tegorical probabilities viz. parametric and non-paramet-

 ways. In parametric approach, probabilities are
timated by the probability density function (pdf) of
stribution in which observed rainfalls and those pre-
cted by GCMs belong (Kulkarni et al., 2012). In common
actice, the forecast distribution is assumed to be
ussian for seasonal distribution. Nonparametric method

timates these tercile probabilities by counting method.
 other words, tercile probabilities can be calculated by
unting the ensemble members of a GCM falling in each
tegory. The main advantage of such method is that it
es not require any distribution (Tippett et al., 2007) for
timating the probabilities. It is already stated that there
e only few studies (Acharya et al., 2012b; Kulkarni et al.,

2012) which carried the parametric method (assuming
Gaussian distribution) for probabilistic prediction of ISMR.
However, the present study is the first attempt to predict
ISMR by nonparametric approaches.

3.1. Calculation of tercile probabilities for individual GCMs

For nonparametric method, the tercile categories of
observation can be determined by the percentiles of the
observed climatology. Cases below the 33rd percentile are
considered as below-normal category and cases falling
above 67th percentile are regarded as above-normal
category. However, cases in between 33rd and 67th
percentiles are stated as near-normal category. As all the
categories are equally likely, climatological probability of
each of the tercile categories is coming 0.33. Tercile
category of each individual GCM is calculated by aggre-
gating all years and all ensemble members. If the GCMs are
unbiased, the categories of observation and GCM coincid-
ed. Because of the model bias, these categories differ
significantly in their contribution towards degrading the
performance of forecast of GCMs (Rajagopalan et al., 2002).
In practice, counting method is implemented for nonpara-
metric estimate of the tercile probabilities of GCM. In this
method, probability in each category can be calculated by
the fraction of ensemble members in each category. In
other words, the forecast probabilities of tercile category
(P) for an individual GCM can be defined as below,

P V GCMijð Þ ¼ mi

Mi
(1)

where V = any of the tercile category (BN or NN or AN),
GCMi = ith GCM, mi = number of ensemble members
belonging to V category for ith GCM, Mi = total number
of ensemble members of GCM for ith GCM. By this method,
tercile probabilities are estimated separately for each
individual GCM.

3.2. Probabilistic Multi-Model Ensemble (PMME) schemes for

assigning weight to the tercile probabilities from individual

GCM

Due to the presence of inherent biases, probabilistic
prediction of each GCM cannot be consistent. Therefore,
multi-model ensemble schemes can be considered for
more skillful forecast. In this section, different multi-model
ensemble (MME) schemes for combining all the individual
GCMs’ probabilities are discussed. In general, the multi-
model combination for probabilistic prediction can be
done by pooling all the ensemble members from each GCM
into a single sample with equal weight. However, this type
of pooling method is only applicable if all the GCMs have
the equal number of ensemble members. However, the
ensemble size of the GCM does not remain same in
hindcast or in forecast phase. Therefore, as a remedy, one
can estimate the forecast probabilities of each GCM
separately and subsequently combine those probabilities
(Min et al., 2009). The main purpose of such MME
technique is to assign weight to probabilities of individual
GCMs in each of the tercile categories. The forecast
probabilities from individual GCMs can be combined as
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llows:

 Vð Þ ¼
XN

i¼1

wiP V GCMijð Þ (2)

here, wi = ith GCM’s weight and N = total number of
CMs. This type of probability can be considered as
ixture distribution. The weight of individual probabili-

es can be assigned in different ways by taking into
ccount the fact that summation of model weights must be
ne (assuming convex combination). In the present study,
e have applied five Probabilistic Multi-Model Ensemble
MME) techniques which are different in assigning the
eights for combining probabilities. The PMME techni-

ues are described below.

.2.1. PMME1

The simplest technique is to give equal weight to all the
robabilities from individual GCMs. That means assigning
eight function as wi = 1/N. In other sense, the probabili-
es computed from individual member models are being
veraged. Kulkarni et al. (2012) used this method for
ombining the probabilities (by parametric method) from
CMs. This method is often used as benchmark to evaluate
ther techniques (Min et al., 2009; Stefanova and
rishnamurti, 2002). This method is referred to as PMME1

 the rest of the manuscript.

.2.2. PMME2

In this technique, weight function of the MME is
erived on the basis of ensemble members in each GCM. It

 already stated that each of the GCMs has different
nsemble members. Therefore, one can use ensemble
embers for estimating the weights (Min et al., 2009;

ohn et al., 2012). Min et al. (2009) described this method
t length. After the estimation of the ratio between
tandard errors of GCMs and difference between GCM
nsembles means, they concluded that the weight should
e proportional to the square root of the individual GCM
nsemble size. Therefore, weight function can be defined

s wi ¼
ffiffiffiffiffi
Mi

p

XN

i¼1

ffiffiffiffiffi
Mi

p
where, Mi is the total number of ensemble

embers of ith GCM. In the remaining part of the
anuscript this MME scheme is mentioned as PMME2.

.2.3. PMME3

Another technique that we have adopted in the
resent work is the regression based weight function
escribed by Stefanova and Krishnamurti (2002). In this
ethod, the absolute value of regression coefficient

etween observed data and mean of all ensemble
embers of each GCM can be used as weight for

ombining the probabilities. The simple monotonic
nction can be considered as the weights proportional

o some power of the regression coefficients. Hence,
rger regression coefficients would be ‘‘better’’ than

hose with smaller regression coefficients and should
herefore be assigned larger weights (Stefanova and
rishnamurti, 2002). The best choice for the power has
een empirically estimated as 0.5 by Stefanova and

Krishnamurti (2002). By this method, weight function

can be determined as wi ¼
b0:5

i

XN

i¼1

b0:5
i

where, bi is the

regression coefficient of the ith GCM. Now onwards,
this method can be regarded as PMME3.

3.2.4. PMME4

Signal-to-noise ratio (SNR) of each GCM can also be
used as weight function. Signal to noise ratio (SNR), which
is commonly used for measuring the predictability of GCM
can be defined as the ratio of external and internal
components (Kang et al., 2004). In GCM, the ensemble
mean of all the members is treated as the external
component, whereas, the deviation of members from the
ensemble mean is treated as the internal component.
Practically SNR can be calculated as intra-ensemble:

SNR ¼ Variance of ensemble mean

Variance of intra-ensemble deviation

SNR can be thought for giving weights to the
probabilities obtained from the individual GCMs as it
measures the individual GCM’s predictability. GCM having
higher SNR value represents more predictability. In this
method, GCMs having higher SNR should be assigned more
weights as compared to GCMs having less SNR (assuming
weight function as a monotonic function). By this method,

weight function can be determined as wi ¼
SNR0:5

i

XN

i¼1

SNR0:5
i

where,

SNRi is the signal-to-noise ratio of the ith GCM. The reason
behind taking the power as 0.5 is same as mentioned in
PMME3. This technique will be termed as PMME4 in the
rest of the study.

3.2.5. PMME5

Another technique for MME is to give weights to the
GCMs on the basis of their biases. In other words, GCMs
having less bias will be given more weighting than those
having more bias. This method uses the inverses of the root
mean square errors of the GCM forecasts in the training
period as weighting factors (Casanova and Ahrens, 2009;
Devineni and Sankarasubramanian, 2010). Weight function

can be set as wi ¼
r0:5
i

XN

i¼1

r0:5
i

where, ri is the inverse of the

root-mean square error of the ith GCM. Here also we take the
power as 0.5 similar to other PMME methods. This technique
will be termed as PMME5 in the rest of the study.

Since the present study deals with only 27 years data
(1982–2008) of GCMs and observation, a leave one out
method has been carried out for cross validation, while
calculating the probabilities using all the above-men-
tioned probabilistic multi-model ensemble techniques, as
recommended by the World Meteorological Organization
(WMO) standardized verification system (WMO–SVS,
2002).
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 Result and discussion

. Rank probability skill score (RPSS)

The hindcasts of seven GCMs have been used for the
esent study for the period 1982 to 2008. Tercile-
obabilities of each individual GCM have been calculated
ing Eq. (1). For the skill assessment of each GCM’s
obabilistic prediction, rank probability skill score (RPSS)
used. The RPSS measures cumulative squared error
tween categorical (i.e., tercile category) forecast proba-
lities and the reference categorical probabilities (Weigel
 al., 2007). In common practice, climatological probabili-
 (i.e. one-third for each of the tercile category) is used for
nerating reference forecast. For perfect prediction, the
lue of RPSS is equal to 1, whereas RPSS having 0 refers no
provement over climatological forecast and negative
lues of RPSS suggest that the forecast strategies are
orse than the climatological strategy. There is no
alytical formula or look up table for the statistical
nificance levels of the RPSS. However, some of the
dies (Goddard and Dilley, 2005; Hamill, 1999; Kulkarni

 al., 2012) have discussed sampling techniques for the
tistical significance of RPSS. Kulkarni et al. (2012) have

ed Monte Carlo re-sampling for the statistical signifi-
nce of RPSS in a seasonal prediction and they concluded

skillful. The RPSS of the individual GCM is shown in Fig. 1,
in which the regions having positive RPSS are shaded. It is
seen that the GCMs have different skills in different regions
of the country as none of them has uniform skill for all the
regions. For instance, the CFS model rainfall has the best
RPSS over northern and northwestern parts of India.
MOM3-AC, MOM3-DC and JAM models have shown higher
positive RPSS in some areas of central and southern parts of
the country. However, the GML model has significant skill
in some parts of eastern zone and E4p5 model is having a
few skillful grid points in northern parts. Therefore, almost
all the models do not have any consistent skill in terms of
RPSS, except a few grid points randomly scattered over the
country.

Recent studies show that the individual GCMs have
poor performance of prediction of ISMR (Acharya et al.,
2011, 2012c; Preethi et al., 2010; Singh et al., 2012). In this
section, skills of five Probabilistic Multi-Model Ensemble
(PMME) techniques, described in Section 3.2, have been
examined. Fig. 2 shows the RPSS of each of the five
techniques considered in this study. The RPSS of PMME1
(Fig. 2(a)) is showing more skill in some parts of central,
northern and southern India. The PMME1 scheme is based
on simple averaging of all probabilities from individual
GCMs, i.e., giving equal weight to each. As a result, a good
model gets the same weight as a model with low skill in

. 1. Rank probability skill score (RPSS) of individual GCM viz. a) CFS, b) E4p5, c) GML, d) JAM, e) MOM3-AC, f) MOM3-DC and g) E4p5-CFS during hindcast

riod (1982–2008) for seasonal mean rainfall of June–July–August–September (JJAS) with May start (lead-1). Areas with RPSS values > 0 have been

aded.
is method. It may be noted that three out of seven
at any prediction having positive RPSS is significantly th
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odels show more positive RPSS in some parts of central
nd southern regions of the country. This behavior is
eflected in the skill of PMME1. The skill of PMME2

ethod, which is based on the ensemble member size in
rms of RPSS, is shown in Fig. 2(b). The region having

positive RPSS in PMME2 is same as that for PMME1.
However, the skill is getting degraded, i.e. the RPSS is
positive, but the magnitude is less than PMME1. RPSS of
PMME3 (based on regression coefficient) and PMME4
(based on SNR) (Fig. 2(c) and (d)) shows almost the same

ig. 2. Rank probability skill score (RPSS) of five different probabilistic multi-model ensemble schemes (a to e) during hindcast period (1982–2008) for

asonal mean rainfall of June–July–August–September (JJAS) with May start (lead-1). Areas with RPSS values > 0 have been shaded.

ig. 3. Number of grid points having rank probability skill score (RPSS) > 0 to 0.2 of five different probabilistic multi-model ensemble schemes during
indcast period (1982–2008) for seasonal mean rainfall of June–July–August–September (JJAS) with May start (lead-1).
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ill as PMME1. However, the RPSS of PMME3 is enhancing
 southern part of the country as compared to PMME1,
hile the skill of PMME4 is degrading in the same zone. The
ill of PMME5, which is based on RMSE, is the lowest among

 the methods. The number of grid points having positive
SS is much lesser than other techniques. Therefore, it has
en noticed from the RPSS that among all PMME
chniques, PMME1 and PMME3 performed better.

Further, to quantify the above conclusion, the number
 grids having positive RPSS was calculated for each
ethod. Specifically, we calculated the number of grids
eater than 0 to 0.2 for all the methods and the results are
esented in Fig. 3. It is already discussed that all the
obabilistic prediction schemes are calculated in each of
7 grids, which is the total number of grid points on the
d mass of India. Fig. 3 depicts that the number of grid

ints having RPSS > 0 is little higher in PMME1 (141
ints) than the PMME3 (138 points). Furthermore,
ME5 method has the lowest number of grids having

sitive RPSS (70 points). In the remaining positive
tegory, (i.e. RPSS > 0.05, RPSS > 0.1, RPSS > 0.15 and
SS > 0.2) it is found that PMME1 and PMME3 has more
id points than other methods. However, the number of
id points having positive RPSS is higher in PMME3 than

 PMME1. Therefore, it can be concluded that the RPSS of
ME1 and PMME3 is better than other methods. To

antify the improvement of PMME3 over PMME1, the
fference in RPSS of both the schemes (PMME3 minus

ME1) is also calculated and plotted in Fig. 4. It is seen
at, more or less, skill is improved for most parts of the
untry in PMME3 method compared to PMME1.

. Relative operating characteristic (ROC) curve

The skill of all PMME techniques is also examined in
rms of relative operating characteristic (ROC) curve

describes the varying quality of the prediction system at
different levels of confidence in the warning, i.e. the
forecast probability which is helping to identify the
optimum strategy in any specific application (Mason
and Graham, 1999). In other words, ROC curves measure
the ability of the forecasts to detect the occurrence and
non-occurrence of a seasonal climate event, thus measure
resolution (Min et al., 2009). The ROC is a measure of the
quality of probability prediction, which compares the hit
rate to the corresponding false-alarm rate (Kharin and
Zwiers, 2003b; Mason and Graham, 1999). Both ratios (hit
rate and false-alarm rate) can be calculated simply from
the contingency table. Using standard definitions of hit (h),
false alarm rate (f), miss (m) and correct rejection (cr) from
a 2 � 2 contingency table (Table 2) for verification of a
binary forecast system, both the ratios can be calculated as
(Mason and Graham, 1999):

� hit rate (HR) = h/(h + m);
� false-alarm rate (FAR) = f/(f + cr).

For perfect forecast system, HR = 1 and FAR = 0. Hence,
ROC curve can be estimated by changing the different
thresholds (for example, 10%, 20%,. . .. . ., 100%) and plotting
the leading HR against FAR (Kharin and Zwiers, 2003b). In
this system, there is skill only when the hit rate exceeds the
false-alarm rate. Therefore, for a skilful forecast ROC will
lie above the 458 line (measured counterclockwise from
the origin) and the total area under the curve will be
greater than 50%. For a perfect forecast system, ROC curve
connects the points (0,0), (0,1) and (1,1) and for a no-skill
forecast, ROC curve will coincide with the 458 line (Kharin
and Zwiers, 2003b).

Aggregated ROC (pooled over 357 grid points) curves
and Area Under Curve (AUC) for all the PMME techniques
are shown in Fig. 5. The ROC curve and AUC are calculated
for the 11 thresholds or critical points between 0% to 100%.
It is found that for all the methods, the ROC curve for near-
normal (NN) category is almost over ‘‘no-skill’’ line (458
lines from the origin) and its AUC is nearly 50% in every
case (Fig. 5). Therefore, none of the techniques is able to
discriminate strongly between events of occurrences and
non-occurrences for the NN category. For all the critical
probabilities or thresholds, the chances of hit and false-
alarm are the same, i.e. it cannot distinguish between
events of occurrences and non-occurrences precisely. It
may be due to the fact that NN category is bounded by both
the sides while AN and BN categories are unbounded at one
side (Kharin and Zwiers, 2003b).

For the BN and AN categories, the ROC curves behave
differently and almost opposite to each other for almost all

. 4. Difference of RPSS between PMME3 and PMME1 (PMME3 minus

ME1) during hindcast period (1982–2008) for seasonal mean rainfall

June–July–August–September (JJAS) with May start (lead-1).

Table 2

The 2 � 2 contingency table for verification of a binary forecasting system.

Forecast

Observation Warning No Warning

Event HIT (h) MISS (m)

Non-event False

Alarm (f)

CORRECT

REJECTION (cr)
e PMME techniques. It is noticed that, for the higher
ason, 1982). For a probabilistic system, the ROC curve th
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resholds, the ROC curve is lying above the diagonal line
o skill) for the BN category. Conversely, ROC line is lying

lmost on the diagonal line for AN category. However, for
wer critical thresholds values, the ROC curve of AN is
ing above the diagonal line, whereas the ROC curve is

lmost on diagonal line for BN category. For this typical
ature of ROC pertaining to the categories of AN and BN,
e aggregate AUC is lesser than 50%. Therefore, in view of
e above ROC curve analysis, it can be interpreted that the

OC is not getting influenced significantly by the type of
eights assigned to the probabilities. It implies that the

robability prediction by all the GCMs and PMME methods
annot discriminate between events of occurrences and
on-occurrences.

. Summary and concluding remarks

In the present study, it has been discussed why the
rediction of Indian summer monsoon rainfall (ISMR)
hould be made in probabilistic manner and it has been
stablished through a survey of literatures that the
robabilistic approach should be adopted to deal with
e intrinsic intricacy of the physical processes associated
ith the monsoon. In recent years, the probabilistic
recast based on GCMs has drawn considerable attention.

he probabilistic forecast can be generated in parametric
ssuming Gaussian distribution) as well as non-paramet-

ic (counting method) ways. The present study deals with

the non-parametric approach that requires no assumption
about the form of the forecast distribution. The main aim of
the study is to document the present skill level of
probabilistic prediction by non-parametric method and
to make probabilistic multi-model ensemble to provide a
useful benchmark for further improvement. The rainfall
products of seven general circulation models (GCM) and
high resolution observed data are used for the present
study for the period of 1982–2008.

At the outset, probabilistic prediction from each of the
GCMs has been generated by non-parametric methods for
tercile categories (viz. below normal (BN), near-normal
(NN) and above normal (AN)). The skill of those predictions
is measured in terms of Rank Probability Skill Score (RPSS).
Further five different types of multi-model ensemble
schemes for combining probabilities from each GCM are
also applied. These methods are different in assigning
weights to the probabilities from each GCM. The simplest
method is to give equal weight to all the probabilities from
individual GCMs (PMME1). In another method, ensemble
members have been used for estimation of the weights
(PMME2). Whereas in third technique, the regression
coefficient between individual ensemble mean of GCMs
and observation is regarded as weight for the combination
of probabilities (PMME3). In the remaining two methods,
signal-to-noise ratio (SNR) of each individual GCM
(PMME4) and inverses of the root mean square error
coefficients between individual ensemble mean of GCMs

ig. 5. The aggregated ROC curves and area under curve (AUC) five different probabilistic multi-model ensemble schemes (a to e) during hindcast period

982–2008) for seasonal mean rainfall of June–July–August–September (JJAS).
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d observation (PMME5) are used for determining the
eights. The performance of such PMME schemes is
sessed rigorously in terms of RPSS and ROC. In summary,
e major outcomes of the study are presented below:

it has been found that, due to the presence of inherent
biases, probabilistic prediction of individual GCM cannot
be reliable and consistent in terms of RPSS;
the RPSS of these five methods are also examined. It is
found that, RPSS of PMME1 and PMME3 is better than all
other methods. The numbers of grids having positive
RPSS have been calculated for each method for more
quantification. It is noticed that PMME1 and PMME3
have more positive grid points as compared to other
schemes while the later one has more positive grid
points than others in all the categories. The improvement
of skill in PMME3 over PMME1 is also found from the
difference of RPSS among them;
furthermore, the performance of all probabilistic multi-
model ensemble (PMME) techniques is also examined by
relative operating characteristic (ROC) curve. It is found
that, the probabilities in NN category for all the methods
cannot distinguish between events of occurrences and
non-occurrences strongly. The behavior of ROC has been
found almost opposite to each other for BN and AN
categories in more or less all the PMME techniques. In
particular, the ROC curve of BN is lying above the
diagonal line (‘‘no-skill’’). However, in the case of AN
category, the ROC curve is almost coinciding with the
diagonal line for higher critical/threshold values, and for
lower critical/threshold values it is just vice versa. It can
be concluded that the ROC is not getting influenced
significantly by the type of assigning weights to the
probabilities by all PMME techniques.

Therefore, in view of the above discussion, it can be
ncluded that the skill of the PMME techniques,
pecially PMME1 and PMME3, are better than the
matological probability as well as individual GCMs,
t they may not be able to make strong discrimination
tween the events of occurrences and non-occurrences.
wever, the present study is insufficient by the length of

e study period (1982–2008). In future, the present study
ay be extended by increasing the study period and
nsidering some sophisticated PMME techniques as well

 using a Bayesian approach for further enhancement of
ill of probabilistic predictions for Indian summer
onsoon rainfall.
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