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A B S T R A C T

Variation of stomatal frequency (stomatal density and stomatal index) includes genetically-

based, potentially-adaptive variation, and variation due to phenotypic plasticity, the degree

of which may be fundamental to the ability to maintain high water-use efficiency and thus to

deal with environmental change. We analysed stomatal frequency and morphology (pore

length, pore width) in leaves from several individuals from nine populations of four sub-

species of the Leonardoxa africana complex. The dataset represents a hierarchical sampling

wherein factors are nested within each level (leaves in individuals, individuals in sites, etc.),

allowing estimation of the contribution of different levels to overall variation, using

variance-component analysis. SI showed significant variation among sites (‘‘site’’ is largely

confounded with ‘‘sub-species’’), being highest in the sub-species localized in the highest-

elevation site. However, most of the observed variance was accounted for at intra-site and

intra-individual levels. This variance could reflect great phenotypic plasticity, presumably in

response to highly local variation in micro-environmental conditions.

� 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

La variation de la fréquence stomatique (densité de stomates [SD] et index stomatique [SI])

inclut des variations potentiellement adaptatives et des variations liées à la plasticité

phénotypique, dont le degré peut être fondamental dans la régulation et pour le maintien

d’une haute « water-use efficiency » et donc pour faire face aux changements

environnementaux. Nous avons analysé les fréquences et la morphologie (longueur et

largeur des pores) de stomates de feuilles provenant de neuf populations de quatre

Corresponding author.

E-mail address: walter.finsinger@univ-montp2.fr (W. Finsinger).

These authors contributed equally to the manuscript.

Contents lists available at SciVerse ScienceDirect

Comptes Rendus Geoscience

w ww.s c ien ced i rec t . c o m
31-0713/$ – see front matter � 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

p://dx.doi.org/10.1016/j.crte.2013.06.003

http://crossmark.crossref.org/dialog/?doi=10.1016/j.crte.2013.06.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crte.2013.06.003&domain=pdf
http://dx.doi.org/10.1016/j.crte.2013.06.003
mailto:walter.finsinger@univ-montp2.fr
http://www.sciencedirect.com/science/journal/16310713
http://dx.doi.org/10.1016/j.crte.2013.06.003


1

e
m
m
2
d
h
ty
to
m
fu
m

p
c
w
e
th
v
2
(G
T
h
s
e
o
s
W
H
a
2
a
r
a

b
s
g
A

b
la
a
a
fr
to

W. Finsinger et al. / C. R. Geoscience 345 (2013) 350–359 351
. Introduction

The need to understand how species respond to
nvironmental variation has become critical as environ-
ental changes have demonstrable ecological effects in
any natural systems (Parmesan, 2006; Walther et al.,

002). Determining how individuals base key life-history
ecisions on environmental cues is important to predict
ow environmental changes will influence them. Pheno-
pic plasticity, defined as the ability of a single genotype
 modify its phenotype under heterogeneous environ-
ental conditions (Houston and McNamara, 1992), is
ndamental to a plant’s ability to cope with environ-
ental change at various temporal and spatial scales.

Stomata regulate the permeability of leaves of terrestrial
lants to gases (gas phase conductance), so that the leaves
an absorb CO2 for photosynthesis without losing excessive
ater vapour (Raven, 2002). There is at present sufficient

vidence to suggest that perennial terrestrial plants regulate
eir gas exchange (and thus CO2 uptake and water loss) by

arying the opening of the stomatal pores (Young et al.,
006) and by changing the stomatal frequency on leaves
agen et al., 2011; Hetherington and Woodward, 2003).

hus, to optimize their resource use and evade costs of
aving excess stomata, plants could be expected to adjust
tomatal frequency (Roth-Nebelsick, 2007). Amongst sev-
ral environmental factors, atmospheric CO2 has often been
bserved to have a strong influence in the regulation of
tomatal frequency (Chen et al., 2001; Hetherington and

oodward, 2003; Wagner et al., 1996; Woodward, 1987).
owever, most scholars agree with the view that responses
re species-specific (Marchi et al., 2004; Tognetti et al.,
000) and include cases in which species do not respond at
ll or respond to increasing atmospheric CO2 by increasing,
ather than decreasing, stomatal frequency (Hetherington
nd Woodward, 2003).

Although strong plastic (developmental) responses have
een observed in stomatal frequency (stomatal density and
tomatal index [SI]) (Royer, 2001), there is clear evidence of
enetic control of the CO2 response (Jordan, 2011). Thus, in
rabidopsis thaliana, the HIC gene codes for CO2 responses in
oth stomatal density and index (Gray et al., 2000). The
tter evidence strongly suggests that stomatal frequencies

re determined (at least to some extent) by the genotype
nd implies that plants can regulate their stomatal
equency by phenotypic plasticity, allowing them to adapt

 changing environmental conditions. For example, it is

often observed that plants have higher stomatal density
when growing at lower CO2 concentrations (Hetherington
and Woodward, 2003; Woodward, 1987) or at higher
elevation (where the partial pressure of CO2 is presumably
lower) (McElwain, 2004). The negative relationship
between CO2 concentration (or partial pressure) and
stomatal frequency has often been used in palaeoecological
investigations to reconstruct temporal changes of atmo-
spheric CO2 concentrations using (sub)fossil leaf cuticles
collected from sedimentary archives (Beerling, 1999;
Beerling and Chaloner, 1993; McElwain and Chaloner,
1995; McElwain et al., 2002; Steinthorsdottir et al., 2013).
However, such reconstructions are based on the assumption
that environmental changes at smaller scales (i.e., among
individuals or within individuals of the same population) are
negligible compared to the stomatal-frequency changes
caused by varying CO2 concentrations (Finsinger and
Wagner-Cremer, 2009). Although estimates of the stoma-
tal-frequency variation at intra-population and intra-
individual level might be necessary to fully account for
uncertainties in paleo-CO2 reconstructions, the analysis of
modern leaves and of these sources of variation is rarely
conducted (Chen et al., 2001).

Here we aimed to compare stomatal frequency within
the Leonardoxa africana complex (Fabaceae–Caesalpinioi-
deae) at different hierarchical levels: among sub-species,
among populations belonging to the same sub-species,
among individuals of the same population, and within
individuals. We were particularly interested in investigating
at which hierarchical level the greatest changes in the SI
were observed and in illustrating the role of environmental
variables as potential predictors for cuticle-morphology
characteristics (stomatal frequency and stomatal pore size).
Our investigation focuses principally on variations of SI
because this variable allows a more appropriate comparison
among leaves, since the SI is less biased by external factors
than is stomatal density (Beerling, 1999).

2. Material and methods

Leonardoxa africana (Baill.) Aubréville (Fabaceae: Cae-
salpinioideae) is a species complex native to Atlantic central
Africa (Fig. 1) that comprises four distinct, mostly allopatric
subspecies (L. a. africana, L. a. letouzeyi, L. a. gracilicaulis, and
L. a. rumpiensis). These have been described and identified
based on morphological characters, particularly those
related to the plants’ interactions with ants (McKey, 2000).

sous-espèces du complexe Leonardoxa africana. Le jeu de données représente un

échantillonnage hiérarchisé dans lequel les facteurs sont emboı̂tés à chaque niveau

(feuilles dans individus, individus dans site/populations, etc.). En utilisant une

« variance-component analysis », on a estimé la contribution de chaque niveau à la

variation globale. SI est significativement différent entre les sites et atteint les valeurs

les plus élevées dans le site/sous-espèce localisé à la plus haute altitude. Néanmoins, la

plus grande variance est enregistrée aux niveaux intra-sites et intra-individus. Cela

pourrait être le reflet d’une grande plasticité phénotypique qui répond à une forte

variation locale des conditions micro-environnementales.

� 2013 Académie des sciences. Publié par Elsevier Masson SAS. Tous droits réservés.
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These four taxa of small- to medium-sized understory
es are located in lower Guinea forests from extreme

uth-eastern Nigeria to Gabon (Fig. 1). Leonardoxa

ricana ssp. gracilicaulis McKey is a non-myrmecophyte
volved in loose associations with opportunistic ants
tracted to foliar nectaries that is most common on hills
cKey, 2000). Leonardoxa africana ssp. rumpiensis McKey
s hollow internodes, inhabited by a variety of opportu-
stic ants (Chenuil and McKey, 1996; McKey, 2000). It
pears to be very localized in submontane forests in the
mpi Hills. Leonardoxa africana ssp. letouzeyi McKey is

und in lowland forests in extreme western Cameroon
d south-eastern Nigeria. Although its juvenile indivi-
als can shelter several species of arboricolous ants in
eir internodes, mature trees of L. a. letouzeyi are
sociated specifically with a single ant species, Aphomo-

yrmex afer Emery (Gaume and McKey, 1998; McKey,
91, 2000). Subspecies rumpiensis and letouzeyi may be
nsidered as morphologically and ecologically ‘transi-
nal’ myrmecophytes (Brouat and McKey, 2000; Fiala

 al., 1999). The fourth sub-species of the complex, L.

ricana ssp. africana, is morphologically the most specia-
ed myrmecophyte. It occurs in lowland coastal forests in
uthern Cameroon. Leonardoxa a. africana is associated, as
rly as the seedling stage, with one specific mutualist ant

species, Petalomyrmex phylax Snelling (McKey, 1984,
2000). All four subspecies form pinnately compound
leaves composed of two to four leaflet pairs.

2.1. Sampling design, leaf collection and cuticle analysis

Mature leaves of the four Leonardoxa subspecies were
collected and dried at room temperature. All leaves were
labelled with the subspecies name, the population, and the
individual to which they belonged. We analysed two sets
of leaves of Leonardoxa to investigate variation of cuticle-
morphology characteristics at different hierarchical levels.
The larger set comprised at least two leaves (sometimes
three) for each individual growing in the sampled
populations (Table 1). In the smaller set (hereafter named
the ‘leaflet-comparison dataset’), all leaflets from one
compound leaf were analysed for four individuals per
species (Table 2). For the leaflet-comparison dataset
(which included leaves of L. a. africana and L. a. gracilicaulis

with three leaflet pairs), leaflet position within the leaves
(proximal, middle, distal leaflet) was also noted.

For cuticle analysis, a fragment of 0.5 cm2 was cut with
a knife, bleached in a 5% solution of NaHClO2 at �60 8C for
5–6 h and then washed in distilled water. The bleaching
caused the separation of the abaxial and adaxial leaf
epidermis, allowing the stomata-bearing abaxial epider-
mis to be easily mounted on microscopic slides with
glycerine jelly (Fig. 2). Cuticle analysis was performed
using an Olympus BX 60 transmitted-light microscope
(Hamburg, Germany) at �500 enlargements connected to a
Leica DFC 300 FX R2 video camera (Münster, Germany).
The Leica Application Suite v3.7 image-analysis software
allowed measurement, on count fields of 0.05 mm2, of
stomatal density (SD) and epidermal-cell density (ED).
Stomatal frequency (SI) was derived using the formula
SI = (SD/[ED + SD] � 100) after Salisbury (1927). For each
leaf, up to seven count fields were analysed and in addition
20 stomata were measured for pore length (PL) and pore
width (PW), following Finsinger and Wagner-Cremer
(2009). Two analysts performed the measurements of
cuticle morphology, with the larger set being analysed by
TDS (Dos Santos, 2011) and the smaller leaflet-comparison
dataset analysed by WF.

2.2. Environmental variables

For each population, 20 environmental variables
(Appendix S1) were extracted with the Diva-GIS software
from the WorldClim database (Hijmans et al., 2005) that
summarizes climate indices over a period of 50 years
(AD 1950–2000). The dataset has a spatial resolution of 30
arc s (�1 km) and allows obtaining accurate estimates of
temperature and precipitation and derived climate indices
(seasonality of temperature and precipitation, isotherm-
ality) in mountainous regions with large climatic gradients
over small horizontal scales.

2.3. Numerical analyses

The dataset represents a hierarchical sampling wherein
factors are nested within each category (populations in

. 1. Location of the studied populations and contemporary

tributions of Leonardoxa africana subspecies.

. 1. Emplacement des populations étudiées et distribution actuelle des

s-espèces de Leonardoxa africana.

apted from McKey, 2000.
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lex.

exe L. africana.

L. a. rumpiensis

) Ebodjé (86 m) Dikome (1148 m)

259.2� 72.4 354.4� 97.2

3116.0� 423.8 3531.8� 455.6

7.7� 2.1 9.3� 3.1

12.0� 1.2 13.8� 1.3
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Means and standard deviations of cuticle morphology parameters measured on leaves from different populations of subspecies of the Leonardoxa africana comp

Tableau 1

Moyennes et écart-types des paramètres de morphologie cuticulaire mesurées sur des feuilles provenant de différentes populations des sous-espèces du compl

L. a. gracilicaulis L. a. letouzeyi L. a. africana

Population Boundé (84 m) Ebogo (669 m) Mt Kala (931 m) Iboti (1009 m) Nguti (229 m) Korup (351 m) Boundé (84 m

SD (# mm�2) 243.3� 63.4 298.3� 108.3 239.6� 75.3 236� 61.7 233.9� 82.4 288.5� 102.4 229.5� 63.2

ED (# mm�2) 3446.6� 437.6 3339.2� 404.0 3233.8� 483.2 3533.3� 471.4 3492.7� 696.0 3071.5� 445.4 3200.9� 392.3

SI (%) 6.7� 1.9 8.3� 3.0 6.9� 2.2 6.3� 1.6 6.3� 1.9 8.6� 2.9 6.7� 1.8

PL (mm) 13.5� 1.2 13.2� 1.2 14.3� 1.4 13.5� 1.3 13.6� 1.1 13.4� 1.3 13.2� 1.0

PW (mm) 7.4� 0.1 7.7� 1.27 8.9� 1.2 7.3� 1.4 7.4� 0.9 8.3� 1.1 7.5� 1.0

# individuals 10 10 10 8 10 10 10

# leaves sampled 25 25 22 16 23 25 21

SD: stomatal density; ED: epidermal cell density; SI: stomatal index; PL: pore length; PW: pore width.

Table 2

Means and standard deviations of cuticle morphology parameters measured on different leaflets of leaves from different populations of subspecies of the Leona

Tableau 2

Moyennes et écart-types des paramètres de morphologie cuticulaire mesurées sur des feuilles provenant de différentes populations des sous-espèces du compl

L. a. africana L. a. gracilica

Population Boundé (84 m) Ebodjé (86 m) Boundé (84 m

Leaflet position Distal Middle Proximal Distal Middle Proximal Distal

SD (# mm�2) 284� 47.7 312� 46.0 312� 22.8 293� 76.3 292� 55.4 285� 65.2 348.0� 71.8

ED (# mm�2) 3064� 188.3 2864.0� 28.5 3140� 104.9 3224� 325.8 3173.3� 241.6 3570� 705.8 3421.6� 411

SI (%) 8.49� 1.40 9.82� 1.38 9.04� 0.69 8.36� 2.08 8.49� 1.82 7.63� 2.14 9.25� 1.78

PL (mm) 12.4� 1.0 11.9� 0.5 12.4� 0.8 12.7� 0.9 12.6� 0.8 12.6� 1.0 13.6� 1.3

PW (mm) 6.6� 0.6 7.1� 0.7 6.8� 0.4 7.1� 0.8 6.9� 0.8 7.3� 0.7 7.7� 0.8

SD: stomatal density; ED: epidermal cell density; SI: stomatal index; PL: pore length; PW: pore width.
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bspecies, individuals in populations, etc.). To investigate
 which hierarchical level most of the variation in SI
iginates, we analysed the dataset using a variance-
mponents analysis (Crawley, 2005, p. 638; Sims et al.,
06). We fitted to the L. africana SI dataset a linear mixed-

fect model that included each of the categorical factors as
random effect plus a random error term (e). The linear
ixed model was fitted to these data using restricted
aximum likelihood (REML) as implemented in the nlme

v3.1–107 library (Pinheiro et al., 2013) in R v2.14 (R Core
Development Team, 2012).

The relationships between climate variables are
illustrated with a standardized principal component
analysis (PCA; based on a correlation matrix with focusing
on inter-subspecies correlations and standardizing sub-
species scores by standard deviations, with centering and
standardization by subspecies). This choice is particularly
appropriate if the variables are measured in different

. 2. Images of leaf cuticles of the four subspecies of the Leonardoxa complex analysed in this study. A, B. Leonardoxa africana subsp. gracilicaulis from

ogo (A) having higher SI and SD than leaf from Mt. Kala (B). C. Leonardoxa africana subsp. letouzeyi. D. Leonardoxa africana subsp. africana. E. Leonardoxa

icana subsp. rumpiensis. F. Image of compound leaf of L. a. africana (color available online).

. 2. Image des cuticules de feuille des quatre sous-espèces de Leonardoxa analysées dans cette étude. A, B. Leonardoxa africana subsp. gracilicaulis

venant d’Ebogo (A) et de Mt. Kala (B). C. Leonardoxa africana subsp. letouzeyi. D. Leonardoxa africana subsp. africana. E. Leonardoxa africana subsp.

piensis. F. Image de feuille de L. a. africana.
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nits, e.g. when the data are actually environmental
ariables (Leps and Šmilauer, 2003). The relationship
etween stomata data (SI, PL and PW) and climate
ariables was illustrated with PCA (based on a covariance
atrix with focusing on inter-subspecies correlations,

ubspecies scores not divided by standard deviation,
entering by subspecies) and climate data added pas-
ively. All ordinations were calculated in Canoco 4.5 (Ter
raak and Šmilauer, 2003).

. Results

Means and standard deviations of SD, ED, PL, and PW
re listed in Tables 1 and 2 by subspecies, population, and
aflet position within compound leaves. In the nine
opulations of the four subspecies (Table 1), SD ranged
etween 229 and 354 stomata mm�2. All populations had
eans lower than 300 stomata mm�2 except that of L. a.

umpiensis at Dikome. Mean values of ED ranged between
3000 and �3500 cells mm�2 without notable extreme
alues. Similarly to mean SD, mean SI values were
elatively homogeneous for most of the populations (with

ean SI values ranging from 6 to 7%) but three populations
ad higher values: L. a. gracilicaulis at Ebogo (8.3%), L. a.

fricana at Ebodjé (7.7%), and L. a. rumpiensis at Dikome
.3%). The variability of SI values, as estimated based on
e standard deviations, accounts for 20–30% of the mean

I for all populations.
Mean values of S.D., ED, and SI measured on different

aflets of compound leaves from L. a. africana and
. a. gracilicaulis from Boundé (Table 2) differed from

ose listed in Table 1, likely indicating an observer effect.
or SI, leaflet position was not a statistically significant
ctor for L. a. africana (ANOVA, p = 0.298), but was

ignificant for L. a. gracilicaulis (ANOVA, p = 0.0489) (Fig. 3).

SI and SD were strongly positively correlated in both
datasets (r = 0.86–0.88; p < 0.001), indicating that varia-
tion in SI and SD was mainly due to differences in stomatal
initiation rather than in the lateral expansion of epidermal
cells.

The estimated variance components for SI were some-
times higher than the residual variance (Table 3). Variance
among leaflets was always smaller than the intra-site
(among-individual) variance (�10% vs �40–50% of the
variance, respectively), reflecting the marked difference of
SI among individuals in comparison to the differences
among leaflets of the same individual. Intra-site variance
was mostly in the order of magnitude of residual variance
except for L. a. gracilicaulis (51% vs 36% of the variance).
Also in the full dataset (where among-leaflet variance was
not taken into account), the intra-site variance was in most
cases larger than variance at other hierarchical levels.

The first two Principal Component Analysis (PCA) axes
of the climate data (Fig. 4a) for each of the nine populations
explained �84% of the variance in the climate data (46 and
38%, respectively). The climate variables with the highest
loading on the first PCA axis were altitude and mean
annual temperature, whereas seasonality of temperature
and precipitation, and isothermality had higher loadings
on the second PCA axis.

The PCA of cuticle morphology parameters (Fig. 4b)
placed SI with highest loading on the first axis (which
explained �75% of the variance in the stomata data),
whereas PL and PW were strongly correlated with each
other and with the second PCA axis. Although the overall
absence of distinct clusters of populations in the PCA biplot
illustrates readily the high intra-population variability of
stomatal morphology and frequency, some patterns seem
to emerge. Populations having leaves with high SI values
(Dikome [L. a. rumpiensis], Korup [L. a. letouzeyi], and Ebogo
[L. a. gracilicaulis]) are mostly present towards the left part
of the biplot. Also, whereas leaves from Ebodjé (char-
acterised by low PL and PW values) are mostly located in
the lower part of the biplot, those from Mt Kala are located
in the upper part of the biplot. When added passively to the
PCA with the stomata data, climate variables more strongly
correlated with the first PCA axis are those related to the
seasonality of temperature and precipitation, and iso-
thermality.

4. Discussion

Regional environmental conditions only account for a
relatively small part of the intra-taxon variability, as
shown by higher variance of SI at the intra-site level than
variance at higher and lower hierarchical levels (intra-
individual, inter-taxon, and inter-site). Inter-site and intra-
site variances of SI were smaller than intra-individual
variance only for L. a. africana, of which the two
populations studied are located at similar altitude and
experience similar climatic conditions (Fig. 4a). This
suggests that in most subspecies leaves within individuals
were less different than leaves among individuals, and that
increasing the number of replicate leaves per individual
would have little impact on the precision of the variance-
component estimates (Solomon, 2005). Inter-site variance

ig. 3. Boxplot illustrating the similarity between SI values in different

aflets (D: distal, M: median, P: proximal) of L. a. africana (LA from

opulations Boundé and Ebodjé) and L. a. gracilicaulis (LG from Boundé).

ig. 3. Boxplot illustrant la similarité entre les valeurs de SI sur différentes

lioles (D : distal, M : médian, P : proximal) de L. a. africana (LA provenant

es populations Boundé et Ebodjé) et L. a. gracilicaulis (LG provenant de

oundé).
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as highest (although it did not exceed intra-site variance)
r L. a. letouzeyi, whose two studied populations also
perience similar climatic conditions (Fig. 4a) but are
cated at different altitudes, with leaves from the higher-
itude population having higher SI values (6.3 � 1.9% vs

 � 2.9%).
Several herbarium studies have demonstrated SI-CO2

lationships in ferns, Gingkoaceae, conifers and angios-
rms (Beerling et al., 1998; Kouwenberg et al., 2003;

Wagner et al., 2007). However, stomatal-frequency data-
sets based on studies of herbarium specimens may
invariably introduce significant variation into any SI-
altitude or SI-CO2 relationship, owing to variation in the
environmental conditions experienced by the sampled
individuals, e.g., in habitats and locations of the individual
trees sampled, or in light environments associated with
different positions of leaves within the canopy (Kürschner,
1997; Smith et al., 2010; Woodward and Bazzaz, 1988).

ble 3

rcentage variance of the Stomatal Index (SI) accounted for by hierarchical factors.

bleau 3

urcentage de variance expliquée par niveau hiérarchique pour l’indice stomatique (SI).

Inter-taxon Inter-site Intra-site Intra-individual Inter-leaflet Residual % variance

eaflet dataset

All 8.0 � 10�7 8.1 � 10�9 45.6 / 12.0 42.4

L. a. africana / 1.4 � 10�6 47.9 / 10.2 41.9

L. a. gracilicaulis / / 51.1 / 12.9 36.0

ull dataset

All 6.2 � 10�6 12.1 40.6 18.9 / 28.3

L. a. letouzeyi 30.2 41.5 7.4 / 20.9

L. a. africana 8.3 17.0 39.4 / 35.3

L. a. gracilicaulis / 9.0 39.6 19.4 / 31.9

L. a. rumpiensis / / 55.6 22.4 / 22.0
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. 4. A. PCA illustrating main patterns of variation of climate indices at the sites where the nine studied populations of the L. africana complex occur. B. PCA

strating the relationships between cuticle-morphology variables (SI, PL, and PW) in individuals of L. africana and climate indices (isothermality, altitude,

sonality of T and P, and mean annual P). Climate variables were added passively in this PCA (color available online).

. 4. A. ACP illustrant les principales tendances de variation des indices climatiques selon les sites où se trouvent les neuf populations étudiées du

mplexe L. africana. B. ACP illustrant les relations entre les variables de morphologie cuticulaire (SI, PL, PW) chez les individus de L. africana et les indices

matiques (isothermalité, altitude, saisonalité de la température et des précipitations, et précipitation annuelle moyenne). Les variables climatiques ont
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Although the CO2 mixing ratio in air remains constant
ver altitudinal gradients, the CO2 partial pressure ( pCO2

, as
easured in Pascals [Pa]) is lower at higher elevation

ecause of the decrease in atmospheric pressure. Several C3

lants show stomatal frequency responses to altitude-
ontrolled changes in pCO2

when CO2 mixing ratio is
naltered (Johnson et al., 2005; Kouwenberg et al., 2003;
oodward and Bazzaz, 1988). In this respect, our data show

ontrasting results: although we analyzed only two
opulations of L. a. letouzeyi, which cover a small altitudinal
ange below 1000 m asl (230 vs 350 m asl), the observed
tomatal-frequency increase could be related to a pCO2

ecrease. Similarly, the fact that the highest SI values
mongst the nine Leonardoxa populations occurred in
. a. rumpiensis growing at Dikome (1148 m asl), the
ighest-altitude site, could also be related to differences

 pCO2
. By contrast, the four populations of L. a. gracilicaulis

at span the greatest altitudinal gradient (�920 m)
mongst the four subspecies do not show an inverse
elationship between stomatal frequency and altitude. In
. a. gracilicaulis, the highest SI values (8.3%) were observed

 the Ebogo population (669 m asl) and the lowest SI values
ere observed at Iboti (1009 m asl). Overall, these results

onfirm the notion that stomatal-frequency differences can
e negligible when comparing populations growing at
ltitudes below 1000 m asl (McElwain, 2004) or when the
O2 gradient is too shallow, and suggest that other factors
verriding the effect of CO2 may have an influence on the SI
alues and thus on the plants’ ecophysiology.

Part of the intra-site variability is certainly related to
ariation among leaflet positions. In fact, our analysis of
aflets from pinnately compound leaves of

. a. gracilicaulis indicated statistically significant differ-
nces in SI among leaflet positions (Fig. 2). Although we did
ot attempt to estimate the intra-leaf (or the intra-leaflet)
ariance with multiple readings on each leaf (leaflet)
mina, as Poole et al. (2000) did in their extensive study of
lnus glutinosa leaves, our results are consistent with the
esults of those studies in showing that intra-leaf
ariability can add significant noise to stomatal fre-
uency-environment relationships.

On the other hand, stomatal frequencies can also be
fluenced at intra-site and intra-individual levels by other
ctors, including the timing of leaf maturation, develop-
ental stage of leaves (Marchi et al., 2008), length of

hoots, and position in the canopy (Chen et al., 2001).
lthough the sampling strategy adopted to collect the
eonardoxa leaves did not take into account most of these
ctors, it is likely that the high variance at intra-site level

eflects phenotypic plasticity within each of the L. africana

ubspecies, presumably in response to highly local
ariation in micro-environmental conditions. In fact,
. africana trees often grow in the shaded understorey,
lthough they sometimes also grow in less shaded
iverside settings (McKey, 2000), and are therefore
xposed to varying degrees of light intensity and micro-
limate conditions, which make them liable to experience
ifferent light regimes. It will be essential to estimate the
fluence of these micro-environmental factors if stomatal

esponses to environmental changes are further studied in
is genus.

Inter-site variance seems to be related to regional
environmental (climatic) conditions, as suggested by the
PCA (Fig. 4). In L. a. gracilicaulis, individuals growing in a
strongly seasonal climate (Iboti, Fig. 4a) were character-
ized by the lowest stomatal frequencies, whereas popula-
tions growing in the least seasonal and most isothermal
climate (Ebogo) had the highest stomatal frequencies
(Table 1). The high SI values in L. a. rumpiensis, the highest
observed in this study, could also be related to environ-
mental conditions, as this subspecies occurs at high
altitude and under low seasonality, in a climate character-
istic of tropical cloud forests. Long leaf lifespan has been
proposed as a factor that may reduce the selective pressure
to regulate stomatal initiation (and thus stomatal density
and index) (Haworth et al., 2011) based on conditions
experienced during the leaf-formation season to optimise
gas exchange in response to major inter-seasonal and
inter-annual environmental changes such as variation in
water availability. In comparison, plants with shorter leaf
lifespans (such as deciduous species) may be better
adapted to optimise for the conditions of the growing
season and for year-to-year fluctuations of environmental
variables (Miller-Rushing et al., 2009; Wagner et al., 1996).
Because Leonardoxa trees possess leaves with a relatively
long lifespan (>3 years) (McKey, 1984), our results may
suggest that Leonardoxa tend to regulate their stomatal
frequencies with respect to the least favourable climate
conditions at the growing site (hydric stress, temperature).
In addition to highlighting the extent of plastic responses,
our study also shows that the two different subspecies
growing at the same site (L. a. gracilicaulis and L. a. africana

at Boundé), exhibit similar stomatal frequency values,
although they are genetically well separated (Léotard et al.,
2008). This may reflect a high degree of adaptation of the
two subspecies to the environmental conditions at Boundé.

5. Conclusions

Our analysis of stomatal parameters at different
hierarchical levels in four Leonardoxa subspecies focussed
on the SI to investigate its variation among subspecies,
among populations of the same subspecies, among
individuals of the same population and among leaves of
the same individual. Only in few cases did we detect clear
relationships between stomatal frequency and altitude
that could reflect the well-known negative SI–CO2

relationship. Although variance of SI at the intra-site level
always exceeded the variance at the inter-site level,
perhaps owing to highly variable micro-environmental
conditions within sites, we could highlight the potential
influence of environmental factors (e.g. seasonality of
precipitation) on the SI at the inter-site level. The long life
span of Leonardoxa leaves may be a key factor that causes
these plants to optimise for year-to-year fluctuations of the
environment with respect to the least favourable climate
conditions at the growing site (hydric stress, temperature).
What emerges, therefore, is that in modern Leonardoxa

trees the stomatal frequency could reflect great phenotypic
plasticity presumably in response to local variation in
micro-environmental conditions (e.g., position in the
canopy, exposure).
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