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e slope aspect: A predisposing factor for landsliding?
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ntroduction

Understanding the roles of predisposed conditions in
trolling the type and pattern of landslides is important
determining the spatial probability of landslide

urrence (i.e., landslide susceptibility) (Carrara et al.,
9; Guzzetti et al., 1999; Soeters and van Westen, 1996).
reover, significant insights regarding the roles of
disposing landslide factors when evaluating landslide
ceptibility (LS) are important for decision makers,
nners, and engineers. To mitigate susceptibility, it is
ortant to know how specific predisposing factors act on
e instability.

During the last few decades, many researchers have
eloped landslide susceptibility maps that use different
istical analysis methods (van Westen et al., 2008 and
rences therein). Independent of the applied analysis
plexity, all statistical methods were based on the

common assumption that ‘‘the past and the present are the
key to the future’’ (Carrara et al., 1995). Thus, the
probability of a landslide occurring within a landslide free
area was determined by comparing the geo-environmental
characteristics of these areas with those in areas where
landslides have occurred (Fell et al., 2008; Kanungo et al.,
2009). For all statistical methods, the conceptual knowl-
edge behind the LS zonation included the following
(Carrara et al., 1995; Van Den Eeckhaut et al., 2006):

� the knowledge of landslide distributions;
� the definition of a set of factors that can be used to

predict the occurrence of a landslide;
� the assessment of statistical relationships between the

predisposing factors and the occurrence of landslides.

The definition of landslide-predisposing factors is not
obvious and requires detailed knowledge of the geomor-
phological evolution of the study areas. Furthermore,
susceptibility analysis at the basin scale implies that the
geo-environmental factors have a low cost/benefits ratio
(i.e., the geo-environmental factors that perform more
efficiently in large areas) (Soeters and van Westen, 1996;
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A B S T R A C T

The influence of slope aspect on the distribution of landslides was studied in the Milia and

Roglio basins in Tuscany, Italy. For each basin, the new Tuscany region landslide inventory

that was initiated in 2010 was used. The landslides were split into separate datasets based

on their prevailing movement typology. To assess the results that were obtained from the

different slope aspect values, maps of the lithology, slope angle, distances to streams, and

distances to tectonic lineaments were included in the bivariate statistical analysis as

comparison terms. For each basin, all of the geo-environmental factor maps were

compared with the different landslide typologies with GIS software. Pearson’s Chi2 (x2)

coefficient was used to test the degree of spatial association between each predictor

variable and landslide type. In addition, Cramer’s V test was used to quantify the strength

of the degree of association. Next, a conditional analysis was applied to all of the possible

combinations that occurred between the slope aspect and other landslide-predisposing

factors. Overall, the slope aspect significantly affected the distribution of superficial

landslide types, but apparently not that of other landslide types.
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van Westen et al., 2008). Among the geo-environmental
factors with a low cost/benefits ratio, the lithology, slope
angle, distance to streams, and distance to tectonic
lineaments are widely accepted as important factors that
are related to the occurrence of landslides (Cevik and
Topal, 2003; Sterlacchini et al., 2011; Yalcin et al., 2011).
Conversely, the importance of slope face orientation (slope
aspect) in the occurrence of landslides is debated. Some
authors consider slope aspect as one of the most important
predisposing factors for landslides (Galli et al., 2008; Lee,
2005; Yalcin and Bulut, 2007). However, others limit the
importance of slope aspect to certain types of landslides
(Atkinsons and Massari, 1998; Luzi and Pergalani, 1999),
whereas several authors have indicated that slope aspect is
unable to predict the development of landslides (Ayalew
and Yamagishi, 2004; Cevik and Topal, 2003; Ohlmacher
and Davis, 2003). The varying effect of slope aspect on
landslide distribution is evident when comparing more
recent landslide susceptibility studies that use robust
multivariate methods (Atkinsons and Massari, 2011;
Blahut et al., 2010; Das et al., 2010; De Rose, 2013; He
et al., 2012; Yalcin et al., 2011).

Overall, the role that the slope aspect plays in predicting
landslides remains unclear.

This study does not attempt to solve this problem
completely. However, it serves to highlight several
considerations that could be useful for understanding
the role that slope aspect plays in the spatial distribution of
landslides. In this study, bivariate and multifactor analysis
between slope aspect and landslide distribution was
conducted in two basins that are situated at similar
latitudes and characterized by different lithological con-
ditions. Moreover, to compare the results from the two
basins, the geo-environmental factors were statistically
analyzed in the basins that had the most important
predisposing landslide factors (i.e., lithology, slope angle,
and distance to streams and to tectonic lineaments).

2. Study areas

The statistical analyses were applied to the Milia and
Roglio basins that occur in the southern and central regions
of Tuscany (Italy), respectively (Fig. 1).

The Milia basin covers an area of 101 km2 with an
average elevation of 336 m above sea level (ranging from
39 to 913 m with a standard deviation of 167.5 m). The
altitude increases from the western to eastern sectors of
the basin with a morphological-structural high at Poggione
Mountain (913 m). Most of the higher order streams
(Strahler, 1952) follow a NE–SW direction and exhibit
intense vertical erosion in the northeastern sector of the
basin. In contrast, lateral erosion dominates in the western
sector.

The Roglio basin covers 160 km2 with an average
elevation of 130.9 m above sea level (ranging from 20 to
500 m with a standard deviation of 72.1 m). The basin has a
predominantly hilly morphology without very steep
slopes. A hypsographic curve is typical of landscapes in
which the connection areas between the valley floor and
the valley slopes are extended. This value increases to a
maximum of 500 m near the morphological-structural

high of Cipressini Mountain. The erosive processes that are
associated with lateral river actions occur with notable
intensities along the Roglio torrent between the central
areas of the basin and up to its confluence with the Era
River (one of the main tributaries of the Arno River, Fig. 1).

In the study basins, compressional events that occurred
before and during the collisional Apennine episode
resulted in a complex sheet stack where the Ligurian
units (s.l.) were placed above the Tuscany Nappe (Cost-
antini et al., 2000, 2002; Fig. 1). These allochthonous units
are characterized by siltitic, argillitic, and fine arenitic
formations and by shale formations with inter-bedded
basalts, gabbros, and serpentinites. The Tuscany Nappe is
mainly represented by a Mesozoic carbonate succession
with few Cretaceous–Tertiary turbiditic outcrops and a
hemipelagic sequence. The Tuscany Nappe is overthrust
above the Monticiano-Roccastrada unit (‘‘Autochthon’’
Metamorphic unit), which is characterized by alternating
phyllites and marbles. After the emplacement of the
Ligurian and Tuscan units, the Neogene–Quaternary
formations were deposited in each basin. The Neogene–
Quaternary formations are representative of continental
and coastal-marine environments and are characterized by
sandy clays and sandy conglomerates.

Ligurian units mostly characterize the Milia basin,
whereas in the Roglio basin Neogene–Quaternary forma-
tions are the more extensive outcrops (Fig. 1).

In both basins, the allochthonous units underwent a
complex deformation history, where at least three folding
phases were related to the pre- and sin-collisional events.
Post-collisional deformations have been extensional since
the Middle Miocene and have resulted in the partial
collapse of the Apennines (Carmignani et al., 1994).
Differential uplift, lowering, and tilting phenomena have
occurred since the Middle Pleistocene and have caused the
rapid sinking of the hydrographic network.

The morphology of the study areas is strongly condi-
tioned by numerous mass movements, including transla-
tional slides, rotational slides, and flows (Cruden and
Varnes, 1996). In the Milia basin, many deep-seated
gravitational slope deformations (DSGSD) (Dramis and
Sorriso-Valvo, 1994) are present. These deformations are
potentially related to the Pleistocene tectonic setting and
base level lowering. From a classification point of view,
these DSGSDs could be considered similar to Sackung
(Capitani et al., 2013). Most of these DSGSDs are involved
in landslide processes.

In the Roglio basin, the dominance of clayey and clayey-
sandy lithologies resulted in genesis, a smooth landscape,
and the development of badlands. The spatial distribution
of the diffuse badlands is related to the slope aspect (Fig. 2).
In fact, among the predisposing factors that were
suggested in the literature, the southern-facing slope is
most favorable in semiarid regions. In this case, more rapid
drying during sunny conditions lead to larger expansion/
contraction cycles in the slope regolith, which results in
superficial cracks (Alexander et al., 2008; Cantón et al.,
2001; Gallart et al., 2012a,b; Torri, 1996). During rainfall
events, rainwater percolates downward quickly in the
superficial cracks as the slope load increases and the sheer
strength of the slope material decreases.
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In both basins, many landslides have developed from
older landslides. Because several aspects can affect rainfall,
discontinuities and sunlight exposure (Dai et al., 2001,
2002), the stabilities of the slope debris are progressively
weakened. The presence of landslide bodies can be
important for influencing the distribution of new land-
slides that are related to slope aspect.

3. Methods

3.1. Bivariate conditional analysis

The conditional analysis is based on Bayes’ Theorem
(Carrara et al., 1995), which states that the probability
P AjBð Þ of that event A (dependent event) occurs depends
on the occurrence of event B (predisposing event). This
probability is determined as the ratio between the
probabilities of the two events occurring simultaneously

Fig. 1. Location of the study areas (a), their hypsographic (b), and geological (c, d) characteristics.

2. The distribution of the badlands with respect to the slope aspect

es.



M. Capitani et al. / C. R. Geoscience 345 (2013) 427–438430
P A \ Bð Þ½ � and the occurrence of the conditioning event
P(B). For independent events, the probability of P AjBð Þ is
equivalent to the probability P(A) of event A. Thus, the
dependency between events A and B increases as the
difference between the probabilities of P AjBð Þ and P(A)
increases. When analyzing the degree of dependence
between two spatial variables, the probability that the
dependent variable occurs is quantified as the ratio of the
area (frequency) that this variable assumes in presence of
the predisposing variable (joined frequency) to the overall
area (frequency) of the predisposing variable.

In the presence of qualitative-nominal and quantitative
spatial variables, the variables must be subdivided
spatially into classes (modalities or unique condition
units) (Giudici, 2005). In this case, the degree of spatial
dependence between the two variables is determined by
analyzing a contingency table (Fabbris, 1997; Giudici,
2005), in which the joined frequencies (nij) of the two
variable modalities (Yi, Xi) are reported (Table 1). From the
contingency table, two variables are independent if the
following conditions are met:

ni1=Nx1 ¼ � � � � � ¼ ni j=Nx j ¼ Nyi=NTot 8 i; j (1)

ni j ¼ Nyi � Nx j

� �
=NTot 8 i; j (2)

where Nyi, Nxj, and NTot are the frequencies of the Y-variable
modalities, X-variable modalities, and sample size, respec-
tively.

Generally, natural variables are not completely depen-
dent or independent. To quantify the degree of dependence
of natural variables, statistical coefficients are generally
obtained from contingency tables. Among these coeffi-
cients, the Pearson’s coefficient (x2) and the Cramér’s
coefficient (V) have been used in recent LS studies (Dewitte
et al., 2010; Jiménez-Perálvarez et al., 2009; Van Den
Eeckhaut et al., 2006).

Based on the theoretical contingency table (Table 1),
Pearson’s x2 can be used to evaluate the degree of
dependence between two variables (Y, X). This evaluation
is conducted by determining the difference between the
observed joined frequencies (nij) and the expected joined
frequencies (ñij) when the independence between the two
variables is verified. Therefore, Pearson’s x2 is calculated as
follows:

x2 ¼
XI

J

PI
J ni j � ñi jð Þ2

ñi j
(3)

where ñij = (Nyi� Nxj)/NTot (i = 1,2,. . ., I; j = 1,2,. . ., J).
The value of Pearson’s x2 is affected by sample size

(NTot) (i.e., x2 increases as NTot increases). This relationship

indicates that Pearson’s x2 test can be used as a relative
measure of the degree of dependence between two
variables. In addition, Pearson’s x2 test cannot be used
as a comparison term between studies that were
conducted in different contexts (basins). In contrast, the
value of Cramér’s V is not limited by the context, because it
compares the observed conditional probability distribu-
tion with the expected probability distribution under non-
dependence conditions. In addition, Cramér’s V standar-
dizes this comparison by eliminating the effects of NTot

(Kendall and Stuart, 1979; Van Den Eeckhaut et al., 2006).
The value of Cramér’s V is derived from the value of x2 as
follows:

V2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

N Tot � min I � 1ð Þ; J � 1ð Þ½ �

s
(4)

where I and J are the row and column numbers in the
contingency table, respectively (Giudici, 2005).

In LS studies, the probability that a landslide event will
occur with a specific predisposing factor in a modality, i.e.
factor class (unique condition unit – UCU), is assumed
equivalent to the density of past landslides within that
modality (UCU density) (Carrara et al., 1995).

Therefore,

P LjUCUð Þ ¼ landslide area \ UCU areað Þ= UCU areað Þ
(5)

where P LjUCUð Þ is the probability of a landslide (L) given a
modality of the predisposing factors (UCU), the UCU area is
the superficial extension of the predisposing factors in that
modality, and the landslide area \ UCU area is the area of
the landslide that occurred within the specific modality
(joined frequency).

3.2. MSUE conditional method

Because all of the statistical methods were based on the
common assumption that landslides are more likely to
occur in areas with conditions that are similar to the
conditions where landslides have occurred (Carrara et al.,
1995), these methods require knowledge regarding the
slope conditions that predisposed the landslides (geo-
environmental factors). In this study, the available geo-
environmental factor maps represent the landslide source
areas after the occurrence of a landslide. In similar studies,
it was accepted that pre-landslide conditions (UCUs) are
similar to the conditions found in the external neighbor-
hood of the landslide source areas (Clerici et al., 2010;
Nefeslioglu et al., 2008; Vergari et al., 2011). In this study,
the landslides have been identified using the upper edges
of the crowns (main scarp upper edge, MSUE) (Clerici et al.,
2006) because they allow for easier automatic search of the
factor values in the undisturbed belt external to the
rupture zone of the landslide (Clerici et al., 2010). To
consider the pre-landslide conditions in the areas that
surround the landslide sources, an upstream buffer of 10 m
was used for each crown (MSUE buffer). A similar approach
was adopted by Süzen and Doyuran (2004), who con-
sidered a buffer around the crown and flanks of landslides
(undisturbed morphological zones) to represent the

Table 1

Theoretical contingency table for two variables dependence analysis.

Variable X1 X2 X3 X4 X5 Total

Y1 n11 n12 n13 n14 n15 Ny1

Y2 n21 n22 n23 n24 n25 Ny2

Total Nx1 Nx2 Nx3 Nx4 Nx5 NTot.

Modified after Fabbris, 1997.

Tot.: Total.
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ditions that were present before the landslides. Here,
 chosen buffer extension is the highest threshold value
t avoids the buffer areas across the basin divide lines.
refore, we assume that the probability of landslide
urrence for a given UCU (predisposing factor modality)

jUCUÞ ¼ MSUE buffer area \ UCU areað Þ= UCU areað Þ
(6)

ere P LjUCUð Þ is the probability that a landslide occurs in
iven UCU, the UCU area is the superficial extension of

 predisposing factor in the modality, and the MSUE
fer area \ UCU area is the area of the landslide buffers
t occurs within the specific predisposing factor in the
dality (joined frequency).

 Multifactor analysis

In contrast with bivariate analysis (in which only the
tributions of a single factor were considered relative to

 landslide occurrence), a multifactor analysis was
ducted to determine the relationships between the
urrence of landslides and multiple factors with
erent possible combinations to evaluate the interac-
s among factors.

In the conditional analysis method that was applied to
or combinations (Clerici et al., 2006) (i.e., a multifactor
lysis), all of the landslide-predisposing factors that

re subdivided into classes were overlain to obtain all
sible combinations of the various factor classes (UCU
ps). Next, the landslide density within each UCU was
ntified for each factor combination. Because landslide
sity is assumed equivalent to the future landslide
bability at a specific UCU (Carrara et al., 1995), we
ained LS models that corresponded to the possible
or combinations. Next, the best model was chosen by
paring the modeled landslide distributions with the

dslide distributions of the validation dataset.
The conditional analysis method for factor combina-
s has fewer limitations than other statistical analysis

thods (Clerici et al., 2010). For example, bivariate
lysis and logistic regression analyses require indepen-
t predisposing factors (Neuhäuser and Terhorst, 2007).
contrast, discriminant analysis requires that the
disposing factors in the modalities are normally
ributed (Giudici, 2005).

To quantify the importance of slope aspect as a
dslide-predisposing factor, a multifactor analysis was
ducted here by comparing the slope aspect to all other
or combinations. The model validation procedure was

based on the ‘‘wait and see’’ concept (Chung and Fabbri,
1999). Based on this concept, it was assumed that the study
occurred in 1975. In addition, the data from 1975 were
compiled to include the landslides that occurred prior to
1975. The data that were collected from the landslides that
occurred before 1975 were used to create models, and the
data from the landslides that occurred after 1975 were
used to validate the models.

3.4. Landslide inventories

The landslide map for each studied basin resulted
from a two-year (2009–2010) geological and geomor-
phological field survey under the framework of the CIPE/

Regione Toscana: Carta Geologica Regione Toscana e geo-

tematiche derivate regional project (http://www.regio-
ne.toscana.it). The field survey was conducted by using
regional Tuscany topographic maps (at the scale
1:10,000) that dated back to 1975. In addition, regional
Tuscany orthophotos (1-m resolution ortho-imagery
with a rectification error � 4 m) were used that were
produced in 2006 and 2003 for the Milia and Roglio
basins, respectively. The field survey was supported by
stereoscopic interpretation of the 1975 aerial photo-
graphs (flight EIRA75) and by GPS measurements
(Garmin 60CSx; accuracy � 3 m, precision � 1 m). Thanks
to the retrieved superficial features (main scarps, counter
scarps, trenches, and toe bulging) we discriminated
between the various types of landslides.

The landslides of each basin were split into two
temporal groups (before and after 1975) based on the
stereoscopic analysis of the 1975 aerial photographs.
According to Guzzetti et al. (1999), an LS analysis should be
conducted for each landslide type. Therefore, the land-
slides were grouped based on their prevailing type of
movement (i.e., translational, flow and rotational move-
ment).

The Milia basin is characterized by 1577 translational
slides, 155 flows and 307 rotational slides. These landslides
cover a surface of approximately 22.66 km2, which
represents 22.43% of the study area.

In the Roglio basin, 3174 translational slides, 873 flows,
and 90 rotational slides were identified. These landslides
occupy a surface area of 20.7 km2, which represents 12.5%
of the basin area.

The MSUEs in the training and validation datasets were
identified from the geomorphological map that was
previously digitized in ArcGIS. Next, maps showing the
buffers were created from the MSUE maps by using ArcInfo
9.2 (ESRI). The averages and standard deviations for the

le 2

E average size and MSUE size standard deviation (s) for each basin and for each landslide type.

Milia basin Roglio basin

MSUE buffer average (m2) s (m2) MSUE buffer average (m2) s (m2)

anslational slide 1829.6 705.9 1313.7 469.1

w 2053.2 705.6 1451.8 538.2

tational slide 2737.9 1080.8 2157.5 1256.8
E: main scarp upper edge.

http://www.regione.toscana.it/
http://www.regione.toscana.it/
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MSUE buffers are reported for each landslide typology and
basin in Table 2.

3.5. Instability factors

Except for the slope aspect, the variables introduced in
this analysis were selected based on our geomorphological
and geological knowledge of the two basins. Overall, the
lithology, slope angle, distance to the hydrographic
elements and distance to the tectonic lineaments were
considered as landslide-predisposing factors.

The factor maps of lithology, distance from the hydro-
graphic elements and distance from the tectonic lineaments
were derived from the geological maps that were provided
for the CIPE Tuscany project (http://www.regione.
toscana.it). Different classes were determined from the

geological map based on the identified lithological and
structural properties (Fig. 3). Furthermore, because many
landslides in the study area occurred within the body of
precedent landslides and DSGSDs, these elements were
inserted into specific classes.

For the tectonic lineaments, the faults and main thrusts
were considered. In contrast, the main and secondary
channels were evaluated for the hydrographic elements.
The maps of the distance from the hydrographic elements
and the distance from the tectonic lineaments were
reclassified with four distance classes of similar areas.

By using ArcInfo 9.2, the slope angle and slope aspect
maps were derived from a 5-m DEM that was obtained by
interpolating the digital contour lines and elevation points
of the 1:10,000 topographic maps. The slope angle was
reclassified into six classes with similar areas, and the
Fig. 3. Lithological factor maps of the studied basins.

http://www.regione.toscana.it/
http://www.regione.toscana.it/
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e aspect was reclassified into the eight most frequently
pted classes (Ayalew and Yamagishi, 2004; Atkinsons

 Massari, 1998; Yalcin et al., 2011), which corre-
nded to 458-wide angular sectors.
The class extensions for each factor and their relative
UE densities are shown in Table 3.

 Bivariate analysis procedure

A specific routine (Python script) was created to
omate the necessary geoprocessing steps for building
 contingency tables. The adopted process is schemati-
y illustrated on Fig. 4 based on a simple theoretical
ation in which only one type of landslide is considered.

 each basin, the geo-environmental factors are sub-
ided into classes (UCU maps), which were initially
rlain by MSUE buffer maps. For each UCU, the ratio of

 MSUE buffer area that falls within the UCU to the total

UCU area was calculated (UCU density). Next, the attribute
table of the UCU map was joined with the intersect table to
build the contingency table.

Based on the contingency table shown on Fig. 4, the
Pearson’s x2 was defined as follows:

x2 ¼
XI

i

XJ

j

Yi \ UCUjð Þ � UCUj�Yi/b

� �� �2
= UCUj�Yi/b

� �
(7)

where Y1 represents the MSUE buffer area, Y2 represents
the landslide free basin area, UCUj represents the geo-
environmental factor class area, and b represents the total
area of the studied basin. Successively, the value of
Cramér’s V was calculated from the value of x2 as follows:

V2 ¼
ffiffiffiffiffiffiffi
x2/b

q
(8)

le 3

s area (km2) and MSUE density (10�3 m2/km2) for each landslide type and for each class of the factors used in the analysis.

ctor Milia basin Factor Roglio basin

Class Class

area

(km2)

MSUEs density

(10�3 m2/km2)

Class Class

area

(km2)

MSUEs density

(10�3 m2/km2)

Transl.

slide

Flow Rotat.

slide

Transl.

slide

Flow Rotat.

slide

hology (L) Sand 5.6 0 0 0 Lithology (L) Clayey sand 4.3 0 0 0

Gravelly sand 3.1 2.64 0.01 0.57 Gravelly sand 30.3 1.14 0.15 0.04

Landslide body 22.4 16.75 2.77 12.96 Landslide body 16.7 9.91 4.78 1.67

DSGSD 6.2 42.21 6.77 11.31 Sand and clay 50.6 39.46 6.82 1.24

Gravel 8.7 49.97 5.07 5.33 Clay 36.7 24.19 16.04 1.07

Marly clay 0.3 52.19 0.02 0.54 Sand 18.1 26.43 4.09 1.10

Shale 29.2 42.35 4.73 10.48 Marly limestone 0.6 24.15 3.23 4.11

Marly limestone 4.0 35.31 1.91 4.50 Shale 0.5 34.83 4.34 0.55

Sandstone 1.5 12.00 0 2.00 Sandstone 0.1 28.44 0 0

Quartzite 1.3 7.16 0 0 Limestone 1.5 21.04 3.17 4.95

Limestone 19.1 5.22 0.25 0.36 Slate 0.6 27.18 3.95 0

pe angle (S) ]0–28] 16.5 11.15 2.12 2.19 Slope angle (S) ]0–48] 25.7 3.09 1.20 0.15

]2–78] 16.3 17.83 3.04 6.52 ]4–108] 28.2 5.92 2.72 0.41

]7–118] 18.1 28.20 4.33 11.01 ]10–128] 26.4 11.72 7.54 0.95

]11–158] 16.6 32.86 3.88 10.11 ]12–158] 27.1 21.78 12.22 1.71

]15–218] 17.7 32.17 3.01 8.58 ]15–208] 26.2 35.59 11.28 1.41

]21–778] 16.1 30.75 1.01 5.03 ]20–908] 26.5 58.97 6.41 1.36

pe aspect (A) ]0–458] 19.6 24.62 3.05 6.32 Slope aspect (A) ]0–458] 26.9 16.16 6.79 0.96

]45–908] 6.3 23.50 3.08 6.85 ]45–908] 13.8 25.02 7.05 0.83

]90–1358] 8.6 26.34 3.72 6.45 ]90–1358] 13.3 30.31 7.94 0.75

]135–1808] 12.9 25.91 2.87 7.05 ]135–1808] 18.3 29.99 6.91 1.01

]180–2258] 13.7 28.03 3.25 6.33 ]180–2258] 19.1 24.92 5.93 0.82

]225–2708] 14.0 24.24 2.41 6.04 ]225–2708] 22.6 19.90 7.40 1.37

]270–3158] 13.6 23.35 2.52 7.01 ]270–3158] 23.6 21.26 4.84 1.31

]315–08] 12.7 28.88 2.98 12.85 ]315–08] 22.7 21.48 8.73 0.78

stance to

streams (Di)

]0–50 m] 26.6 13.58 0.67 3.07 Distance to

streams (Di)

]0–49 m] 39.5 9.91 1.26 0.30

]50–110 m] 24.8 33.48 2.21 6.64 ]49–105 m] 41.9 29.18 6.64 0.86

]110–194 m] 25.4 28.88 4.17 8.81 ]105–181 m] 40.3 27.51 9.61 1.35

]194–793 m] 24.5 27.37 4.89 11.13 ]181–890 m] 38.6 23.95 10.09 1.52

stance to

tectonic

lineaments (Df)

]0–102 m] 24.6 30.87 2.93 4.75 Distance to

tectonic

lineaments (Df)

]0–355 m] 39.7 25.58 8.46 2.21

]102–275 m] 26.3 27.81 3.90 9.04 ] 355–829 m] 41.9 22.81 9.05 0.72

]275–550 m] 24.4 24.25 2.60 7.86 ]829–1 629 m] 40.3 21.73 6.87 0.56

]550–2 002 m] 25.0 19.59 2.32 7.53 ] 1 629–7 555 m] 38.6 20.85 3.01 0.53

E: main scarp upper edge; Transl.: translational; Rotat.: rotational.
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which corresponds to Cramér’s V with one degree of
freedom.

3.7. Multifactor analysis and best model statistical

significance

In the GIS environment, all combinations of the
landslide-related factors with slope aspect (UCU maps)
were computed initially. Next, the UCU maps were
intersected for each landslide type with the buffer maps
of the MSUEs that belonged to the pre-1975 dataset. For
each UCU, the ratio of the MSUE buffer area that falls
within the UCU to the total area of the UCU was calculated
(UCU density). In addition, the UCUs were grouped into five
density classes that were based on the mean density of the
UCU (Md) (Clerici et al., 2010), including 0–0.4Md (very
low), 0.4–0.8Md (low), 0.8–1.2Md (medium), 1.2–1.6Md

(high) and 1.6–2.0Md (very high).
The absolute difference between the pre- and post-

1975 MSUE percentages was computed for each LS class in
the validation procedure. The sum of the post-1975 MSUE
percentages [the validation error (VE)] was reported for
each LS model to assess the predictive power of each
model. This value ranged from 0 (best predictive power) to
200 (worst).

According to Clerici et al. (2010), a good model should
significantly disperse around the UCU mean density (high
mean deviation of the UCU density) to distinguish the
different probabilities of future landslides and to provide a
spatially detailed forecast. Therefore, the mean deviation
(MD) of the UCU density was computed for each model and
the MD/VE ratio (the best model index, BMI) was used to
choose the best LS model with the greatest BMI.

The reduced Chi2 (x2) variable was determined to
evaluate how the predictive ability of the best model

represented the maximum likelihood between the land-
slide groups that were used for model construction and
validation. The x2 value for a model defines the probability
of finding a likelihood between the observed and expected
probabilities of a certain event A, which is better than that
defined by the model itself (Buccianti et al., 2003; Kendall
and Stuart, 1979; Pugh and Winslow, 1966). The forecast-
ing model should be made from older landslide inven-
tories. Recent landslide information should be used to
evaluate the prediction power of the model (Blahut et al.,
2010; Chung and Fabbri, 2008; von Ruette et al., 2011). For
each model, the percentage of landslides belonging to the
validation group that fall into a susceptibility class must be
considered as an expected value of the landsliding
probability in that class.

Therefore, in this study the Chi2 value was calculated as
follows:

x2 ¼ 1

4

X5

i¼1

% MSUE buffer area pre � 75ð Þi
� % MSUE buffer area post � 75ð Þi

� �
% MSUE buffer area post � 75ð Þi

2

(9)

4. Results and discussion

Regarding the connection between landslides and slope
aspect, the density values reported in Table 3 show non-
negligible differentiation between the minimum and
maximum for the translational and rotational slides of
the Milia basin and for the flows and translational slides of
the Roglio basin. For these types of landslides, greater
density values are concentrated on the E–SW and NW-
facing slopes. This trend is similar to trends that have been
observed in recent LS studies that were performed at
middle latitudes in the northern hemisphere (Bednarik

Fig. 4. Procedure used in the Python program to build the contingency tables. A very simple case with only one landslide type is considered. See the text for

a detailed explanation.
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l., 2010; Magliuolo et al., 2008; Piacentini et al., 2012;
mi et al., 2010; Yalcin, 2008; Yalcin et al., 2011). In
se studies, the N–NW-facing slopes are favorable for
dslides due to their shadier, colder, and more humid
ditions. In contrast, the east–south-facing slopes are
y prone to landslides because they are affected by
nse wetting and drying cycles.

Independently of landslide typology, the Pearson’s x2

ues for each basin showed a spatial correlation between
 geo-environmental factors and the occurrence of
dslides (with a confidence level of 0.01) (Table 4).

 strength of the spatial associations between the geo-
ironmental factors and the landslides were quantified
the value of Cramer’s V (Kendall and Stuart, 1979). As
orted in Table 4, the lithology, slope angle, and distance
treams had the greatest values of Cramer’s V for each

dslide typology. This finding confirmed that these
ors played a dominant role in controlling the spatial
ributions of the landslides. However, the distance to

 streams in the Roglio basin had a low value of Cramer’s
r the rotational slides.

Regarding the slope aspect, the values of Cramer’s V

re spatially correlated with the translational and
tional slides of the Roglio and Milia basins, respec-
ly. For these types of landslides, the Cramer’s V values

re comparable to the values obtained from the lithology
 flows (Milia basin) and the lithology and rotational
es (Roglio basin).
The importance of slope aspect as a landslide-predis-
ing factor for translational slides in the Roglio basin
entially resulted from thermal excursions and the
ing of clayey sediment (Pliocene deposits). The density
ues reported in Table 3 show a trend that is similar to

 trend that was observed for the spatial distribution of
 badlands (Fig. 2). The thermal excursions and drying
ion in the Pliocene deposits should only affect the
erficial portion of the slope (Lulli and Ronchetti, 1973;
orini, 1977, 1979). In addition, the translational slides
he Roglio basin have a lower average size than the other

types of landslides (Table 2). These facts indicate that slope
aspect is an important predisposing factor for translational
slides.

According to the modeled likelihood Chi2 test of the
Roglio basin, if a P-value of P(x2< x2 observed) < 0.05 is
considered, the best LS model for the slope aspect and the
other landslide-predisposing factor combinations (Table 5)
is considered as the best overall model with a high level of
statistical significance (Table 6). Thus, the hypothesis that
slope aspect has conditioned the spatial distribution of
translational landslides in the Roglio basin is accepted at
the 95% confidence level.

Based on the bivariate analysis of the Milia basin, the
role that the landslide rotational slide-predisposing factor
plays is ambiguous. The rotational slides have a large
average size (Table 2), which implies an average rupture
surface that is too deep for determining the influences of
shade and sun on their development. In addition, although
the maximum rotational density values are concentrated
on the NW-facing slopes (Table 3), it is difficult to prove
that shadier, colder, or humid conditions affected the
stability of the slope at depths of more than 10 m.

In the likelihood Chi2 test model of the Milia basin, the
introduction of the slope aspect factor in the multifactor
analysis did not maximize the likelihood of the best model
until a high level of statistical significance (Table 6). Thus,
the assertion that slope aspect has conditioned the spatial
distribution of the rotational slide type landslides in the
Milia basin cannot be accepted at a confidence level of 95%.

Based on the model likelihood Chi2 test results, slope
aspect is a significant landslide-predisposing factor for the
superficial landslides of the Roglio basin (i.e., translational
slides).

When comparing the results obtained from the multi-
factor and bivariate analysis with the different studies that
were performed over the last two decades (e.g., Blahut
et al., 2010; Cevik and Topal, 2003; He et al., 2012; Komac,
2006; Van Den Eeckhaut et al., 2006; Yalcin et al., 2011),
raises suspicion that only rarely slope aspect can be a

le 4

ial correlation degree between the landslides and the geo-environmental factors, for each landslide typology and for each basin studied. The Chi2 tests

e performed with 99% confidence level.

Roglio basin

Translational slide Flow Rotational slide

x2 V x2 V x2 V

hology 15,164 0.31 7163 0.26 735 0.15

pe angle 27,110 0.36 3822 0.22 493 0.13

pe aspect 1493 0.17 312 0.12 84 0.09

stance to tectonic elements 225 0.10 1284 0.17 777 0.14

stance to streams 4140 0.22 2843 0.20 354 0.12

Milia basin

Translational slide Flow Rotational slide

x2 V x2 V x2 V

hology 12,551 0.33 1594 0.20 3654 0.25

pe angle 2648 0.23 392 0.14 1281 0.19

pe aspect 147 0.11 45 0.08 622 0.16

stance to tectonic elements 706 0.16 219 0.12 342 0.13

stance to streams 2297 0.22 960 0.18 1242 0.19
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landslide-predisposing factor. More detailed, slope aspect
can be correlated with one or more of the geo-environ-
mental factors that have really affected the landslide
development, and that are usually not considered in the
statistical analysis. Over the last decade, the statistical
correlation between the slope aspect and other landslide-
predisposing factors has been pointed out by some works
(Regmi et al., 2010; Van Den Eeckhaut et al., 2009),
whereas some studies postulated an influence of local
factors on the evolution of slope aspect (Ayalew and
Yamagishi, 2005; Fernandes et al., 2004; Gao and Maro,
2010; Ghosh et al., 2011). For example, Fernandes et al.
(2004) determined how hillslope orientation is inherited
from bedrock structure, especially metamorphic foliation.
In the Milia basin, the fracture systems that were
associated with the axial plane folds of the Ligurian
formations potentially played an important role in the
predisposition of rotational slides when the hydrographic
network was rapid sinking. Because most of the higher
order streams in the Milia basin were generated in the NE–
SW direction, the occurrence of rotational slides on the
NW-facing slopes supports the idea that the slope aspect is
correlated with the Milia fracture systems. This correlation

reveals an apparent landslide-predisposing power in the
bivariate analysis. However, the fracture system study
represents an analysis with a high cost/benefit value,
which is generally not performed in the definition of an LS
at the basin level (Soeters and van Westen, 1996; van
Westen et al., 2008).

5. Conclusions

The general aim of this study was to highlight
considerations that could be useful for understanding
the roles played by slope aspect in predicting the spatial
distribution of landslides. Slope aspect only functioned as a
landslide-predisposing factor when the landslides were
superficial and in clayey deposits. Conversely, a large value
of Cramer’s V did not indicate that slope aspect is a
landslide-predisposing factor in the general case.

Previous and current results indicate the presence of a
correlation between slope aspect and other (normally
unconsidered) geo-environmental factors. This correlation
may affect the actual weight of slope aspect as a landslide-
predisposing factor, potentially leading to a wrong
interpretation of the slope instability causes.
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Table 5

The five best models of landslide susceptibility obtained for each basin and each landslide type ordered by decreasing best model index (BMI) values.

Roglio basin

Translational slide Flow Rotational slide

FC VE MD BMI FC VE MD BMI FC VE MD BMI

ADiDf 6.3 3629 576.0 SADi 11.0 2079 189.0 LSADi 138.0 1921 13.9

LSADi 29.2 14,140 484.2 LADf 11.8 2050 173.7 LA 65.2 881 13.5

LADi 25.2 11,244 440.9 LSA 11.3 1950 172.6 LADiDf 131.5 1083 8.2

ADi 5.5 2338 425.1 LSADf 14.1 2194 155.6 LSADiDf 174.0 1410 8.1

LADiDf 27.9 10,594 379.7 LSADi 22.5 3232 143.7 LADf 106.4 688 6.5

Milia basin

Translational slide Flow Rotational slide

FC VE MD BMI FC VE MD BMI FC VE MD BMI

LSA 11.7 10,489 896.5 ADi 12.9 643 49.8 LADf 42.5 2395 56.4

LADi 13.2 10,659 807.5 ADiDf 19.9 878 44.1 LSA 50.2 2224 44.3

LA 11.8 8780 744.1 LADi 27.2 1134 41.7 LADiDf 72.0 3150 43.8

LADf 16.0 9528 595.5 LA 24.5 961 39.2 LSADf 61.8 2684 43.4

LSADi 22.7 13,227 582.7 SADi 24.4 874 35.8 LA 48.7 2078 42.7

FC: factors combination; L: lithology; S: slope angle; A: slope aspect; Di: distance to hydrographic elements; Df: distance to tectonic lineaments; VE:

validation error (%); MD: mean deviation (m2/km2).

Table 6

Chi2 statistics of the best models. The Chi2 tests were performed with four

degree of freedom and 0.05 confidence level (x2
critic = 0.177).

Roglio basin Model VE x2
obs. P(x2< x2

obs.)

Translational slides ADiDf 6.3 0.175 < 0.05

Flows SADi 11.0 0.615 > 0.05

Rotational slides LSADi 138.0 7.675 > 0.05

Milia basin Model VE x2
obs. P(x2< x2

obs.)

Translational slides LSA 11.7 0.422 > 0.05

Flows ADi 12.9 0.673 > 0.05

Rotational slides LADf 42.5 3.125 > 0.05

L: lithology; S: slope angle; A: slope aspect; Di: distance to hydrographic

elements; Df: distance to tectonic lineaments; VE: validation error (%);

x2
obs.: observed Chi square.
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