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 Introduction

Linear transformation of spatially correlated variables
to uncorrelated factors has been one of the most
allenging issues in mining engineering and earth
iences. In this direction, several methods have been
troduced by researchers. Xie et al. (1995) and Tercan
999) used simultaneous diagonalisation in finding
proximately uncorrelated factors at several lag distances
 simultaneously diagonalising a set of variogram
atrices. Switzer and Green (1984) developed the method

 Minimum/Maximum Autocorrelation Factors (MAF) for
e objective of separating signals from noise in multi-
riate imagery observations. The method is first intro-
ced to geostatistical community by Desbarats and
mitrakopoulos (2000) in the context of multivariate
ostatistical simulation of pore-size distributions.
Fonseca and Dimitrakopoulos (2003) used MAF method

r assessing risks in grade-tonnage curves in a complex

copper deposit. Boucher and Dimitrakopoulos (2009)
presented a method for the conditional block simulation
of a non-Gaussian vector random field. They, first,
orthogonalised a vector random function with MAF
method and then used LU simulation to generate possible
realizations. Rondon (2011) discussed the joint simulation
of spatially cross-correlated variables using MAF factors in
detail and gave some examples.

MAF is basically a two-stage principal component analysis
applied to variance–covariance matrices at short and long lag
distances. Goovaerts (1993) proves that in the presence of a
two-structure linear model of co-regionalization (2SLMC),
the factors are spatially uncorrelated. But the assumption of a
2SLMC is not reasonable for most of real data sets and also an
extension of MAF to more than two distinct structure
matrices is not possible (Vargas-Guzmán and Dimitrakopou-
los, 2003). In the case where fitting a 2SLMC is not possible, a
data-driven version of MAF method can be used (Desbarats
and Dimitrakopoulos, 2000; Tercan, 1999; Sohrabian and
Ozcelik, 2012a). In this approach, the variance–covariance
matrices are calculated directly from the data set.

There are also some studies that use the independency
property of the generated factors. For example, Sohrabian
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Joint simulation of attributes in multivariate geostatistics can be achieved by transforming

spatially correlated variables into independent factors. In this study, a new approach for

this transformation, Minimum Spatial Cross-correlation (MSC) method, is suggested. The

method is based on minimising the sum of squares of cross-variograms at different

distances. In the approach, the problem in higher space (N � N) is reduced to N � N � 1ð Þ=2

problems in the two-dimensional space and the reduced problem is solved iteratively

using Gradient Descent Algorithm. The method is applied to the joint simulation of a set of

multivariate data in a marble quarry and the results are compared with Minimum/

Maximum Autocorrelation Factors (MAF) method.
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nd Ozcelik (2012b) introduce Independent Component
nalysis (ICA) to transform spatially correlated attributes
f an andesite quarry into independent factors. Then they
stimated each factor independently and back-trans-
rmed the results into the real data space to determine

xploitable blocks. Tercan and Sohrabian (2013) used
dependent component analysis in joint simulation of

ome quality attributes of a lignite deposit.
Goovaerts (1993) proves that in the general case, it is
possible to find factors that are exactly uncorrelated at

ll lag distances. When spatially uncorrelated factors
annot be produced, one looks for algorithms that produce
pproximately uncorrelated factors. For that, Mueller and
erreira (2012) used Uniformly Weighted Exhaustive
iagonalization with Gauss iterations (U-WEDGE), intro-
uced by Tichavsky and Yeredor (2009), for joint simula-
on of a multivariate data set from an iron deposit. In their
ase study, Mueller and Ferreira (2012) show that the U-

EDGE algorithm performs better than MAF.
In the present study, Minimum Spatial Cross-Correla-

on (MSC) method is introduced for generating approxi-
ately uncorrelated factors. It aims to minimise cross-

ariance matrices at different lag distances using the
radient descent algorithm. In this method the de-
orrelation problem is reduced to the solution of a
equence of 2 by 2 problems. Against other blind source
eparation algorithms such as U-WEDGE and ICA which
enerally work in high-dimensional spaces and try to solve
e problem by choosing N � N initial matrices the MSC
ethod is more convenient. In addition, ICA and U-WEDGE

lgorithms are sensitive to the choice of the initial matrices
o that several applications of these algorithms do not
onverge to the same result (Hyvarinen et al., 2001). But,

e MSC method approximately converges to the same
esult and this can be considered as an advantage over

ethods that directly solve N � N optimization problems.
The outline of the paper is as follows: the second section

escribes multivariate random field model. The third
ection explains the theory of MSC. The method is
resented in 2D and then is generalized into an N-
imensional space. In the fourth section the method is
pplied to joint simulation of multivariate data obtained
om an andesite quarry and the efficiency of the method in
enerating spatially orthogonalised factors is measured
nd compared to that of MAF method. Then MSC and MAF
ctors are used to simulate some attributes of a marble

uarry. The last section includes the conclusions.

. The multivariate random field

Let ZðuÞ ¼ Z1ðuÞ; Z2ðuÞ; :::; ZNðuÞ½ � be an N-dimensional
tationary random field with zero mean and unit variance.

 this multivariate case, the variogram matrix is given by

ZðhÞ ¼ 1

2
E Z u þ hð Þ � ZðuÞð Þ Zðu þ hÞ � ZðuÞð ÞT
h i

(1)

The variogram matrix depends only on the lag distance
, assuming that correlations vanish as h ! 1. In the
resence of spatial cross-correlation, each variable should
e simulated by considering the cross-correlations. In

such cases, the traditional method is co-simulation, but it
is impractical and time consuming due to difficulties
arising from the fitting of a valid model of coregionalisa-
tion and the solving of large cokriging systems (Goovaerts,
1993). To ease multivariate simulation, Z(u) can be
transformed into spatially uncorrelated factors F(u) in
such way that

FðuÞ ¼ ZðuÞW (2)

where W is an orthogonal transformation matrix. Then
each factor F1; F2; :::; FN ; can be simulated separately and
simulated factors can be back-transformed into the
original space. This is a linear transformation that can
remove linear correlations of variables and in the presence
of non-linear correlations among variables it cannot be
helpful. The transformation process results in factors
which should be simulated by using one of the geostatis-
tical methods for which stationary assumption holds. We
assume that before running MSC the multivariate data are
whitened with principal component analysis. By using
principal component analysis, we guarantee the ortho-
gonality of the produced factors. Orthogonal factors can be
parameterised by half the parameters which are needed in
any arbitrary matrix. Whitening also restricts the possible
results to a unit circle (Hyvarinen et al., 2001).

3. MSC Method

Researchers have proposed various methods for gen-
erating spatially orthogonal factors. Some criteria have
also been introduced to measure how well these methods
orthogonalise the variogram matrices at different lag
distances. For example, Tercan (1999) proposed the
following measure:

tðhÞ ¼ ’ðhÞ
jðhÞ ; hj j> 0 (3)

where ’ðhÞ ¼
XN

k¼1

XN

k < j

gFðh; k; jÞ
�� �� and jðhÞ ¼

XN

k¼1

gFðh; k; kÞ.

This measure compares the sum of off-diagonal elements of
the factor variogram matrix G ZðhÞ to the sum of its diagonal
elements for each lag distance h. It is used by Rondon (2011)
and Mueller and Ferreira (2012) to compare various
factorization algorithms. Efficient factorization algorithms
would produce tðhÞ as close as possible to zero at each lag
distance. This measure can also be considered as an
optimization criterion in producing the desired factors.

While developing our method in deriving spatially
uncorrelated factors, we will consider Eq. 3, proving that
jðhÞ is constant (see Appendix A for a proof). Therefore it
suffices to minimize the sum of ’ðhÞ values at various lag
distances. In the following section, a simple method based
on the gradient descent algorithm is presented for
iteratively minimizing the ’ value.

’ ¼
Xl

i¼1

XN

k¼1

XN

k < j

gFðhi; k; jÞ
�� ��; hj j > 0 (4)

In Eq. 4, l denotes the number of lags that are considered
in the calculations. The number of lags depends on the
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allest distance that the experimental variograms are
lculated and also on the maximum range of the auto or
oss-variograms of variables. The number of lags can be
osen by dividing the maximum range of variograms by
e average sampling distance.
Another issue is unequal sampling, which affects the

lculation of cross-variograms. In case of partial hetero-
py where some variables share some sample locations, it
advisable to infer the cross-variogram model on the basis

 the isotopic subset of the data (Wackernagel, 2003). This
known as complete-case analysis. The method suggested

 this study works for complete case data. However, this
proach reduces the sample size and results in loss of
formation due to discarding incomplete samples. This
n cause loss of precision and potentially bias when the
mplete cases are not a random sample of the population
ittle and Rubin, 2002). Instead, imputation methods can

 used to supply missing observations to complete a data
t. The approaches to imputing vary from the simplest
rm, taking an average of nearby simple values, to
mplicated ones, for example multiple imputation. More
tail on imputing can be found in Little and Rubin (2002).
In minimization problems, the derivatives of functions

e used widely. It is known that the absolute value of
nctions may not be differentiable at some points in their
mains. We work with whitened data with cross-
riograms lying between–1 and 1, so that gFðhi; k; jÞ

�� ��
n be replaced by gFðhi; k; jÞð Þ2 without changing in the
rections that minimize Eq. 4. Therefore, the objective
nction takes the following form:

¼
Xl

i¼1

XN

k¼1

XN

k < j

gFðhi; k; jÞð Þ2; hj j > 0 (5)

In practice, to minimize Eq. 5, we would start from
me vector w, compute the direction in which the ’ value

 new factors F=ZW is growing most rapidly, based on the
ailable samples of spatially correlated variables and then
ove the vector w in the opposite direction.

. Gradient descent algorithm

This section includes a short explanation of the
orithm. Let f(x) with x 2 Rn, be a differentiable scalar
ld. We want to find its minimum. Then the gradient

 ðxÞ=@ðxÞ at location x represents a direction where the
nction increases and �@ f ðxÞ=@ðxÞ is usually called the
epest descent direction. For finding the minimum of f(x),

e gradient descent algorithm starts from an initial point
, then iteratively takes a step along the steepest descent
rection, optionally scaled by a step length, until
nvergence. Gradient descent is popular for very large-

scale optimization problems because it is easy to imple-
ment and its iterations are cheap.

The algorithm typically converges to a local minimum,
but in the presence of only one saddle point it gives a global
minimum. If x1 2 Rn is a starting point, a a step length, e a
tolerance value or constraint, and f(x) an objective
function, then the algorithm can be given as follows:

1. start iteration t ¼ 1
2. xt  xt�1 � a @ f ðxÞ

@ðxÞ
3. if f(xt) > f(xt-1) then a  a/2

4. if absðDxÞ > e go to step 2
5. end

The objective function of our optimization problem is
presented in Eq. 5. In this study, an N � N optimization
problem will be replaced by a set of two-dimensional
problems, so that, at first, we assume the simplest case of
two spatially cross-correlated variables. In Eq. 5, the aim is
to find a transformation matrix, W, which gives factors
with the lowest spatial cross-correlation. The columns of
matrix W, denoted by w, give the directions of the factors
that we are looking for. To restrict the number of possible
w vectors, a whitening process is performed by using
principal component analysis therefore the mean and
variance of Z become 0 and 1, respectively. The optimiza-
tion problem is now reduced to a unit circle and we search
for a vector w so that the linear combination ZW has a
minimum ’ value. For this two-dimensional case, the point
on the unit sphere can be parameterized by the angle u that
the corresponding vector w makes with the horizontal axis.
The function ’ is periodic, with a period equal to p=2 rad,
and the vector w gives the direction of the first factor. The
direction of the second factor is perpendicular to that of the
first one.

3.2. Minimizing ’ value between two variables using

gradient descent algorithm

Assume that the experimental semivariogram matrix
for hi is given as follows:

G ZðhiÞ ¼ g11ðhiÞ g12ðhiÞ
g12ðhiÞ g22ðhiÞ

� �
(6)

The objective is to find a 2 � 2 transformation matrix W

W ¼ cosu �sinu
sinu cosu

� �
(7)

which generates the factors with minimum cross-correla-
tion. The variogram matrix of the factors can then be
written as follows:

F hið Þ ¼ W uð ÞTG Z hið ÞW uð Þ ¼ cosu sinu
�sinu cosu

� �
g11ðhiÞ g12ðhiÞ
g12ðhiÞ g22ðhiÞ

� �
cosu �sinu
sinu cosu

� �

¼ cos2ug11ðhiÞ þ sin2ug22ðhiÞ þ 2cosusinug12ðhiÞ cosusinu g22ðhiÞ � g11ðhiÞð Þ þ cos2u � sin2u
� �

g12ðhiÞ
cosusinu g22ðhiÞ � g11ðhiÞð Þ þ ðcos2u � sin2uÞg12ðhiÞ cos2ug22ðhiÞ þ sin2ug11ðhiÞ � 2cosusinug12ðhiÞ

" #

(8)
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nd in that case the expression to be minimised is:

ðuÞ ¼
Xl

i¼1

gF1F2
ðhiÞ

h i2

Xl

i¼1

cosusinu g22ðhiÞ�g11ðhiÞð Þ þ ðcos2u � sin2uÞg12ðhiÞ
h i2

(9)

Eq. 9 has only one parameter ðuÞ and we can use
radient descent (Battiti, 1992; Hyvarinen et al., 2001) to
inimize it iteratively. For minimization of ’, we start
om an initial point, u, compute the gradient of ’ at this
oint and move in the direction of negative gradient or the
teepest descent by suitable distance. Repeat the same
rocedure at the new point, and so on. The derivative of
ðuÞ with respect to u is:

’ðuÞ
@u

¼
@
Xl

i¼1

gF1F2
ðhiÞ

� �2

@u
¼

l

¼1

�
cos3usinu � sin3ucosu
� �

2K2
i � 8g2

12ðhiÞ
� �

þ 2Kiðcos4u

þ sin4u � 6 � cos2usin2uÞg12ðhiÞ
�

(10)

here Ki ¼ g22ðhiÞ � g11ðhiÞ (Appendix A).

.3. Applying the algorithm to an N–dimensional case

Blind source separation methods such as independent
omponent algorithms use N � N matrices and their first-
nd second-order derivatives, which are difficult to manage
ohrabian and Ozcelik, 2012b; Tercan and Sohrabian, 2013).
n the other hand, the new developed algorithm is simple as
ou only need to solve N � ðN � 1Þ=2 one-dimensional
roblems, while the actual matrices are still N by N. The N � N

pace is divided into N � ðN � 1Þ=2 two-dimensional spaces
nd the previous algorithm is run for each 2-D space where
e related axes are rotated to renew the factors, and the

lgorithm is set to work for the remaining 2-D spaces. In case
f N � N space, the problem is simplified to the calculation of

 � ðN � 1Þ=2 rotation angles. Then, the final transformation
atrix is calculated as follows:

MSC ¼
YN�ðN�1Þ=2

i¼1

AðuiÞ ¼ Aðu1Þ � Aðu2Þ � ::: � Aðu
N�

N � 1

2

Þ

cosu1 �sinu1 0 � � � 0 0

sinu1 cosu1 0 � � � 0 0

..

.
0

0

..

.
0

0

..

.
} ..

.
1 ��� 0

0 ��� 1

..

.
0

0

0 0 0 � � � 0 1

2
666666664

3
777777775
�

cosu2 0 �sinu2 0 � � � 0

0 1 0 0 � � � 0

sinu2 0 cosu2 0 � � � 0

..

.
0

0

..

.
0

0

..

.
0

0

..

.
} ..

.
1 ��� 0

0 ��� 1

2
666666664

3
777777775
� :::

1 0 � � � 0 0 0

..

.
0

0

..

.
} ..

.
1 ��� 0

0 ��� 1

..

.
0

0

..

.
0

0

0 0 � � � 0 cosu
N�

N � 1

2

�sinu
N�

N � 1

2

0 0 � � � 0 sinu
N�

N � 1

2

cosu
N�

N � 1

2

2
66666666666664

3
77777777777775

This technique is applied to an andesite deposit
containing four variables to illustrate how tðhÞ decreases
after each 2-D rotation (Fig. 1). Considering the maximum
range of auto and cross-variograms and the average
distance of sample locations, we chose five variogram

Fig. 1. (Colour online) Decrease in tðhÞ value as iteration progresses in 2-

D spaces. For example shows tðhÞ values of factors obtained after

first rotation in 2-D space of first and second factors.

Fig. 2. (Colour online) Cross-variograms of factors obtained by MSC (top

left) and MAF (top right) methods and their orthogonalization efficiency
lot (bottom).
(11) p
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atrices at distances 20 m, 40 m, 60 m, 80 m and 100 m.
e magnitude of derivative obtained from iteration was
o small and therefore the initial value for a was taken to

 5000. The value of a was divided by 2 for five times as
tting closer to the minimum point. Fig. 1 shows that,
ter each 2-dimensional transformation and renewing
ctors, the tðhÞ value decreases gradually from the
hitened components to the MSC factors.

 Case study

The study area is an andesite quarry located in the
buk district, 60 km north-east of Ankara, Turkey. In the

Table 1

Summary statistics and correlation coefficient matrix of variables.

Variable Minimum Mean Maximum Skewness Variance

EM 7.80 14.20 28.70 1.09 23.16

TS 5.09 8.76 13.45 0.32 5.30

UCS 20.00 63.35 105.00 0.00 375.07

Los 500 11.20 14.31 16.20 –0.63 1.48

Correlation coefficient matrix of variables

EM TS UCS Los 500

EM 1 0.82 0.80 –0.82

TS 0.82 1 0.94 –0.94

UCS 0.80 0.94 1 –0.88

Los 500 –0.82 –0.94 –0.88 1
Fig. 3. (Colour online) Auto-variograms of MSC and MAF factors together with the fitted models (black solid line) and model parameters.
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rea, a total of 108 samples at 20-m regular intervals were
ollected and the samples were tested for Uniaxial
ompressive Strength (UCS), Tensile Strength (TS), Elas-
city Modulus (EM) and Los Angeles abrasion for 500

evolutions (Los 500) according to Turkish standards (TSE,
987). The mechanical properties are tested on core
amples with the same size. Therefore the variables
onsidered in the study can be said to be additive. Among

ese variables, EM and TS are positively skewed and Los
00 is strongly negatively skewed. The UCS is the only
ttribute with a symmetric distribution (not shown here).
able 1 gives summary statistics for each variable and

correlation coefficients between them. Correlation coeffi-
cients are relatively high with absolute values more than
0.8. The highest correlation coefficient occurs between Los
500 and TS and then UCS and TS.

4.1. Transformations

MSC method was run by considering the sum of cross-
variograms at five lag distances. Lag distance and lag
tolerance were chosen as 20 m and 10 m, respectively.
Prior to running MSC method, a whitening process was
performed by using PCA. Whitening process and MSC
ig. 4. (Colour online) Comparison of the mean and variance of variables (green straight line) with simulated realizations obtained using MSC ( ) and

AF ( ) factors.
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nsformation were done using Twhitening and AMSC

atrices, respectively:

hitening ¼

0:01 0:04 0:09 0:12
0:12 0:27 �0:02 �1:81
0:05 �0:37 0:06 �0:04
�0:22 �0:29 1:76 �1:76

2
664

3
775;

MSC ¼

�0:14 0:76 0:17 �0:62
�0:57 �0:35 0:74 �0:08
�0:63 �0:25 �0:65 �0:34
0:50 �0:5 0:07 �0:71

2
664

3
775

Overall transformation matrix ¼ Twhitening � AMSC

¼

�0:03 0:09 �0:03 �0:13
�1:07 0:90 0:11 1:19
0:15 0:17 �0:31 0:01
�1:80 0:37 �1:53 0:80

2
664

3
775

For MAF approach, auto and cross-variograms of
standardised variables were calculated at two lag distances
equal to 28 and 100 m. Then, the overall transformation
matrix from original data to MAF factors was obtained:

. 5. (Colour online) Cumulative distribution functions for one hundred realizations for each attribute obtained using the MSC and MAF simulation
thods. Solid red lines demonstrate the cumulative distribution function of the original variables.
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MAF ¼

0:09 �0:06 0:02 �0:13
0:05 �0:19 �0:24 1:77
0:09 0:34 �0:12 �0:03
1:85 0:01 0:18 1:22

2
664

3
775

The MSC and MAF factors were produced by multi-
lying the transforming matrices by the data matrix. Fig. 2
hows the cross-variograms of factors obtained by these
ethods. Fig. 2 also compares the efficiency of orthogo-

alization methods using tðhÞ measure. It is obvious that
e cross-variograms of the MSC factors are in a tighter
terval than those of MAF factors. Considering tðhÞ values,
e MSC method seems to be more efficient than MAF

method in producing orthogonalised factors at most lag
distances but 100 m.

4.2. Simulations

By running the Jarque–Bera test of normality at the 5%
significance level, it can be said that all factors but MAF3
have a normal distribution. Experimental variograms of
MSC and MAF factors are calculated and shown together
with the fitted models and model parameters (Fig. 3). The
model variograms of all factors consist of pure nugget and
of one spherical scheme. All factors have isotropic
variogram models except the third MSC factor. For each
factor, 100 realizations were generated separately by

ig. 6. Histogram of simulation correlation coefficients together with aimed values (red solid line) (For interpretation of the references to color in this figure,
e reader is referred to the web version of this article).



Fig. 7. Auto and cross-variograms (black solid lines) of simulation results together with target variograms (red solid line). (For interpretation of the references to colour in this figure, the reader is referred to the web

version of this article).
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onsidering the direct sequential simulation algorithm
troduced by Oz et al., 2003. Most factors show normal

istribution so that they can be simulated by the direct
equential simulation method without any normal scores
ansformation. The simulated realizations were then
ack-transformed into the real data space. For simulation,

 5 � 5 regular grid containing 1911 nodes was used.

.3. Comparison of the simulation results

To compare MSC and MAF simulations, some tests were
arried out. For this purpose, the following criteria are
onsidered: reproduction of summary statistics, cumula-
ve histograms, correlation coefficients and auto/cross-
ariograms.

The mean and variance values of 100 realizations
btained from both simulation methods are shown in
ig. 4. Practically, there is no noticeable difference between
ean values of MSC and MAF realizations. Compared to the

ariance of actual values, the variance of MAF realizations
 high, while the variance of MSC realizations is low. Fig. 5

hows the cumulative histograms of realizations obtained
om MSC and MAF simulations. It can be said that

eproduction of CDF is acceptable for both methods.
The next test consists in comparing the correlation

oefficients of simulations to those of real data. The
eproduction of sample correlations is perfect for MSC
imulations and reasonable for MAF simulations (Fig. 6). In
eneral, for each attribute, the mean value of correlation
oefficients of MSC simulations is closer to the sample
orrelation coefficient.

The experimental auto and cross-variograms of 100
ealizations for both methods are shown in Fig. 7. The
xperimental variograms for MSC simulation change in a
arrow interval compared to the experimental variograms
f MAF simulation. This is an expected result when we
onsider the variances of the realizations for both methods
s shown in Fig. 4. In average, the sample variograms are
ell produced by MSC over MAF. In addition, MSC

eproduces short-range variability better than MAF.

5. Conclusions

In this paper, a novel method is presented for spatially
orthogonalization of multivariate data. Then, the results of
joint simulations obtained by this method are compared to
MAF simulations. MSC simulation method shows better
performance over MAF. At most lag distances, the factors
generated by MSC method have lower t values than MAF
factors so that they are spatially more uncorrelated than
factors obtained by MAF method.

The case study shows that the reproduction of target
statistics for MSC and MAF simulations is acceptable. The
methods produce practically similar average values. MSC
produces the simulated realizations with low variances,
while MAF realizations show high variances. The CDF
reconstruction of simulated attributes is acceptable for
both methods. However, the reproduction of target
correlation coefficients is good for MSC method and
reasonable for MAF simulation. Also, MSC simulations
reproduce auto and cross-variograms better than MAF
simulations. In particular, the short-range variability is
well produced in MSC.

Minimization of cross-variograms is not the only
criterion to use. Some other criteria can also be defined.
For example, a new measure of spatial independency
rather than spatial uncorrelatedness can be introduced. In
addition, the MSC criterion based on the minimization of
cross-variograms at different distances assumes that each
distance is equally weighted. One can however consider
different weights for each distance. MSC algorithm cannot
handle non-linear correlations among variables since it
uses linear transformations. Therefore, the method should
be developed further in order to consider non-linear
correlations.
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ppendix A

Proof: Suppose that the number of variables is equal to 2. This can be easily generalized to N. jZðhiÞ ¼
X2

k¼1

gZðhi; k; kÞ ¼
11ðhiÞ þ g22ðhiÞ; 2 hi is constant:

jZðhiÞ ¼
X2

k¼1

gZðhi; k; kÞ ¼ g11ðhiÞ þ g22ðhiÞ; 2 hi, 2 hi for the whitened data and also

FðhiÞ ¼
X2

k¼1

gFðhi; k; kÞ

 cos2ug11ðhiÞ þ sin2ug22ðhiÞ þ 2cosusinug12ðhiÞ þ cos2ug22ðhiÞ þ sin2ug11ðhiÞ � 2cosusinug12ðhiÞ
 ðcos2u þ sin2uÞg11ðhiÞ þ ðcos2u þ sin2uÞg22ðhiÞ ¼ g11ðhiÞ þ g22ðhiÞ
r the MSC factors.

The derivative of ’ðuÞ with respect to u can be given as follows:

’ðuÞ
@u

¼
@
Xl

i¼1

gF1F2
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� �2

@uXl
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� �

2K2
i � 8g2
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þ 2Ki cos4u þ sin4u � 6Kicos2usin2u
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