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ansport of solids in protoplanetary disks:
mparing meteorites and astrophysical models
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ntroduction

With the accelerating pace of exoplanet detections, the
toplanetary disk phase of stellar evolution enjoys
siderable interest. Thanks to increasing computational
er, theorists can test mechanisms for disk transport

rner et al., 2014) and planet formation (Youdin and
yon, 2013). Observations of present-day protoplane-

 disks (Williams and Cieza, 2011) probe the disk mass,
, structure, chemical species and solids (Natta et al.,
7). However, even with the Atacama Large Millimeter/
millimeter Array, it will remain challenging to resolve

les below a few AUs and probe the optically thick
plane of the inner disks where planet formation should

occur. To understand the evolution of solids in disks, we
must turn our attention to constraints provided closer to us
by our own solar system in the form of primitive
meteorites, or chondrites. Indeed, chondrites date back to
the protoplanetary disk phase of the solar system, 4.57 Ga
ago, and with more than 40,000 specimens classified to
date, not to mention samples returned from comet Wild 2
(Zolensky et al., 2008) or asteroid Itokawa (Nakamura
et al., 2011), they offer a considerable wealth of petro-
graphic, chemical, and isotopic data at all examination
scales.

Yet chondrites arrive in our laboratories without
geological context. While orbit determinations consis-
tently assign their parent bodies to the asteroid main belt–
with the exception of micrometeorites (Engrand and
Maurette, 1998) and perhaps some carbonaceous chon-
drites (Gounelle et al., 2008) possibly derived from further
out–, exactly where and when they originally accreted is

 T I C L E I N F O

le history:

ived 22 January 2014

pted after revision 19 February 2014

lable online 17 April 2014

ords:

ndrites

oplanetary disks

ulence

ndrules

actory inclusions

A B S T R A C T

We review models of chondrite component transport in the gaseous protoplanetary disk.

Refractory inclusions were likely transported by turbulent diffusion and possible early

disk expansion, and required low turbulence for their subsequent preservation in the disk,

possibly in a dead zone. Chondrules were produced locally but did not necessarily accrete

shortly after formation. Water may have been enhanced in the inner disk because of

inward drift of solids from further out, but likely not by more than a factor of a few.

Incomplete condensation in chondrites may be due to slow reaction kinetics during

temperature decrease. While carbonaceous chondrite compositions might be reproduced

in a ‘‘two-component’’ picture (Anders, 1964), such components would not correspond to

simple petrographic constituents, although part of the refractory element fractionations in

chondrites may be due to the inward drift of refractory inclusions. Overall, considerations

of chondrite component transport alone favor an earlier formation for carbonaceous

chondrites relative to their non-carbonaceous counterparts, but independent objections

have yet to be resolved.
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largely unknown. Still, chondrites exhibit considerable
compositional variations, and space and time were
obviously important dimensions behind them. In fact,
each individual chondrite is a mixture of components
(chondrules, refractory inclusions, etc.) formed in different
locations, epochs and environments in the disk (Brearley
and Jones, 1998; Krot et al., 2009). This is evidence for
considerable transport in the disk. In order to place the
meteoritical record in context, the relevant transport
processes have to be understood, and as such meteorites
are sensors of the dynamics of protoplanetary disks.

Our purpose here is to review transport mechanisms of
chondrite components before accretion. An earlier review
on particle-gas dynamics was given by Cuzzi and
Weidenschilling (2006) and Boss (2012) reviewed trans-
port and mixing from the perspective of isotopic hetero-
geneity. The formation per se of chondrite components is
essentially beyond our scope but the reader may be
referred to recent reviews by Krot et al. (2009) and Aléon
(2010). Wood (2005) and Chambers (2006) proposed
syntheses on the origin of chondrite types from cosmo-
chemical and astrophysical viewpoints, respectively. Here,
the discussion will be organized around meteoritical
constraints as follows: In Section 2, we provide background
on chondrites and the basic physics of the protoplanetary
disk before embarking in Section 3 on an examination of
transport constraints from specific chondrite components.
We then review the interpretation of fractionation trends
exhibited by chondrites as wholes (Section 4) in light of
which we will discuss the chronological and/or spatial
ordering of chondrite groups (Section 5).

2. Background

2.1. Chondrites: a brief presentation

Chondrites are assemblages of various mm- and sub-
mm-sized solids native to the protoplanetary disk. Oldest
among them are the refractory inclusions (Krot et al., 2004;
MacPherson, 2005), further divided in calcium-aluminum-
rich inclusions (CAI) and (less refractory) amoeboid olivine
aggregates (AOA), which presumably originated by high-
temperature gas-solid condensation, 4568 Ma ago (Bou-
vier and Wadhwa, 2010; Connelly et al., 2012; Kita et al.,
2013), although many have since experienced melting.
More abundant than those are chondrules, silicate spher-
oids 1–4 Ma younger than refractory inclusions (Connelly
et al., 2012; Kita and Ushikubo, 2012), likely formed by
melting of isotopically and chemically diverse precursor
material. The nature of the melting events remains
however elusive, with ‘‘nebular’’ (e.g., shock waves) and
‘‘planetary’’ (e.g., collisions) environments still being
considered (Boss, 1996; Desch et al., 2012). Metal and
sulfide grains also occur, either inside or outside chon-
drules (Campbell et al., 2005). All these components are set
in a fine-grained matrix, a complex mixture of presolar
grains, nebular condensates and/or smoke condensed
during chondrule-forming events (Brearley, 1996).

While all chondrites roughly exhibit solar abundances
for nonvolatile elements (Palme and Jones, 2005), with
CI chondrites providing the best match, they are

petrographically, chemically and isotopically diverse,
and 14 discrete chemical groups, each believed to represent
a distinct parent body (or a family of similar ones), have
hitherto been recognized. To first order, one may partition
these groups in two super-clans (Kallemeyn et al., 1996;
Warren, 2011), namely the carbonaceous chondrites (with
the CI, CM, CO, CV, CK, CR, CB, CH groups), and the non-

carbonaceous chondrites, which comprise the enstatite (EH,
EL), ordinary (H, L, LL) and Rumuruti (R) chondrites.
Carbonaceous chondrites are more ‘‘primitive’’ in the sense
that they have a higher abundance of refractory inclusions
and matrix, a solar Mg/Si ratio, and an 16O-rich oxygen
isotopic composition closer to that of the Sun (McKeegan
et al., 2011). Non-carbonaceous chondrites, though poorer
in refractory elements, are more depleted in volatile
elements, have subsolar Mg/Si ratios and a more terrestrial
isotopic composition for many elements (Trinquier et al.,
2009). What these differences mean and how some may
relate to the transport of chondrite components is one of
the main focuses of this review.

2.2. Dynamics of the early solar system

The exact structure of our protoplanetary disk remains
very conjectural. If we mentally add gas to a smoothed version
of the current planetary system to restore solar abundances,
we obtain a density profile known as the ‘‘Minimum Mass
Solar Nebula’’ (MMSN; Hayashi, 1981) with an integrated
mass � 0:01 M� 1 M� � 1 solar massð Þ. While this
agrees with disk masses estimated for most T Tauri stars
(Williams and Cieza, 2011), it may be one order of magnitude
below the original disk mass at the cessation of infall from the
parent molecular cloud (Yang and Ciesla, 2012). The MMSN,
though a useful reference, ignores the extensive redistribu-
tion and losses of gas and solids occurring in disks which
funnel gas onto the central stars at observed rates of
10�8�1 M�=a (Williams and Cieza, 2011).

What drives the evolution of gas disks? Since the
molecular viscosity is far too small to account for the �1–
10 Ma lifetime of protoplanetary disks (Williams and
Cieza, 2011), disk theorists generally rely on turbulence
which, in a rough, large-scale sense, may mimic the effects
of an enhanced viscosity

n ¼ a
c2

s

V
(1)

with cs the (isothermal) sound speed, V the Keplerian
angular velocity and a the dimensionless ‘‘turbulence
parameter’’ (Balbus and Papaloizou, 1999), for which
values around 10�2 are inferred from observations
(Armitage, 2011). The exact source of this turbulence is
still contentious. As yet, the leading candidates are
gravitational instabilities (Durisen et al., 2007) and the
magneto-rotational instability (MRI; Balbus and Hawley,
1998). While the former would be important in the earliest
epochs where the disk is massive enough, the latter
essentially only requires the gas ionization fraction to be
above a small threshold, and may operate at all times.
However, this threshold may not be attained over a
considerable range of heliocentric distances, yielding a
dead zone of low turbulence, unless other instabilities are
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ork (Turner et al., 2014). Eventually, after the disk mass
 significantly dropped, photoevaporation due to the
tral star (and/or close neighbours) should completely
r the gas (Armitage, 2011).

Except in late stages of the disk where photophoresis
y become important (Wurm and Krauss, 2006), the
amics of small solids are primarily dictated by gas drag.

 stopping time, for a spherical particle of radius a

aller than the molecular mean free path, is (Wei-
schilling, 1977):

ffiffiffiffi
p
8

r
rsa

rcs
(2)

h rs and r the solid and gas densities, respectively. For
tance, at 3 AU in a MMSN, a 0.3 mm radius chondrule

 t = 2 h at the midplane, much shorter than the orbital
iod. Hence, to zeroth order, chondrite components
uld follow the gas, but they cannot have exactly the
e velocity because they do not ‘‘feel’’ the pressure

dient acceleration experienced by it. There is thus a
tematic drift velocity of the solids relative to the gas in

 direction of larger pressures, that is, toward both the
plane and the Sun. The radial drift is given by:

ift;R ¼
t
r

@P

@R
¼ 0:004 m=s

@lnP

@lnR

rsa

1 kg=m2

  !
10�6 kg=m3

r

  !

 AU

R

�
T

300 K

� �
(3)

h P and T the gas pressure and temperature and R the
iocentric distance. While this drift is generally smaller
n the turbulent velocity fluctuations of the gasffiffiffiffi

a
p

cs

�
, it may become important in the long run as

se average out. A measure of this importance is the
s–grain decoupling parameter’’ (Cuzzi et al., 1996;

Jacquet et al., 2012):

S � Vt
a

¼ 0:1
rsa

1 kg=m2

  !
10�8 M�=a

Ṁ

  !
R

1 AU

� �3=2 T

300 K

� �

(4)

where the last equality is for a steady disk of mass
accretion rate Ṁ. For S � 1, the particles are tightly coupled
to the gas, while for S 0 1, they settle to the midplane (with
a concentration factor �

ffiffiffi
S
p

) and drift radially sunward
faster than the gas (Fig. 1).

Over time, grains collide and coagulate, as evidenced by
detection, in protoplanetary disks, of mm-sized solids
(Natta et al., 2007), much larger than typical interstellar
grains (�0.1 mm). Growth to meter size is frustrated by
bouncing/fragmentation at high collision speeds and by
increased radial drift which would remove them from the
disk within centuries (Birnstiel et al., 2010; Brauer et al.,
2007; Weidenschilling, 1977). Settling to the midplane
might help self-gravity of the solids to intervene but is
limited by gas turbulence, so that other mechanisms such
as turbulent concentration or streaming instabilities may
have to bridge the gap (Cuzzi and Weidenschilling, 2006;
Youdin and Kenyon, 2013). Here, we will mostly restrict
attention to sub-mm/cm-sized bodies since chondrite
composition was established at the agglomeration of such
components.

3. Transport of chondrite components

With these fundamentals in mind, we now turn to
constraints provided by specific chondrite components,
and the astrophysical processes which may satisfy them.

Sun

S=1

"CAI line"

S>1: gas−grain decouplingS<1: gas−grain coupling

Gas turbulence

ice

snow line

inclusion
refractory rocky solid

water
vapor

accretion
on the Sun

1. Sketch of dynamics in the early solar system, with refractory inclusions (pink), rocky solids (green) which may be thought of as chondrules or

drule precursors, and water (cyan). Turbulent motions of the gas are indicated (with the understanding that their average incurs a net flow toward the

). Beyond the S = 1 line (which depends on the particle size), solids decouple from the gas, settling to the midplane and drifting toward the Sun faster

 the gas. Lines corresponding to CAI (for the early stages) and water condensation are shown as well, with an indication of their secular inward
lacement as the disk evolves.
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3.1. Refractory inclusions

The oldest solids of the solar system, the refractory
inclusions, are estimated to have formed at �1400–1800 K
(Grossman, 2010). Such high temperatures, presumably
due to small-scale dissipation of turbulence, did not obtain
at heliocentric distances > 1 AU for more than a few
105 years after disk formation (Yang and Ciesla, 2012). This
is consistent with the old age of CAIs and AOAs; yet to
account for their presence in chondrites and even in
comets (Simon et al., 2008), outward transport is in order.
It would also account for the abundance of crystalline
silicates in comets (Zolensky et al., 2008).

Shu et al. (1996) proposed that solids processed at
R < 0.1 AU were entrained by stellar winds and fell back
onto the disk further out (Hu, 2010). Desch et al. (2010)
however criticized the role of this ‘‘X-wind’’ in processing
chondrite components e.g., regarding the very survival of
solids (see also Cuzzi et al. (2005) on the formation
timescales of Wark-Lovering rims) so that one may have to
seek transport within the disk itself.

In a turbulent disk, velocity fluctuations may send high-
temperature material outward (Bockelée-Morvan et al.,
2002; Boss, 2004; Ciesla, 2010; Cuzzi et al., 2003; Gail,
2001; Hughes and Armitage, 2010). The envisioned
random-walk paths may explain complex thermal his-
tories recorded by some refractory inclusions (Boss et al.,
2012; Ciesla, 2011). The efficiency of this turbulent
diffusion against the mean inward flows depends sensi-
tively on the Schmidt number ScR B v/DR, with DR the
turbulent diffusivity, although many studies have simply
equated it to 1. ScR< 1 seems required for efficient
outward diffusion (Clarke and Pringle, 1988; Hughes and
Armitage, 2010; Pavlyuchenkov and Dullemond, 2007).
While MRI-driven turbulence would likely not satisfy this
requirement (Johansen et al., 2006), this is expected from
hydrodynamical turbulence (Prinn, 1990), but save for a
few laboratory experiments, of uncertain relevance to
protoplanetary disks (Lathrop et al., 1992; Launder, 1976),
empirical evidence is largely wanting.

Turbulent diffusion may have been supplemented by
outward advection flows early in the disk evolution.
Indeed, the disk may have been initially compact
( 9 10 AU in radius), and its ensuing expansion would
have begun in the condensation region of refractory
inclusions (Jacquet et al., 2011, Yang and Ciesla, 2012).
Outward transport would then have been efficient for the
earliest generation of CAIs, hence perhaps their narrow
observed age range (Ciesla, 2010; Yang and Ciesla, 2012).

Outward flows have been proposed to persist around
the disk midplane, even if the vertically integrated flow is
inward, and ease the outward transport of inner disk
material at later stages (Ciesla, 2007; Hughes and
Armitage, 2010). This so-called meridional circulation
arises when turbulence is modeled as a viscosity in a very
literal sense (Takeuchi and Lin, 2002). However, while the
gross properties of turbulent disks may be obtained with
this ansatz, there is no first principle reason that the
resulting two-dimensional flow structure should also
hold true, and in fact meridional circulation has not
been observed in numerical simulations of MRI-driven

turbulence by Fromang et al. (2011) or Flock et al. (2011).
At any rate, Jacquet (2013) showed that even if meridional
circulation existed, it would not, because of the inward
flows in the upper layers, make a significant difference in
terms of net radial transport compared to 1D models, given
current uncertainties in turbulence parameters.

Not only were refractory inclusions transported in the
disk, they were preserved there quite efficiently, for the CAI
fraction in some carbonaceous chondrites is comparable to
what in situ condensation out of a solar gas would have
produced (�6%; Grossman, 2010). However, the inward
gas flows and grain-gas radial drift have long been
expected to remove them from the chondrite-forming
regions within a few 105 years–especially for the large type
B CAIs in CV chondrites–, even though the drift slows down
closer to the Sun (Laibe et al., 2012). Indeed turbulent
diffusion calculations by Cuzzi et al. (2003) and Ciesla
(2010) underpredicted CAI abundances by 1–2 orders of
magnitude–unless the ‘‘CAI factory’’ was enriched in
condensible matter, which, if not very carbon-rich, would
however yield too oxidizing conditions (Jacquet et al.,
2011). In simulations starting with compact disks, how-
ever, Yang and Ciesla (2012) achieved retention of
refractory inclusions for > 2 Ma, presumably because
many of them were sent far from the Sun (10–100 AU),
their disk remained quite massive 0 0:1 M�ð Þ even after a
few Ma, and a was relatively low (10�3; see also equation
(8) of Jacquet et al. (2011)). In fact, low turbulence levels
a 9 10�4 could alone account for the preservation of
refractory inclusions, assuming outward transport was
accomplished somehow before, and low turbulence is
exactly what is generically expected from the dead zone
picture (Jacquet et al., 2011). Indeed, the dead zone, which
would have emerged after an initially turbulent phase
conducive to extensive transport, would slow down gas
accretion toward the Sun, and by forcing gas to accumulate
there, would also reduce the stopping time and thence the
drift of refractory inclusions.

Importantly, efficient diffusion as expected in the early
disk would rapidly homogenize any short-lived radio-
nuclide like 26Al (Boss et al., 2012) and hence validate its
use as a chronometer. Same would not hold, however, if
such isotopes were injected into the disk after the
formation of a dead zone.

3.2. Chondrules

The low turbulence levels invoked above for the
preservation of refractory inclusions would as well account
for the few-Ma age range of chondrules measured in single
meteorites (Connelly et al., 2012; Kita and Ushikubo,
2012), for chondrules and refractory inclusions have
comparable sizes. However, Alexander and Ebel (2012)
argued that turbulent mixing would homogenize chon-
drule populations over chondrite-forming regions within a
few 105 years, at variance with the distinctive chondrule
populations of the different chemical groups (Jones, 2012).
They thus suggested that the Al–Mg ages–although
broadly corroborated by Pb–Pb dating–were perturbed
(but see Kita and Ushikubo, 2012) and that the data
are consistent with chondrule formation immediately
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ceding chondrite accretion. From an astrophysical
dpoint, this may be a premature conclusion, though.

 diffusion length after a time t is

ffiffiffiffiffiffiffiffiffi
DRt¼1 AU

t

1 Ma

� �1=2

Sc�1=2
R

a

10�4

� �1=2 T

300 K

� �1=2 R

1 AU

� �3=4

(5)

So whether this exceeds the separation between
erent chondrule-forming regions depends, among
er things, on the exact values of a and on where the
ndrule- and chondrite-forming regions actually were in

 disk. These locales may have been quite distinct from
 present-day position of chondrite parent bodies, in the
roid main belt, especially if their orbits were sig-

cantly reshuffled e.g., during a ‘‘Grand Tack’’ (Walsh
l., 2011). Moreover, this calculation ignores the barrier
t gas drag-induced drift may have posed to outward
ing (if S > 1). In fact, if mixing had been as efficient as to
ogenize the chondrite-forming region in 9 1 Ma

escales, bulk chemical fractionations observed across
ndrite groups would be difficult to understand (see
tion 4).
Another constraint that chondrule transport must
sfy is chondrule-matrix complementarity (Huss et al.,
5). This is the observation, for carbonaceous chon-
es, that while the bulk rocks have solar Mg/Si ratios (or
er interelement ratios, see Hezel and Palme (2010)),

 does not hold for chondrules or matrix taken
ividually. Complementarity, if confirmed (but see
da et al. (2012)), requires that chondrules and matrix

genetically related (unlike, e.g., a X-wind scenario), but
 that chondrules and dust from a given chondrule-
ing region did not drift apart until accretion. While a

ticular chondrule and a particular dust grain would
ckly separate barring immediate accretion, this would

 be true of the populations of chondrules and dust
ins as wholes which would remain spatially indistin-
shable for some time due to turbulence. In fact, in the
ime S < 1 (for chondrules), Jacquet et al. (2012) showed
t this overlap would continue over their whole drift
escale, so that accretion at any time would yield
plementarity. Complementarity would not be com-

mised by mixing between products of several chon-
le-forming events provided transport from each of
se sources was likewise unbiased as to the chondrule/
t ratio (Cuzzi et al., 2005; Jacquet et al., 2012).
ndrule transport in the disk is thus still compatible
h observations, although a link between chondrule and
ndrite formation cannot be ruled out.

 Metal and sulfide grains

Chondrites, and especially non-carbonaceous ones–
s the very metal-rich CHs and CBs, although their
esis likely was very anomalous (Krot et al., 2005)–, have
ergone metal/silicate fractionation prior to accretion

rimer and Wasson, 1988a, 1988b; Wood, 2005). While
ly workers invoked some separation of metal grains
ctly condensed from the hot solar nebula, e.g., because

ferromagnetically enhanced coagulation (Harris and

Tozer, 1967; see also a review by Kerridge (1977)), there is
little evidence of isolated pristine nebular metal conden-
sates in meteorites, although such grains are found
enclosed in refractory inclusions (Schwander et al., 2013;
Weisberg et al., 2004). Actually, chondrite metal grains
mostly seem to be byproducts of chondrule-forming
events (Campbell et al., 2005). Metal/silicate fractionation
may have arisen locally by aerodynamic sorting (Zanda
et al., 2006), e.g., because of differential radial and/or
vertical drift, or turbulent concentration. Indeed, in both
ordinary (Kuebler et al., 1999; Nettles and McSween, 2006)
and enstatite (Schneider et al., 1998) chondrites, metal and
sulfide grains have a somewhat lower rsa than chondrules
on average, but are closest to aerodynamic equivalence
with them for their most Fe-rich varieties (H and EH,
respectively) which have the smaller chondrules. There-
fore, metal/sulfide grains and small chondrules could have
been segregated together. Alternatively, metal/silicate
fractionation might reflect varying contributions of debris
of differentiated planetesimals predating chondrule for-
mation (Sanders and Scott, 2012; but see Fischer-Gödde
et al., 2010).

3.4. Matrix grains

The grains of chondritic matrices are typically sub-mm-
sized (Pontoppidan and Brearley, 2010), likely too small to
show any decoupling relative to the nebular gas prior to
agglomeration as fluffy aggregates or fine-grained rims
around chondrules (Metzler and Bischoff, 1996). For
a = 10�3, surface densities below 1 kg/m2 (2 orders of
magnitude lower than the MMSN at 30 AU) would be
required to see any effect on radial drift i:e: S 0 1ð Þ. It is
then surprising that silicate and sulfide grains in chondritic
porous interplanetary dust particles are aerodynamically
equivalent (Wozniakiewicz et al., 2012); if non-coinci-
dental, it could indicate very low densities in the outer disk
when these (likely comet-derived) objects formed.

While no differential drift of dust grains is expected
anyway in the inner disk, presolar grains show some
variations across chondrite groups, e.g., the proportions of
type X SiC grains (Zinner, 2003) or the carriers of 54Cr
anomalies (Trinquier et al., 2009). These may be due to non
uniform injection or thermal processing of these grains
(Trinquier et al., 2009) and their persistence (at a few
tenths of the anomalies of refractory inclusions) suggest
limited turbulence levels, as similarly inferred above for
refractory inclusions and chondrules. As the high-tem-
perature events which produced the latter would have
destroyed presolar grains, their very survival indicates that
these events were localized, allowing subsequent mixing
between processed and unprocessed matter.

3.5. Water

Water makes up about half of condensable matter in a
solar mix (Lodders, 2003). While chondrites that survive
atmospheric entry are mostly dry, hydrated silicates,
mostly found in carbonaceous chondrites, testify to
aqueous alteration on their parent body (Brearley, 2003).
Also, water may have been partly responsible for the high
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oxygen fugacities recorded by many chondrules (e.g.,
Schrader et al., 2013, which require 10–1000-fold
enhancements over solar abundances. Water was likely
16O-poor (Sakamoto et al., 2007), and possibly responsible
for the variations of the oxygen isotopic composition of the
inner solar system, from 16O-rich signatures of CAIs to 16O-
poor, ‘‘planetary’’ ones (but see Krot et al. (2010); see also
Yurimoto et al. (2008) for an overview of oxygen isotopic
data).

In protoplanetary disks, water condenses as ice beyond
the ‘‘snow line’’ (�170 K). Ice and intermingled silicates
would drift inward and enrich the inner disk inside the
snow line (Cuzzi and Zahnle, 2004; Stepinski and Valageas,
1997). In the popular CO self-shielding scenario, whether
in the parental molecular cloud (Yurimoto and Kuramoto,
2004) or in the disk (Lyons et al., 2009), as 16O-poor water
may be most efficiently produced and/or preserved at large
heliocentric distances, this would account for its addition
to inner solar system material, although detailed calcula-
tions of O isotopic evolution in disks have yet to be
published (it remains in particular to be seen whether the
existence of both 16O-rich and -poor reservoirs already
during CAI formation as recorded by some reversely zoned
melilite grains (Park et al., 2012) can be reproduced).
Because of the finite supply of water in the outer disk (and/
or the ‘‘bouncing barrier’’ to grain growth which would
limit drift), the enrichment would be limited to a factor of a
few (Ciesla and Cuzzi, 2006; Hughes and Armitage, 2012),
insufficient to account for FeO contents in chondrules.
Settling to the midplane might further enhance the
(dust � ice)/gas ratio to the desired levels, depending on
the enhancement due to radial drift, but would require very
low turbulence (Cuzzi and Weidenschilling, 2006). Turbulent
concentration is yet another possibility (Cuzzi et al., 2001).

For efficient ice accretion beyond the snow line
(Stevenson and Lunine, 1988), diffusion may later deplete

the inner disk in water, perhaps accounting for the
(reduced) enstatite chondrites (Pasek et al., 2005),
although replenishment from further out would limit this
to a factor of a few (Ciesla and Cuzzi, 2006).

Another important constraint on water is the D/H ratio
which, for carbonaceous chondrites appears systematically
lower than most comets (Alexander et al., 2012). This may
require efficient outward diffusion (i.e. low Schmidt
number) of D-poor water from the warm inner disk
(Jacquet and Robert, 2013; see also Yang et al., 2013),
consistent with the requirement of efficient outward
transport of high-temperature minerals (Bockelée-Morvan
et al., 2002; see Section 3.1).

4. Fractionation trends in chondrites

We have investigated above the constraints given by
individual petrographic components of chondrites on their
transport in the protoplanetary disk. On a more integrated
perspective, such redistribution of material may have
caused the compositional variations exhibited by the
different chemical groups of chondrites. We have already
mentioned metal/silicate fractionation (Section 3.3); here,
we focus on lithophile element fractionations and their
possible dynamical interpretations.

With respect to solar abundances, the most striking
pattern exhibited by bulk chondrite chemistry (except CIs)
is the depletion in volatile elements, increasing with
decreasing nominal condensation temperature (Palme
et al., 1988). How did this incomplete condensation come
about? Yin (2005) suggested that it was inherited from the
interstellar medium, but isotope systems involving ele-
ments of different volatilities (e.g., Rb-Sr) yield whole-rock
isochrons consistent with the age of the solar system
(Palme and Jones, 2005), indicating, along with the very
existence of undepleted CI chondrites native to the solar
system, that the depletion arose in the disk itself. Cassen
(1996) reproduced some of the elemental trends by
assuming that the chondrite parent bodies started to form
while the disk was hot and massive, but this is inconsistent
with more recent evidence that chondrites accreted after a
few Ma (Ciesla, 2008). Timescale considerations also
exclude the suggestions by Wasson and Chou (1974) of
gas-solid separation by settling, radial drift (both of which
require S > 1 which would obtain late in the disk history
(Jacquet et al., 2012)), or gas photoevaporation. The last
plausible alternative may then be a slowing of reaction
kinetics upon decrease of temperature–which are anyway
required to explain the preservation of CAIs in the first
place (Ciesla, 2008). Whether the temperature changes
witnessed by individual condensates (over 10–1000 years
in simulations by Boss et al. (2012) and Taillifet et al.
(2013)) would be sufficiently rapid to incur such an effect
has yet to be investigated.

Whatever process caused incomplete condensation, it
did not operate to the same degree in all regions and
epochs of the disk, and undoubtedly, there has been mixing
by diffusion and differential drift between these different
reservoirs. For example, CM chondrites are enriched in
refractory lithophile elements but moderately volatile
elements exhibit a plateau at about half the CI chondritic
value, suggesting a 50% admixture of CI-like material to an
otherwise smoothly volatile-depleted material (Cassen,
1996). Anders (1964) proposed that the composition of
chondrites resulted from varying proportions of an
unfractionated CI chondritic and a high-temperature
component. Zanda et al. (2006) recently developed this
two-component model by identifying these components
with petrographic constituents such as CAIs, chondrules
and matrix, whose proportions would have varied
independently accross the different chondrite groups (this
may be called the ‘‘strong’’ two-component model). It is
however questionable whether these petrographic com-
ponents were dynamically independent from each other,
in particular for carbonaceous chondrites. In the regime
S < 1, which would hold for the first few Ma, there would
be indeed little decoupling between these. Observational
evidence for coherence between chondrite components is
provided by (i) matrix-chondrule complementarity (see
Section 3.2) and (ii) the subsolar Al/Si ratios of CAI-

subtracted carbonaceous chondrites (Hezel et al., 2008),
contrary to a simple picture of CAI addition to a CI
chondritic material, suggesting a genetic link between at
least some of the CAIs and their host chondrite (Jacquet
et al., 2012). Also, the distinctiveness of chondrules in
different chondrite groups (Jones, 2012) excludes that a
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gle chondrule population was distributed throughout
 disk. Thus, while carbonaceous chondrite bulk
positions might conceivably be modeled in a simple
-component picture (Zanda et al., 2012), with higher

h-temperature fractions presumably representing ear-
 times and/or shorter heliocentric distances, such
mical components would likely have no straightfor-
rd petrographic manifestation.
Non-carbonaceous chondrites, to which we now turn
ntion, are depleted in refractory lithophile elements
tive to CIs, but this trend does not actually simply
plement the enrichment exhibited by carbonaceous

ndrites, as it is accompanied by a decrease in the Mg/Si
os (roughly uniformly solar for carbonaceous chon-
es; Larimer and Wasson, 1988a). Another process
st be at play. Larimer and Wasson (1988a) proposed a
s of a refractory olivine-rich material, possibly AOAs
e also Ruzicka et al., 2012). This could be accomplished
inward drift to the Sun (in the regime S > 1) provided
t this component was present in grains systematically
rser than the other (Jacquet et al., 2012)–at least before
ndrule formation. Hutchison (2002) proposed instead

 addition of low Mg/Si material to CI composition to
ount for non-carbonaceous chondrite composition,
ich may be implemented in a X-wind model but would
ubject to the drawbacks of such scenarios (Desch et al.,
0). In the case of enstatite chondrites, which have the
est Mg/Si ratios of chondrite groups, Lehner et al.
13) proposed that sulfidation of silicates may have led
evaporative loss of Mg. The concentration of chon-
les, e.g., due to preferential settling (Jacquet et al.,
2) or turbulent concentration (Cuzzi et al., 2001),
ht explain the volatile-depleted composition of non-

bonaceous chondrites relative to their carbonaceous
nterparts.

hondrites in space and time

In this final section, we would like to return to our
inal question–how the different chondrite groups may

ordered in space and time in the early protoplanetary
.

It is widely assumed that chondrite groups represent
erent heliocentric distances of formation, with
tatite chondrites closest to the Sun, followed by
inary, Rumuruti and carbonaceous chondrites (Rubin

 Wasson, 1995; Warren, 2011; Wood, 2005). Cer-
ly, spectroscopic observations–and the sample
rn mission Hayabusa to S(IV) asteroid Itokawa

kamura et al., 2011)–suggest that enstatite, ordinary
 carbonaceous chondrites are associated with E, S,
 C-type asteroids, respectively, and these do exhibit
 radial sequence (Burbine et al., 2008), although with
e overlap (e.g., Usui et al. (2013) find that most of the
e E-type asteroids actually lie in the middle of the

eroid belt).
Ab initio rationalization of this trend as a purely spatial
ct is however problematic. It is, e.g., no longer possible

ascribe the implied increase in oxidation state with
iocentric distance to a temperature decrease as in the
sic ‘‘hot solar nebula’’ picture, not only because high

temperatures would not have prevailed long, but also
because ferroan olivine in chondrites is difficult to ascribe
to nebular condensation (Grossman et al., 2012); and in
fact, chondrules in carbonaceous chondrites are more
frequently reduced than their ordinary chondrite counter-
parts. The nonmonotonic trend in isotopic ratios of oxygen
or other elements (Warren, 2011) is also difficult to ascribe
to episodic infall (Rubin and Wasson, 1995) as infall would
long have ceased.

Could time of formation have then played a role? We
have seen in the previous section that carbonaceous
chondrites were enriched in refractory elements (in
particular in CAIs) compared to non-carbonaceous chon-
drites. Regardless of the details of the fractionation
mechanisms, if, from the above, they did not form closer
to the Sun, it seems unavoidable that they formed earlier,
as proposed by Cuzzi et al. (2003) (specifically for CV
chondrites with their large type B CAIs, similar to Wood
(2005) and Chambers (2006)). Jacquet et al. (2012) showed
that the retention of CAIs required, along with other
properties, that S < 1 for carbonaceous chondrites, and
which would also plead in favor of an earlier epoch, as S

tends to increase with time and heliocentric distance (see
equation (4)). The fact that non-carbonaceous chondrite
parent bodies seem on average closer to the Sun may be
due to inward drift which tended to increasingly con-
centrate solids in the inner regions. Then, the 16O-poorer
composition of non-carbonaceous chondrites may be
ascribed to a later, more advanced stage of influx of 16O-
poor water from the outer disk if the self-shielding picture
holds.

While modelling of chondrite component transport
thus suggests that carbonaceous chondrites accreted
earlier than non-carbonaceous chondrites, other points
of view are allowed by other lines of evidence. One is that
chondrules in CO and LL chondrites exhibit a similar range
of Al–Mg ages (�1–3 Ma after CAIs, with younger ages in
EHs and CRs (Guan et al., 2006; Kita and Ushikubo, 2012).
While not strictly contradicting a difference in chondrite
accretion time, this could indeed suggest that time was not
an important factor. Also, non-carbonaceous chondrites
have generally been more thermally metamorphosed on
their parent body than carbonaceous chondrites (Huss
et al., 2006). If the heating is ascribed to 26Al decay, which
should decrease over time, this would on the contrary
suggest that carbonaceous chondrites accreted later than
non-carbonaceous chondrites (Grimm and McSween,
1993), unless the higher water content of the former or
some difference in the structure or size of the parent bodies
was responsible (Chambers, 2006; see also Elkins-Tanton
et al., 2011).

It thus appears that there are cogent arguments for the
three possible chronological orderings of carbonaceous
and non-carbonaceous chondrites (with the former either
older, younger or contemporaneous with the latter).
Obviously, however, two of these reasonings have to give,
but it may still be dicey to decide which with any
authority. Resolution of this critical issue in the inter-
pretation of the meteoritical record will await further
advances on the transport of chondrite components, as
reviewed here, but also on their formation models as well
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as the thermal and collisional evolution of the chondrite
parent bodies.
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