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ntroduction

A major recent advance in our understanding of the
ation of planetary bodies in the Solar System is the

ognition that some of them accreted very early and
erentiated into a metallic core surrounded by a silicate
ntle within the first or the first 2 Myr of Solar System
tory, when the Sun was still a T-Tauri forming star. The

e zero’’ of the Solar System is generally taken as that of
 formation of the oldest known solids, the so-called CAIs
-, Al-rich inclusions). However, there is no consensus
ut the absolute Pb–Pb age of CAIs, with a range of up to
yr between the ages reported by Amelin et al. (2010),
vier and Wadhwa (2010), and Connelly et al. (2012),

possibly reflecting disturbances of the U–Pb system,
analytical bias, or variations in the U isotopic ratio. The
combination of Pb–Pb dating and 26Al–26Mg systematics
(half-life of 0.72 Myr) on the same objects seems to
indicate an age of � 4568 Ma for CAIs [e.g., Bouvier et al.
(2011), Wadhwa et al. (2014)]. The existence of a single
26Al bulk CAI isochron (for CV3 chondrites) shows that
these CAIs formed over a very short time interval, within
less than � 40,000 years (Jacobsen et al., 2008; Thrane
et al., 2006) or even less than � 4000 years (Larsen et al.,
2011).

The 182Hf–182W systematics, short-lived 182Hf decays to
182W, with a half-life of 8.9 Myr, of magmatic iron
meteorites, allows us to date metallic core formation in
their parent bodies at less than � 1.5 Myr after CAI
formation (Burkhardt et al., 2008; Kleine et al., 2005,
2009; Kruijer et al., 2012, 2013; Markowski et al., 2006,
2007; Qin et al., 2008). The differentiation of a silicate crust
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A B S T R A C T

The time of the metal–silicate differentiation of the Eagle Station pallasite (ESP) parent

body was investigated using the 26Al–26Mg short-lived chronometer (half-life of

0.72 Myr). The Mg isotope ratios were measured in ESP olivines by both MC–SIMS and

HR-MC–ICPMS, allowing us to check the consistency between the results given by two

different analytical protocols and data reduction processes. Results show that the two

datasets are consistent, with a (d26Mg*)av. value of –0.003 (� 0.005)% (2 s.e., n = 89). Such a

value, associated with data from the 182Hf–182W short-lived systematics (half-life of 8.9 Myr),

indicates an ESP parent body metal–silicate differentiation occurring most likely at least at

� 2 Ma, but possibly 4 Ma, after CAI formation. From the 27Al/24Mg ratios measured in ESP

olivines using MC–SIMS, the duration of the olivine crystallization process was inferred to

have lasted over � 275 kyr if the core has differentiated as early as 2 Ma after CAIs, while in the

case of a core differentiation occurring 4 Ma after CAIs, the silicate–silicate differentiation

should have lasted for another 4 Myr.
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from the mantle of such early differentiated bodies
probably occurred shortly after core formation, between
2 and 5 Myr after CAI formation, as suggested by the
26Al–26Mg systematics of achondritic meteorites (Baker
et al., 2005; Bizzarro et al., 2005; Bouvier et al., 2011;
Schiller et al., 2010; Spivak-Birndorf et al., 2009). These
early differentiation processes are consistent with the
rapid accretion timescales recently proposed in models,
taking into account turbulence to create regions in the
accretion disk of high particle/gas ratio (Cuzzi et al., 2008;
Johansen et al., 2007; Morbidelli et al., 2012).

Despite these recent advances, very few data exist to
constrain the timing of silicate differentiation relative to
that of metal differentiation in an early accreted plane-
tesimal. Stony-iron meteorites, named pallasites [65 vol%
olivine, 30 vol% Fe–Ni metal, 5 vol% chromite, troilite and
phosphate (Buseck, 1977)] are of particular interest, since
they contain fragments of the metal and silicate phases
produced upon differentiation. Because the metal is devoid
of Hf and the olivine is devoid of Al, the W and Mg isotopic
compositions of the two phases were frozen at the time of
differentiation, thus, giving access, theoretically, to the 26Al
model age of silicate differentiation and to the 182Hf model
age of metal differentiation. Recent analytical develop-
ments for Mg isotope measurements by MC–SIMS (Luu
et al., 2013; Villeneuve et al., 2009, 2011) or HR-MC-ICPMS
(Bizzarro et al., 2011) allow 26Al model ages to be as precise
(or even more precise) than 182Hf model ages.

The present study is focused on the Eagle Station
pallasite (ESP), this pallasite being of particular interest as
it is chemically anomalous compared to other pallasites
(e.g., high Ni, Ge and Ir contents in the metal, and high
fayalite content in olivines, Scott (1977)). It is also enriched
in 16O [(D17O)ESP = –4.51 %, Clayton and Mayeda (1996)]
compared to Main Group pallasites [(D17O)MGP = –0.28
(� 0.06)%, Clayton and Mayeda (1996)], indicating possibly
that this pallasite formed either in a more inner region of the
disk or earlier than others. We report here Mg isotope
analyses by MC–SIMS (multi-collection secondary ion mass
spectrometry) and HR-MC–ICPMS (high-resolution multi-
collector inductively coupled plasma source mass spectro-
metry) of olivines from ESP. This is the first study that
associates bulk (HR-MC–ICPMS) and in situ (MC–SIMS)
analyses conducted on the same samples in order to be able
to look for any isotopic variations in 26Mg at different scales
and thus to determine precisely the range of variation of the
26Mg excesses due to 26Al decay in the parent melts of the
olivines. Assuming a homogeneous distribution of Mg and Al
isotopes in the protoplanetary disk, these results are
combined with previous W isotope data (Quitté et al.,
2005) to constrain the timing of metal and silicate
differentiation on the parent body of ESP.

2. Material and analytical procedures

The olivines from ESP selected for MC–SIMS measure-
ments belong to two different mounts, the first one being a
polished section of this meteorite (hereafter ESP-M), and the
second one containing two separated olivine grains (here-
after ESP 1 and ESP 2) as well as the standard minerals (San
Carlos olivine, Burma spinel, pyroxene) used in this study.

Mg isotopic compositions and Al/Mg concentration ratios
were measured on both the polished section and the two
individual grains, with the CRPG–CNRS (Nancy) ims
1280HR2, using procedures previously developed and
described elsewhere (Luu et al., 2013; Villeneuve et al.,
2009, 2011). For HR-MC–ICPMS measurements, a set
(5.15 mg) of hand-picked separated olivines from ESP was
digested in a 1:1 mixture of concentrated HF + HNO3 acids at
1008 C. The Mg chemical separation was performed
according to Tipper et al. (2008), with 4 aliquots (hereafter
ESP C2 to ESP C5) processed through 4 different sets of
columns to also test the reproducibility of the chemical
separation procedure. Mg isotopic compositions were
measured using the IPG Paris Neptune HR-MC-ICPMS, via
an Apex desolvating system, at a mass resolution M/
DM = 4500. Under these conditions, a Mg solution of
300 ppb produced a signal of � 10 V on mass 24. A
standard-sample-standard bracketing procedure was uti-
lized to monitor the instrumental fractionation drift, with
the DSM-3 pure Mg metal as an international standard (Galy
et al., 2003).

Note that the Mg isotopic compositions of ESP olivines
are expressed with the d26Mg* notation, classically used
when the non-mass-dependent 26Mg excesses are consid-
ered to be due to 26Al decay. A b value of 0.521 was used to
calculate the d26Mg* values according to d26Mg* = d26Mg–
d25Mg/b. This value of b corresponds to equilibrium Mg
isotopic fractionations akin to those taking place during the
differentiation of the mantle of the Earth. No hint for kinetic
Mg isotopic fractionations, as evaporation (see Discussion),
exists in the present ESP data set. Reproducibility of d26Mg*

for standards is � 0.050% (2 s.d.) or � 0.011% (2 s.e., n = 23)
by MC–SIMS, and better than � 0.050% (2 s.d.) or � 0.010% (2
s.e., n � 30) by HR-MC–ICPMS (Fig. 1).

3. Results

The Mg isotope data for olivines from the Eagle Station
pallasite are given in Table 1 and plotted in Fig. 2. Taking
into account the whole MC–SIMS dataset, the ESP olivines
display d26Mg* values ranging from –0.024 (� 0.029)%

to –0.002 (� 0.018)%, with an average d26Mg�
� �MC�SIMS

av:

value of –0.011 (� 0.009)% (2 s.e., n = 26). The HR-MC–ICPMS
analyses show data consistent within errors between the
different aliquots, ranging from –0.004 (� 0.012)% to + 0.009

(� 0.012), with an average d26
Mg�

� �HR-MC�ICPMS

av:
value of

0.000 (� 0.006)% (2 s.e., n = 63). The average MC–SIMS and

HR-MC–ICPMS d26Mg* values are not statistically different.

The average of all the measurements gives a d26Mg�
� �SIMSþICP

av:

value of –0.003 (� 0.005)% (2 s.e., n = 89).

This d26Mg�
� �SIMSþICP

av:
value is higher than the d26Mg*

value of –0.033 (� 0.008)% previously reported by Ville-
neuve et al. (2011). This discrepancy is probably partly due to
an under correction by Villeneuve et al. (2011) of the matrix
effect on the instrumental fractionation in MC–SIMS, the
olivines from ESP being more enriched in Fe (Fo#79)
compared to the San Carlos olivine standard (Fo#88) used



Fig. 1. (Colour online.) Standards show no significant excess in 26Mg (D26Mg notation used here as there is no expected contribution of radiogenic 26Mg),

the external reproducibility on standards measured using MC–SIMS (a) or HR-MC–ICPMS (b) being better than 0.05 (2 s.d.). The standards measured by MC–

SIMS include terrestrial (San Carlos olivine and Burma spinel) and synthetic (pyroxenic glass) standards, while the standards measured by HR-MC–ICPMS

include pure Mg standard solutions (DSM-3, Paris 1, Cambridge 1) not processed through chemistry and a geostandard (Be–N basalt) processed through

chemistry (Be–N C1, Be–N C2 and Be–N C3 correspond to three different aliquots processed through three different sets of ion-exchange columns).

Table 1

Al–Mg isotope systematics of the Eagle Station Pallasite olivines.

Name Description 27Al/24Mg (2 s.e.) d25Mg (%) 2 s.e d26Mg

(%)

2 s.e d26Mg*(%) 2 s.e n

MC–SIMS ESP 1

ESP 2

ESP-M 1

ESP-M 2

Average

Separated grain no 1

Separated grain no 2

Section-zone no 1

Section-zone no 2

7.07 (� 1.12) � 10–4

7.63 (� 1.57) � 10–4

1.22 (� 0.38)� 10–4

1.19 (� 0.08)� 10–4

–0.178

0.007

–0.119

–0.190

–0.125

0.136

0.054

0.109

0.074

0.054

–0.352

–0.011

–0.241

–0.367

–0.251

0.273

0.107

0.202

0.127

0.103

–0.010

–0.024

–0.013

–0.002

–0.011

0.018

0.029

0.013

0.018

0.009

6

6

6

8

26

HR-MC-ICPMS ESP C2

ESP C3

ESP C4

ESP C5

Average

Aliquot no 2

Aliquot no 3

Aliquot no 4

Aliquot no 5

–0.165

–0.161

–0.181

–0.184

–0.174

0.012

0.014

0.010

0.009

0.006

-0.321

–0.311

–0.349

–0.344

–0.334

0.021

0.021

0.022

0.012

0.010

–0.004

–0.002

–0.002

0.009

0.000

0.012

0.013

0.011

0.012

0.006

13

14

18

18

63

MC–SIMS+HR-MC–ICPMS –0.003 0.005 89

d26Mg* = d26Mg – d25Mg/0.521.

0

2

4

6

8

10

12

14

16

18

HR-MC-ICPMS analyses

(δ26Mg*)DSM-3 = 0.000‰
2 s.d. = ± 0.048‰
2 s.e. = ± 0.006‰ (n=63)

# 
A

na
ly

se
s 

#

δ26Mg* (‰)

MC-SIMS analyses

(δ26Mg*)DSM-3 = - 0.011‰
2 s.d. = ± 0.044‰
2 s.e. = ± 0.009‰ (n=26)

Eagle Station 
pallasite

(this study )

Main Group 
pallasites

(Baker et al. 2012)

HR-MC-ICPMS analyses

(δ26Mg*)av. = - 0.012‰
2 s.e. = ± 0.002‰  

-0.10 -0.08 -0.06 - 0.04 -0.02 0.00 0.02 0.04 0.06 0.08 0.1 0

MC-SIMS + HR-MC-ICPM S
   (δ26Mg*)av. = - 0.003‰
   2 s.e. = ± 0.005‰ (n=89)

ESP 1 (n=6)
ESP 2 (n=6)
ESP-M 1 (n=6)
ESP-M 2 (n=8)

ESP C2 (n=13)

ESP C5 (n=18)

ESP C4 (n=18)

ESP C3 (n=14)

Admire

Esquel

Brenham

Molong

Fig. 2. (Colour online.) Magnesium isotope data for olivines from the Eagle Station pallasite (this study) and from Main Group pallasites (Baker et al., 2012).

Olivines from ESP display a d26Mg* value consistent between MC–SIMS (–0.011 (� 0.009)%, 2 s.e., n = 26, blue open diamonds) and HR-MC–ICPMS analyses

(0.000 (� 0.006), 2 s.e., n = 63, green diamonds). The average of both datasets gives a (d26Mg*)av. value of –0.003 (� 0.005)% (2 s.e., n = 89), which is slightly more

positive than the d26Mg* value of –0.012 (–0.002) reported by Baker et al. (2012) for olivines from four different Main Group pallasites (black dots).
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to calibrate the instrumental fractionation (Luu et al., 2013).
The correction of matrix effect using appropriate standards

gives, in this study, an average d25Mg value measured by

MC–SIMS of –0.125 (� 0.054)%, consistent within errors
with the value of –0.174 (� 0.006)% measured by HR-MC–

ICPMS, and also consistent with the d25Mg determined for

silicate Earth from analyses of oceanic basalts and mantle

peridotites (d25Mg = –0.13 (� 0.04)%, Teng et al. (2010)).

The d26
Mg�

� �SIMSþICP

av:
value reported in the present

study is also slightly higher than the one reported by Baker
et al. (2012) for bulk olivines from four meteorites
(Molong, Esquel, Brenham, Admire) belonging to the Main
Group pallasites (MGP), measured by HR-MC–ICPMS. They

reported a smaller d26Mg* value of –0.012 (� 0.002)% in

average, indicative of a metal–silicate differentiation process

occurring � 1:24þ0:40
�0:28 Ma after CAIs. However, if the different

groups of pallasites really originated on different parent

bodies (as suggested by their respective D17O value), then,

the metal–silicate differentiation processes could have

occurred at different times, leading to different d26Mg*

values depending on which pallasite is considered.

4. Implication: timing of metal–silicate differentiation
on the Eagle Station pallasite parent body

Planetary differentiation can be modeled at first order
considering a two-stage evolution in which:

(i) the planetesimal keeps its original chondritic compo-
sition between the time of its accretion t0 and the time
of differentiation of its metallic core tc;

(ii) core differentiation is considered to be instantaneous;
(iii) the mantle residue produced by the extraction of the

metallic core undergoes silicate–silicate differentia-
tion by extraction of silicate liquids from time tc until
the mantle has cooled to a point where it is fully
crystallized (Labrosse et al., 2007; Ricard et al., 2009).

The first major geochemical fractionation occurs for the
Hf–W system at tc when siderophile W is partitioned into
the core, so that the W isotope composition of the metal
reflects the timing of metal–silicate differentiation. The
second one occurs after tc, during silicate–silicate differ-
entiation when Mg is partitioned into the olivine crystal-
lizing from the mantle, so that the Mg isotopic composition
of the olivines reflects the timing of silicate–silicate
differentiation. The theoretical evolution of radiogenic
26Mg and 182W excesses as a function of the time of
differentiation can be expressed in the mantle and in the
core of a differentiated body using the two following
equations, respectively:

d26Mg�
� �mantle

tc

¼ d26Mg�
� �

SSI
þ

26Al
27Al

� �
SSI

�
27Al

26Mg

� �CHUR

� 1 � e�l26tc

� �
� 103 (1)

where tc stands for the metal differentiation time, SSI for
the Solar System Initial inferred from bulk CAIs

[(26Al/27Al)SSI = 5.23 (� 0.13) � 10–5 and (d26Mg*)SSI = –
0.038 (� 0.004)%, from data by Jacobsen et al., (2008)],
CHUR for CHondritic Unfractionated Reservoir (whose
27Al/26Mg ratio = 0.725, Lodders (2003)), and l26 for the
decay constant of 26Al, and:

e182W
� �core

tc
� e182W
� �Allende �

180Hf
182W

� �Allende

�
182Hf
180Hf

� �
SSI

� e�l182tc � 104 (2)

where (180Hf/182W)Allende � 1.4734 (Kleine et al., 2004),
(182Hf/180Hf)SSI = 9.72 (� 0.44) � 10–5 (inferred from CAIs by
Burkhardt et al., (2008)), l182 standing for the decay constant
of 182Hf, and (e182W)Allende = –2.08. The last parameter, in
good agreement with the value of –2.0 (� 0.3) reported by
Kleine et al. (2004), was recalculated using the following
equation at the present day:

e182W
� �Allende ¼ e182W

� �
SSI
þ

180Hf
182W

� �Allende

�
182Hf
180Hf

� �
SSI

� 104 (3)

where (e182W)SSI = –3.51 (� 0.1) (Burkhardt et al., 2012). We
consider a bulk composition of ESP similar to that of CV
chondrites, based on the O (Clayton and Mayeda, 1996, 1999)
and Cr (Shukolyukov and Lugmair, 2006) isotopic affinities of
ESP to the CV3 chondrites. These theoretical evolutions of
radiogenic 26Mg and 182W excesses are represented in Fig. 3,

in which ESP is also plotted using the d26Mg�
� �SIMSþICP

av:
of –

0.003 (� 0.005)% of the present study and a e182W of � –3.1

(the value of –3.4 (� 0.2) reported in Quitté et al., (2005) was
recalculated with respect to the terrestrial value of 0.864680,

to be consistent with the (e182W)SSI of –3.51 (� 0.1) reported

by Burkhardt et al. (2012)). This is the only e182W value

available in the literature for the Eagle Station pallasite.
However, this is a minimum value, as it has not been
corrected for cosmogenic effects. Indeed during cosmic ray
exposure, a burnout of W isotopes caused by the interaction

with thermal neutrons tends to decrease the e182W values

(Leya et al., 2000, 2003; Masarik, 1997), of for instance 0.086e
per 100 Myr of exposure for IAB irons (Schulz et al., 2009),
leading to virtually older Hf–W ages if this effect is not
corrected. ESP exposure age had already been measured
(Megrue, 1968) using cosmogenic noble gases (3He, 21Ne,
38Ar), and giving an average value of � 40 Myr. Such a short

exposure age would keep the e182W corrected for thermal

neutron capture reactions within the error bars of the raw
e182W value. Recently, Kruijer et al. (2013) have shown that
Pt isotopes should be used to quantify at best the cosmic ray-
induced shifts on W isotope compositions because both Pt
and W isotopes are affected by neutron capture reactions in
the (epi)thermal energy range at large depths. Such data are
lacking for ESP. The differentiation age of ESP parent body

inferred from a non-corrected e182W value can be considered

as a minimum age, most likely at least � 2 Ma, but possibly
4 Ma, after CAI formation.
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The duration of olivine crystallization in the mantle of
 ESP parent body can be further constrained from the
erved range of d26Mg* values in olivine, assuming that
ine and metal in ESP originate from the same parent
y. Olivine crystallization should progressively
rease the Mg/Al ratio of the remaining mantle. This
because Mg is compatible in olivine while Al is
ompatible, with olivine–liquid partition coefficients

1–Liq) of � 8.5 (Floss et al., 1996) and of 0.006 (� 0.0005)
ant and Wood, 2010), respectively. The present MC–SIMS
asurements do show a significant range of variation for

27Al/24Mg ratio, from 1.20 (� 0.16) � 10–4 (in the
ished section, n = 14) to 7.35 (� 0.94) � 10–4 (average
nalyses in the separated olivine grains ESP 1 (n = 6) and

 2 (n = 6)), i.e. a factor-6 variation (Table 1). This range is
t interpreted as reflecting magmatic differentiation due
rogressive crystallization of olivines. Though evapora-

 loss of � 80% of Mg from a magma ocean covering the
 parent body could theoretically be responsible for this
or-6 variation, this is not consistent with the lack of
ificant d25Mg variations in the olivines (Table 1). In order

hange by this factor of 6 the 27Al/24Mg ratio of the parent

lts of the olivines, while keeping the d26Mg�
� �MC�SIMS

av:

ue homogenous, at –0.011(� 0.009)%, the crystallization
uence has to be fast enough. Considering a core that could
e differentiated as early as 2 Ma after CAIs (as shown by

 3), this � 10 ppm range indicates that olivine crystal-
tion should have lasted no more than � 275 kyr (Fig. 4);

erwise, the d26Mg* range in the olivines would have been

er than observed. However, the exact origin of MGP and

unknown (Boesenberg et al. (2012) and references therein).
Models predict very different thermal histories for asteroids
depending on their size (Bouvier et al., 2007; Hevey and
Sanders, 2006; La Tourrette and Wasserburg, 1998), with
mantles of objects of radii less than 10 km above the melting
point of olivines for timescales < � 5 Myr, while for aster-
oids of radii 25–50 km the silicate–silicate differentiation
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(colored lines). The � 10 ppm range (dashed line) on the

d26
Mg�

� �MC�SIMS

av:
, combined with a differentiation time for the ESP

parent body occurring not earlier than � 2 Ma after CAIs, indicates that

the olivine crystallization process should have lasted over � 275 kyr. At

variance, if the core has differentiated 4 Ma after CAIs, then the silicate–
ate differentiation should have lasted for another 4 Myr.
SP, as well as the size of their parent bodies, remains silic
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could extend to 5–10 Ma (metallographic cooling rates of
pallasites suggesting that the latter formed within bodies of
radii less than 50 km (McSween, 1999)). The present Mg
isotopic data (Fig. 4) implies that if core differentiation on
the ESP parent body took place 4 Ma after CAIs, then olivine
differentiation in the remaining mantle should have lasted
for another 4 Myr. Such timescales have previously been
proposed (Dauphas et al., 2005). We note, however, that an
early disruption (at � 2 Ma after CAIs) of the ESP parent body
would also be compatible with the present data.

At magmatic temperatures above 1200 8C (high enough
for differentiation to take place), the diffusion coefficient of
Mg in olivines is � 10–17 m2/s (Dohmen and Becker, 2007).
This implies that Mg isotopic heterogeneities would have
been erased in � 3 kyr over a distance of 1 mm and
� 300 kyr over 1 cm. Thus, to preserve the 10-ppm Mg
isotopic heterogeneities in olivines over the timescales
predicted by Fig. 3, the present olivines should have been
at least 10 cm distant one from the other. This is difficult to
ascertain, but seems unlikely, considering that the olivines
studied included one thin section and two separated grains
for MC–SIMS analyses, and a part of another piece of the
meteorite for HR-MC–ICPMS analyses. However, angular-
olivine pallasites, such as the Eagle Station pallasite, are
considered to have formed by mixing of fragments of
mantle olivines with molten core metal during impacts
(Scott and Taylor, 1990). It is thus quite possible that
during the impact (Morbidelli, 2007), several meters
distant olivines were mixed together with the metal.

Acknowledgement

The authors would like to thank A. Bouvier and J. Aléon,
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kowski, A., Quitté, G., Halliday, A.N., Kleine, T., 2006. Tungsten isoto-
pic compositions of iron meteorites: chronological constraints vs
cosmogenic effects. Earth Planet. Sci. Lett. 242, 1–15.
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