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 Introduction

The reflected events contained in the seismic data play
 important role in the study of geological structures.
wever, the noise contamination corrupts the quality of

e reflected events and disturbs the identification of
ological information. Therefore, the noise attenuation is
ucial to seismic data analysis (Klemperer and Brown,
85; Zhang and Klemperer, 2005; Zhang and Ulrych,

2003). Usually, random noise can be generated during data
acquisition by various sources and this noise is unpre-
dictable in space and time. So, it is difficult to remove
random noise from the seismic data. In recent years, many
efforts have been made for seismic random noise
attenuation (e.g., Abma and Claerbout, 1995; Cao and
Chen, 2005; Jones and Levy, 2006; Wang, 1999, 2002).
However, most of the existing denoising methods do not
work well in the case of low signal-to-noise ratios (SNRs). It
performs poorly in signal preservation, which leads to a
decline of the fidelity in seismic data processing. Thus, one
of the tasks is to design a denoising method to balance the
noise attenuation and signal preservation, especially when
the SNR is low.
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A B S T R A C T

Time-frequency peak filtering (TFPF) is an effective method for seismic random noise

attenuation. The linearity of the signal has a significant influence on the accuracy of the

TFPF method. The higher the linearity of the signal to be filtered is, the better the denoising

result is. With this in mind, and taking the lateral coherence of reflected events into

account, we do TFPF along the reflected events to improve the degree of linearity and

enhance the continuity of these events. The key factor to realize this idea is to find the

traces of the reflected events. However, the traces of the events are too hard to obtain in

the complicated field seismic data. In this paper, we propose a Multiple Directional TFPF

(MD–TFPF), in which the filtering is performed in certain direction components of the

seismic data. These components are obtained by a directional filter bank. In each direction

component, we do TFPF along these decomposed reflected events (the local direction of

the events) instead of the channel direction. The final result is achieved by adding up the

filtering results of all decomposition directions of seismic data. In this way, filtering along

the reflected events is implemented without accurately finding the directions. The

effectiveness of the proposed method is tested on synthetic and field seismic data. The

experimental results demonstrate that MD–TFPF can more effectively eliminate random

noise and enhance the continuity of the reflected events with better preservation than the

conventional TFPF, curvelet denoising method and F–X deconvolution method.
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TFPF is a one-dimensional (1-D) time-frequency filter-
g algorithm. It can give an unbiased estimation where
e signal is linear in time and embedded in white

aussian noise (Barkat and Boashash, 1999; Boashash and
esbah, 2004; Zahir and Hussain, 2002). It has been

uccessfully applied to the seismic data processing field (Li
t al., 2009; Lin et al., 2007, 2013; Zhang et al., 2013). This
ethod enhances non-stationary signals from random

oise through frequency modulation and instantaneous
equency estimation by taking the peak in the time-
equency distribution. In general, we use pseudo Wigner–
ille distribution (PWVD) to realize local linearity. The
nbiased estimation condition of the TFPF can be better
atisfied if the signal has a high degree of linearity. The
onlinearity of signals will result in amplitude loss in the
FPF. So how to increase the linearity is crucial to the TFPF.
ne of the effective solutions is to filter along the reflected
vents. It also takes the coherence between the adjacent
hannels into consideration, which has a positive effect on

e continuity of reflected events. With this in mind, an
proved TFPF algorithm has been developed and filtering

long a radial trace with an angle to the channel direction
u et al., 2011). However, a fixed radial filtering trace

annot fit with the curve reflected events effectively, which
ads to some limitations in actual application. A similar
ace to the reflected events for filtering is important (Tian

nd Li, 2014), but the field seismic data is too complicated
 find a suitable trace for all the reflected events.

This paper introduces a Multiple Directional Time-
requency Peak Filtering technique. To do the TFPF along
e reflected events, we decompose the 2-D matrix of

eismic data into multiple direction components. The
irection decomposition is equivalent to the use of some
near segments to approximate the curve reflected events.
he distributions of the events in each direction compo-
ent show as the straight line and have the same slope;
e slope direction is the direction of decomposition. So,

FPF could be done along a group of parallel radial filtering
aces with the same slope as the decomposed reflected
vents in each direction component. The sum of the filtering
esults from all the given directions as the final processed
esult. The direction decomposition is realized using

e directional filter bank. Our method makes the filtering
long the reflected events possible by a novel idea without
nding the accurate traces of all the reflected events.

. Time-frequency peak filtering

Let the noisy signal s tð Þ be modeled by the equation:

 tð Þ ¼ x tð Þ þ n tð Þ; (1)

here x tð Þ is the band-limited non-stationary determi-
istic signal and n tð Þ is the random noise. The goal of this
lgorithm is to recover the signal x(t) from the observed
ignal s(t). TFPF extracts the valid signal in the following
teps (Boashash and Mesbah, 2004).

First, we encode the noisy signal s tð Þ as the instanta-
eous frequency of the analytic signal zs tð Þ via frequency
odulation; zs tð Þ can be expressed as:

R t

where m is a scaling parameter analogous to the frequency
modulation index.

Then we calculate the Wigner–Ville distribution (WVD)
of the analytic signal zs tð Þ through

WVDzs t; fð Þ ¼
Z 1
�1

zs t þ t=2ð Þzs
� t � t=2ð Þe�j2p ftdt; (3)

where t and f are the time and frequency variables,
respectively.

Finally, we estimate the peak of WVDzs t; fð Þ to obtain
the instantaneous frequency of zs(t). Since we encode the
noisy signal s(t) as the instantaneous frequency of zs(t) by
Eq. (2), the estimated instantaneous frequency is the
estimation of the signal x(t), which is expressed as:

x̂ tð Þ ¼ arg max
f

WVDzs t; fð Þ½ �=m: (4)

where x̂ tð Þ denotes the estimation of the signal x tð Þ, f̂zs
tð Þ is

the estimated instantaneous frequency of zs tð Þ.
The TFPF method is unbiased for a linear signal x tð Þ ¼

at þ C (a and C are constants) from white Gaussian noise.
The bias B(t) is defined as B tð Þ ¼ E x̂ tð Þ � x tð Þ½ �, E denotes the
mathematical expectation. If a signal is embedded in a
stationary white Gaussian noise background, the final
derivation result of the bias B tð Þ of the TFPF algorithm is
written as (Boashash and Mesbah, 2004):

B tð Þ ¼ arg max
f

ðWVDzx t; fð Þ �
f

4p2kn2
m2=ðð2p2kn2

m2
� �2

þ 2p fð Þ2ÞÞÞ � x tð Þ;
(5)

where WVDzs t; fð Þ denotes the WVD of zx tð Þ as Eq. (3) and
kn2

is the second cumulant of the noise n tð Þ. For the case
where the signal x tð Þ is linear in time, B tð Þ become:

B
�
t
�
¼ arg max

f

�
d
�

f � x
�
t
��
�
f

�
4p2kn2

m2=
��

2p2kn2
m2
�2

þ
�
2p f

�2���� x
�
t
�

¼ arg max
f

�
4p2kn2

m2=
��

2p2kn2
m2
�2

þ
�
2p
�

f � x
�
t
���2��� x

�
t
�
¼ 0:

(6)

Equations (6) are derived in the case of stationary white
Gaussian noise. However, the analysis can also be applied
to other types of noise as long as the signal x tð Þ is linear in
time because the B tð Þ in Eq. (5) is independent of the kn2

of
the noise. Hence, if the signal is linear in time, TFPF can give
an unbiased estimation.

However, the reflected seismic signals are nonlinear. So,
there must be a bias in the filtering processing by the TFPF.
To reduce the bias, TFPF adopts the PWVD, which is the
windowed version of the WVD to make the signal
approximately linear within the window. The PWVD is
defined as (Barbarossa, 1997):

PWVDz t; fð Þ ¼
Z 1
�1

h tð Þz t þ t=2ð Þz� t � t=2ð Þe�j2p ftdt;

(7)

where h tð Þ is a window function sliding with time.
The PWVDs of an analytic Ricker wavelet contaminated
y an additive white Gaussian noise (SNR = 0 dB) are
s tð Þ ¼ ej2pm
0

s lð Þdl
; (2) b
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own on Fig. 1. On this illustration, we can see that the
ak of the PWVD is mainly located at the instantaneous
quency of the analytic signal. So, we can use the peak

 the PWVD to recover the reflected signal.

 Principle of multiple directional TFPF

To obtain an unbiased result, one effective way is to
prove the degree of linearity of the desired signal, which
an unbiased estimation condition of TFPF. The solution
n be implemented by filtering along the reflected events.
. 2b shows five representative radial traces correspond-

g to the numbered trajectories on Fig. 2a (Wu et al.,
11). We can see that a common-origin seismic reflected
ent can be mapped into a comparatively higher degree of
earity when the slope of the trajectory is close to that of
e event. So, the radial traces such as direction 1 or 2 are
itable for the unbiased TFPF because the signals
tracted from these radial traces have a much higher
gree of linearity. Thus, constructing the reasonable
tering traces of events is the key of TFPF method to
duce the bias. However, the traces suitable for all the
flected events in the field data are too difficult to
nstruct because of complexity and noise interference.
wever, we may change our idea to implement trace

nstruction for all the reflected events by decomposing
e seismic reflected events into some linear segments. In
her words, we use some linear segments to approximate
e events. Then, TFPF can be done along multiple linear
gments that are the local direction of events reflected by
roup of parallel radial filtering traces. Considering that

e linear segmentation is difficult to realize in the time
main, we can perform the decomposition in the
quency domain. The spectrum of the noisy synthetic

ismic record (Fig. 3a) in the frequency-wavenumber
main is shown on Fig. 3b. We divide the region with
ergy distribution into some directions. The direction
vision in the frequency domain is equivalent to
proximating the events by some linear segments in
e time domain. The more directions we divide in
quency domain, the higher the linearity of local

words, if the curvature of reflected events is larger, more
linear segments are used to approximate the events so that
we can do filtering along the local reflected events by a
group of parallel radial filtering traces.

These direction components are obtained by a 2-D
directional filter bank. This directional filter bank can
decompose a 2-D matrix of seismic data according to
directions while achieving perfect reconstruction (Do and
Vetterli, 2005; Feilner et al., 2005). The directional filter
bank is efficiently implemented via an l-level binary tree
decomposition that leads to 2l sub-bands with wedge-

. 1. Pseudo Wigner–Ville distribution of a Ricker wavelet

ntaminated by additive white Gaussian noise (signal-to-noise

io = 0 dB).

Fig. 2. a: Radial traces on a seismic panel; b: representative radial traces

extracted from the seismic panel.
aped frequency partitioning. The decomposition of a
flected events in each direction component is. In other sh
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oisy seismic data sðnÞ of time-offset domain
n¼ d; tð Þ; d is offset Þ by the directional filter bank can be
ritten as:

 nð Þ ¼
X

k

sk nð Þ ¼
X2l�1

k¼0

X
m 2 Z2

yk mð Þgk n � Skmð Þ; (8)

here

k mð Þ � s nð Þ; hk Skm � nð Þ > ; (9)

with Sk the sampling matrices that have the following
diagonal forms (Do and Vetterli, 2005)

Sk ¼
diag 2l�1; 2

� �
for0 � k < 2l�1;

diag 2; 2l�1
� �

for2l�1 � k < 2l;

8<
: (10)

sk nð Þ is a decomposed direction component of s nð Þ and k

the direction index. hk nð Þ is the impulse response of
analysis filter and gk nð Þ is the impulse response of

ig. 3. a: A noisy synthetic seismic record (signal-to-noise ratio = –5 dB) with a hyperbolic reflected event. The dominant frequency of the event is 30 Hz.

he source wavelet we applied to simulate the waveform is Ricker wavelet; b: the spectrum of Fig. 3a in the frequency–wavenumber domain.

ig. 4. Direction decomposition of a noisy synthetic seismic record (signal-to-noise ratio = –5 dB) with a hyperbolic reflected event: a–d: the different
irection components of the seismic data that are decomposed by a directional filter bank (DFB).
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nthesis filters. m is used to denote location of noisy
ismic data.
Next we give the whole filter process of our multiple

rectional TFPF. First, we decompose a noisy seismic data
; tÞ into some direction components by Eq. (8). Each
composed component sk d; tð Þ has its own orientation
pending on the index k. We take the noisy synthetic
ismic record (Fig. 3a) as an example. The decomposed
rection components of Fig. 3a are shown on Fig. 4.

Then the data in each component need to be
sampled along this known decomposed direction.
e processing can be realized by transforming a 2-D
atrix of seismic data into a new data matrix along some
rallel traces in this decomposed direction. The corre-
onding multiple directional filtering traces are shown

 Fig. 5. The equation of the parallel trace that we used is
pressed as

¼ akdi þ b: (11)

here ak is defined as the slope in the direction k; b is the
tercept. In the process of data resampling, di corresponds
 the channel and ti corresponds to the data sample point.

 extract sample points along the parallel trace, we

should find the horizontal and vertical coordinates of
each sample point on the parallel trace. Taking time as
the vertical coordinate, we can find the corresponding
horizontal coordinate of each time point ti according to
Eq. (11). After resampling, the new data matrix in each
direction component is filtered by the TFPF method.

The parameter ak denotes the direction of filtering
method. Our method applies the TFPF along different ak �
directions; which are also the decomposition directions of
the reflected events. The final result is obtained by putting
the filtering results from all the directions of reflected
events together. The effect of the whole processing is
equivalent to the filtering along seismic reflected events
and avoids finding the directions of all the events.

4. Implementation and applications

4.1. Synthetic data example

To verify the effectiveness of the proposed MD–TFPF,
we gave it to process synthetic seismic data. The synthetic
example is a seismic model with three hyperbolic reflected
events as shown on Fig. 6a. We add a white Gaussian noise
to the synthetic model. Fig. 6b is a noisy version
Fig. 5. Filtering traces in different decomposed directions: a–d: filtering traces in the directions that correspond to Fig. 4.
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NR = �5 dB) of the noise-free Fig. 6a. In this example,
D–TFPF is compared with conventional TFPF. Fig. 6c and

 show the denoising results by the two methods. As can be
een from Fig. 6c and d, we can achieve the visual
ualitative performance. Both two methods can suppress
ome random noise and the three events can be identified.

hile the MD–TFPF achieves clean background and the
eflected events are continuous and recovered, especially

 the rectangular region.
Detailed effects of the two processing consequents

an be obtained by analyzing the single trace and its
mplitude spectrum. We extract the 36th trace of the
ynthetic records and redisplay it as an example. The
mplification waveforms in time and frequency domains
re shown on Fig. 6e and f. Fig. 6e exhibits the denoising

result of a seismic wavelet from the 36th trace of the
synthetic record in the time domain. Notice that the
filtering result of MD–TFPF is close to the original signal
and the amplitude value of noise on both sides of
the signal is significantly lower than conventional TFPF
does. Through the calculation, the correlation coefficient
between the original signal and the denoised signal by
using MD–TFPF is up to 0.83, but using a conventional
TFPF method, the correlation coefficient is only 0.54.
Furthermore, we also compare the filtering performance
in the frequency domain, which is shown on Fig. 6f. It
can also be seen that the MD–TFPF provides the best-
matching amplitude spectrum to the noise-free spectrum
for the signal components in the 0–70 Hz band. The
spectrum of the convention TFPF has larger high-frequency

ig. 6. Denoising with synthetic seismic data: a: synthetic seismic data. Three Ricker wavelets of dominant frequencies 25, 30, and 35 Hz were considered to

mulate synthetic waveforms as natural events; b: noisy seismic data (signal-to-noise ratio = –5 dB). The synthetic data were contaminated with white

aussian noise; c: result after applying conventional TFPF; d: result after applying multiple directional–time-frequency peak filtering (MD–TFPF); e:

omparison of results after processing a single synthetic trace (36th trace) with both filtering types for noise suppression. The ideal signal is plotted with a

otted line and the solid line represents the filtered signal; f: amplitude spectrum of the original signal and the two filtered signals. The ideal spectrum is
lotted with a dotted line and the solid line represents the filtered spectrum of the signal.



Fig. 7. The filtering results of synthetic seismic data with low signal-to-noise ratio (SNR): a: noisy seismic data (SNR = –15 dB). The synthetic data were

contaminated with non-stationary random noise; b: result after applying a curvelet denoising method; c: result after applying conventional TFPF; d: result

after applying multiple directional–time-frequency peak filtering (MD–TFPF).

Table 1

SNR and MSE after applying conventional and MD–TFPF with different noise levels.

SNR (in dB) computed from the original signal Processed signal by conventional

TFPF

Processed signal by MD–TFPF

SNR (dB) MSE SNR (in dB) MSE

�20 �13.21 0.8652 �10.56 0.4283

�16 �9.83 0.6831 �5.33 0.2946

�12 �6.1 0.4314 �1.46 0.1887

�8 �1.16 0.3427 2.78 0.1153

�4 3.24 0.2135 5.92 0.0832

0 7.86 0.1682 9.32 0.0667

4 9.17 0.1026 12.29 0.0465

8 12.93 0.0868 14.45 0.0329

SNR: signal-to-noise ratio; MSE: mean square error; MD–TFPF: multiple directional–time-frequency peak filtering.

C. Zhang et al. / C. R. Geoscience 347 (2015) 2–128
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omponents after 70 Hz than our method. So the random
oise is effectively suppressed.

In the following, we ran extensive tests on data with
hite Gaussian noise at different levels to show the

ffectiveness of the MD–TFPF on SNR (in dB) and mean
quare error (MSE).

Table 1 gives the resulting SNR and MSE for synthetic
eismic data of Fig. 6a. The better filtering effect has larger
NR value and lower MSE value. As can be seen in Table 1,
e SNRs after filtering by the MD–TFPF are larger and the
SEs are smaller than when applying conventional TFPF in

ny SNR. This advantage of the MD–TFPF is obvious when
e SNR is below �8 dB. The result implies that MD–TFPF

rovides accurate estimation and improvement to noisy
ignals.

Our method has another advantage, which is that it can
ecover signals from non-stationary random noise with
ery low SNR. We add a non-stationary random noise with
igh noise levels to the synthetic model (Fig. 6a). The noisy
ecord with the SNR �15 dB is shown on Fig. 7a, where the

three hyperbolic reflection events are almost submerged
completely in the strong noise. In this example, the MD–
TFPF is compared with conventional TFPF and the curvelet
denoising method. Fig. 7b, c and d show the denoising
results by curvelet denoising method, conventional TFPF
and our method, respectively. Notice that the events on
Fig. 7b and c can hardly be identified while they are well
recovered on Fig. 7d. Thus, the MD–TFPF is also very
effective in the low SNR.

4.2. Field data application

A common shot point seismic data that we test is shown
on Fig. 8a. The receiver interval is 30 m and the sampling
frequency is 1000 Hz. The distance between the source and
the receivers changes from 600 to 3600 m. The continuities
of seismic reflected events are badly damaged and the
events are obscured because of the interference from
random noise. To show the effectiveness of our method, we
compare the results of MD–TFPF with conventional TFPF

ig. 8. Results obtained with field seismic data: a: field seismic data (common shot point seismic data); b: result after applying the F–X deconvolution

ethod; c: result after applying conventional TFPF; d: result after applying the multiple directional–time-frequency peak filtering (MD–TFPF). Ellipses and
ctangles delimit those areas where we can observe better the progressive efficiency of denoising and signal preservation, respectively.
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d F–X deconvolution methods. It can be found that F–X
convolution (Fig. 8b) and conventional TFPF methods
ig. 8c) cannot reduce random noise as effectively as MD–
PF, whose results are displayed on Fig. 8d, particularly in
e ellipse area. To demonstrate the visual quality of the
ents, we show an enlarged view between traces 60–110
d double-time 500–1200 ms (Fig. 9) in the rectangle

 Fig. 8. In contrast, the reflected events processed by
D–TFPF (Fig. 9d) are clearly recovered and the events
ntinuity is enhanced (e.g., in the rectangles). According

 the experimental results, the proposed MD–TFPF
ethod has a great advantage in eliminating random
ise and efficiently protecting the reflected events
mpared with the other two methods.
We also apply our method to a real seismic section to

st the applicability. Fig. 10a shows a section with high
ckground random noise. This background random

noise overwhelms weak reflected events and disrupts
the continuity of events over the entire section. We
compare the MD–TFPF with conventional TFPF and the
curvelet denoising method. As seen on Fig. 10b and c,
some random noise still exists after filtering by curvelet
denoising method and conventional TFPF method, espe-
cially in the rectangular region. However, the application
of MD–TFPF method shows that most of the background
noise is suppressed without the edges of the reflected
events being blurred and the method does not make any
significant changes to the shapes of reflected events.
Furthermore, the weak reflected events continuity is
also enhanced. This method greatly improved SNR, which
is clearly identified on the seismic section (Fig. 10d).
The result on Fig. 10d shows that even with strong
random noise, the proposed method is still effective in
suppressing noise.

. 9. An enlarged view allowing seeing the quality of the filtering between the traces 60 to 110 and double travel times from 500 to 1200 ms: a: unfiltered

omed record; b: filtered zoomed record using the F–X deconvolution method; c: filtered zoomed record using conventional TFPF; d: filtered zoomed
ord using multiple directional–time-frequency peak filtering (MD–TFPF).
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. Conclusions

In this paper, a multiple directional time-frequency
eak filtering has been proposed to improve the filtering
esult in the conventional time-frequency peak filtering. It
lters the seismic data along multiple decomposed
irections of the reflected events instead of the channel
irection. The coherence between adjacent channels is
lly considered and utilized, which recovers the reflected

vents more clearly and continuously. The direction
ecomposition is realized based on a directional filter
ank. In this novel method, the directions of reflected
vents are indirectly obtained by a directional filter bank
ithout accurately tracing all the events, which makes
ltering along the reflected events in the complex field
eismic data possible. Therefore, our method has a high

practicability in seismic data denoising. Texts on both
synthetic and field seismic data have demonstrated that
the proposed method can preserve signals and effectively
enhance the continuity of reflected events. Furthermore,
the proposed method makes it possible to recover the
desired seismic signal in the case of SNR down to �15 dB. It
has great practical value, especially when the SNR of
seismic data is very low.
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