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The chemical element osmium (Os, atomic number 76)
 seven stable isotopes, of which187Os has a wide range
elative abundances in nature because part of the 187Os
nd in a geological sample comes from the radioactive
ay of 187Re (half-life of about 42 billion years; Smoliar
l., 1996) and varies as a function of both lithology and
logical age. Osmium has a limited number of anthro-
enic uses, which should theoretically limit its dispersal
he environment. Nevertheless, osmium contamination
s occur and the principal sources of osmium inputs to

 environment seem to be derived from the industrial
duction of metals (Chen et al., 2009; Rodushkin et al.,
7), automotive exhaust catalysts (Rauch et al., 2004;

Poirier and Gariépy, 2005) and biomedical facilities
emitted from hospital incinerators due to the use of
OsO4 as a fixative for electron microscopy of organic
material (Esser and Turekian, 1993). High osmium con-
centrations have been reported in coastal and estuarine
sediments, and observed shifts in isotopic compositions
have supported the conclusion that anthropogenic Os
contamination into the environment is occurring (Esser
and Turekian, 1993; Ravizza and Bothner, 1996). Dissolved
aquatic Os is believed to be rapidly scavenged onto particle
surfaces in reducing environmental redox settings, so that
Os dispersion in such aquatic environment is controlled by
particle transfers (Williams et al., 1997). Surface seawater
was even reported as having been globally contaminated
by anthropogenic Os (Chen et al., 2009). This chemical
behaviour has quickly generated interest in the
187Os/188Os ratio as a tracer of anthropogenic inputs to
sediments (Esser and Turekian, 1993; Ravizza and Bothner,
1996; Williams et al., 1997).
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A B S T R A C T

We present for the first time the use of osmium isotopic composition as a tracer of

atmospheric emissions from an aluminum smelter, where alumina (extracted from bauxite)

is reduced through electrolysis into metallic aluminum using carbonaceous anodes. These

anodes are consumed in the process; they are made of petroleum coke and pitch and have

high Re/Os elementary ratio. Due to the relatively large geological age of their source

material, their osmium shows a high content of radiogenic 187Os produced from in situ 187Re

radioactive decay. The radiogenic isotopic composition (187Os/188Os � 2.5) of atmospheric

particulate emissions from this smelter is different from that of other typical anthropogenic

osmium sources (that come from ultramafic geological contexts with unradiogenic Os

isotopes, e.g., 187Os/188Os < 0.2) and also different from average eroding continental crust
187Os/188Os ratios (ca. 1.2). This study demonstrates the capacity of osmium measurements

to monitor particulate matter emissions from the Al-producing industry.
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Our study area is the surroundings of the Grande-Baie
aluminum smelter (G-B), operated by Rio Tinto Alcan (RTA)
near the town of La Baie (Québec, Canada). Located on the
shores of the Baie des Ha!-Ha! (BHH, Fig. 1), this smelter
started operating in 1980. Aluminum smelting is a major
industrial process within the realm of base metal produc-
tion. The process of aluminum production involves the
electrolytic reduction of alumina to Al (liquid) by reacting
with a carbon anode in a cell containing a bath of molten
alumina and cryolite (Na3AlF6), used as a fusion flux. In this
specific case, the main process atmospheric emissions are,
in order of abundances: CO2, gaseous fluorides, sulfur
dioxide (SO2) and dust (Divan Junior et al., 2008). Thus, the
hundred-meter-long pot rooms are subject to dust
emission associated with the produced gases. Raw pot
gases and dust are recovered directly from the cells and
then scrubbed at gas treatment centres (GTC), with bag
filters and injections of fresh alumina that reacts with the
fluoride in the gas (part of that fluorinated alumina is then
re-used for the electrolytic reduction). This process
is > 99.5% efficient at removing dust and gaseous or
particulate fluorides (Boullemant, 2011). Emitted dust
comes mainly from alumina and molten bath particulate
matter entrained to stacks with the carbon dioxide created
during anode consumption. During maintenance operations
on pots (especially during anode replacing), particulate
matter that is neither recovered nor treated can be emitted
via roof vents. These emissions are most probably deposited
in the local environment of G-B (emissions of low velocity
and low temperature ‘‘large’’ particles–i.e. > 2.5 mm). The
fume treatment centre (FTC), located in another area of the
plant, recovers fumes from the anode-baking furnace, where
green anodes from the paste plant – where the anode paste
(pitch and coke) is crushed, ground, and mixed – are shaped
and baked (Boullemant, 2011). The fumes are then scrubbed

with the same process as GTC. G-B smelter also has two
effluents: 1201 for rainwater and 1202 for wastewater from
the plant. They join together to form the 1203A effluent,
which successively discharges into two artificial sedimen-
tation lakes (Neree and Poleon lakes) and emerges as 1203B
effluent to join BHH via the Mars river (Fig. 2).

Osmium is present as a significant natural impurity in the
anode, because of its fossil fuel origin (i.e. distillation residue
from petroleum refining). The emission process of this heavy
metal (atomic mass � 190.2 g/mol) will not change the
isotopic composition of the metal to any significant degree.
Thus, depending on the age and composition of local country
rock and soils, the isotopic signature of the emitted dust can
be different and detectable from the surrounding environ-
ment. The carbon anode is an essential component of the
electrolysis process used in aluminum smelters. The fact
that it is fully consumed during the oxygen exchange
reaction (2Al2O3 + 3Canode! 4Al(l) + 3CO2(g); see below)
suggests that trace elements present in it can be emitted
at the stacks or the roof vent, being drawn in and transported
by the generated gas. The anode being a carbon-rich by-
product of petroleum refining industry (petroleum coke
and pitch), one can expect it to contain a significant amount
of radiogenic osmium (e.g., Selby et al., 2005). Coke and pitch
have high Re/Os elementary ratios, and thus, over their
burial time (many million years) develop large quantities
of 187Os from in situ disintegration of 187Re. Consequently,
the 187Os/188Os ratio of coke/pitch will be much higher
than those of ultramafic deposits, which are the typical
anthropogenic platinum group metal sources and have
187Os/188Os ratios closer to that of the Earth’s mantle
(0.1–0.2). Therefore, it should be possible to follow emiss-
ions of osmium in the atmosphere from smelters using its
isotopic fingerprint. An anode used in aluminum smelting at
G-B was measured at 187Os/188Os = 2.393 � 0.005 (2s)

Fig. 1. Grande-Baie aluminum smelter location.
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ullemant, 2011), yielding a radiogenic value as expected,
ich is significantly different from usual anthropogenic
rces (< 0.2) (Chen et al., 2009; Peucker-Ehrenbrink and
izza, 2000), and from average eroding continental crust
out 1.4; Peucker-Ehrenbrink and Jahn, 2001).

xperimental

We measured the uppermost 80 cm corresponding to
 last ca. 300 years of a piston core raised in Baie des Ha!

 during the 1997 cruise of the CSS Martha L. Black. This
e was raised immediately following a local flash flood in
6 that deposited ca. 10 cm of sediments (St-Onge and

laire-Marcel, 2001). A complementary box core from
 same location was obtained in June 2010 onboard R/V
iolis II, in order to obtain sedimentation record up to the
sent day, and hence get a more complete picture of the
imentary history for the area. Soil and sediment
ples from nearby agricultural fields, smelter’s efflu-

s, sedimentation lakes, and a stream and a river close to
 smelter were collected in August 2010 (Fig. 2).
erglass filters used for 2.5 mm particulate matter

2.5), direct sampling of the exhaust stacks of Grande-
e’s gas treatment centre (in the Al-reduction sector) and
es treatment centre (in the anode-baking sector) have
n also obtained. Gases containing particulate matter
re sampled in the chimneys, just before the exhaust to

 atmosphere. The amount of air sampled by the
eglass filters was about 800 m3. Because we wanted

 solid-dust fraction only, ice was placed before the
rs in the sampling system in order to minimize
densation on the fiberglass filter (otherwise the filter
uld have gotten wet and clogged). Filters from two air-
lity monitoring stations located outside the industrial
perty were also collected. These glass fiber filters have
tured PMtotal present in the ambient air for a week. The
pective locations of these stations appear on Fig. 2
er the names Station 2A and Station 4B. A new piece of

anode used in the smelting process was analyzed in order
to obtain an Os input signal. Fresh alumina, roof vent dust,
and final produced aluminum were also analysed to
determine G-B’s osmium annual balance.

Samples were ground to a fine powder in an alumina
mortar and pestle apparatus. About 1 g of powdered
sample (less for the anode) was mixed with a 190Os–185Re
spike and inverse aqua regia (3 parts HNO3, 2 parts HCl) in a
quartz vessel. This mixture was digested for 3 h 30 at
300 8C under a pressure of 120 bars of nitrogen in a High
Pressure Asher (Anton Paar). This precludes the escape of
gases (including volatile OsO4) from the vessels, even
under oxidizing conditions and high temperatures (Meisel
et al., 2003a,b; Paul et al., 2009). After digestion, osmium
was extracted using liquid Br2 (Birck et al., 1997) and
purified by micro-distillation (Roy-Barman and Allègre,
1994). Prior to mass spectrometry, Os samples were loaded
with a small quantity of activator (0.5 mL of freshly
prepared barium hydroxide in NaOH solution) on Pt
filaments previously outgassed in the air. Isotopic analyses
were performed by negative thermal ionization mass
spectrometry (N-TIMS) on a Thermo Triton equipped with
an O2 bleeding valve (Creaser et al., 1991; Völkening et al.,
1991). This instrument is equipped with a dedicated
sample turret and ion source for Os measurements.
Samples were measured by peak jumping on a second-
ary-electron multiplier. We measured all Os isotopes
(except 184Os) as oxides and monitored 185Re16O3 for
potential interference of 187Re16O3 on mass 235. The
oxygen-bleeding rate into the mass spectrometer source
was optimized for each sample, and typically resulted in a
source pressure of 2 � 10�7 mbar. Normalization of iso-
topes ratios was done offline using 192Os/188Os = 3.08271
(Nier, 1937) after spike and oxygen contribution correc-
tions. During the course of this study, full-procedure
blanks (n = 16) were negligible and yielded between
0.02 and 0.71 pg (average = 0.15 pg) of total osmium with
187Os/188Os average ratios of 1.02 � 0.5 (2s). Repeated

2. (Colour online.) Close-up view of sampling location (modified Google map image) and radial diagram of winds distribution for the Grande-Baie’s

lter.

ified from GENIVAR, 2008.
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osmium DROsS standard measurements (n = 12) yielded an
average ratio of 187Os/188Os = 0.1607 � 0.0003 (2s) for ca.
10 pg size loads.

3. Results and discussion

Isotopic compositions and concentrations of osmium
from sediment core samples between years 1700 and
1900 were obtained from the piston core. These corre-
spond to a natural (pre-industrial) background for the
regional environment of G-B: 187Os/188Os � 2.4 and
[Os] = 30 ppt (Fig. 3). This sedimentary 187Os/188Os ratio
is higher than the average upper continental crust
(Peucker-Ehrenbrink and Jahn, 2001) and, unexpectedly,
very close to the one measured in anodes (Table 1). This
radiogenic composition is most likely a consequence of the
local geology: with a geological age of � 1 Ga, the Grenville
geological province is a belt of metamorphic rocks
containing large masses of intrusive granitic rocks
outcropping at the southern margin of the Canadian Shield
(Hocq and Dubé, 1994). However, occurrences of sedi-
mentary sequences from the Paleozoic St-Laurent low-
lands platform, which are known to contain black shale
units, have been recognized outcropping in the region
(MERN, 2015). This may contribute, perhaps through
glacial till deposits around BHH, to the high natural
187Os/188Os ratio shown by pre-industrial local sediments.
Such a local isotope signature makes it more difficult to
discern the signal of the anode within the recent
sediments. However, with the exception of the 1996 coarse
grain enriched flood layer (80% silt + sand), concentrations
of osmium in these sediments are slowly increasing and
coupled with a simultaneous decrease in isotopic ratio
since 1850 (Fig. 3), suggesting small gradual increase in
unradiogenic Os input during the industrial era, most
probably from global diffuse Os (Chen et al., 2009). The

slight increase in Os content beneath the low level of the
flood layer of 1996 could be the result of early diagenetic
processes, related to the redox affinities of osmium: the
sediments brought in the Baie des Ha!-Ha! by the
1996 flood created a layer of freshly oxygenated detrital
material from which Os diffused down to the underlying
more organic-rich layer (Poirier, 2006). The osmium
content of the surface sediment (1997–2010) seems to
be confirming this, with Os contents lower than pre-1996
layers. Natural variability seems to be the dominating
factor for the osmium changes observed in the sediments
from Baie des Ha! Ha!, thus suggesting a rather weak
influence, if any, of G-B on the regional Os budget. Using
pre-1900 sediments as the present-day natural back-
ground (with the Os isotope ratio oscillating between
1.9 and 2.9), one can calculate the residual anthropogenic
fraction for the most recent points (from the core raised in
2010). These data define a binary mixing line that can be
used to calculate a theoretical fraction due to the smelter
(assuming it has a constant 187Os/188Os = 2.393). Such
calculations suggest that a maximum of 2–3 � 10�12 g/g Os
in the Baie des Ha!-Ha! sedimentary levels would originate
from the smelter, with an uncertainty budget encompass-
ing zero, because of the high variability of the natural
background, indicating very little impact on a regional
scale. When focusing on samples from soils and stream/
lake sediment from the very nearby environment of the
smelter, we observe a gradual decrease in concentrations
of Os (from 850 to 13 ppt) away from the factory (Fig. 4). A
value of 25 ppt is measured at the sampling point closest to
the boundary of the property of RTA (effluent 1203B),
which is below the average natural level of the eroding
continental crust (30 ppt), and very close to the natural
local background. The wastewater cleaning process set up
by G-B, which includes two sedimentation lakes, thus
seems efficient for particulate osmium removal. Although

Fig. 3. (Colour online.) Osmium content, organic carbon and isotopic composition of sediments from Baie des Ha! Ha!, Québec.

Chronology of 1997 core modified from St-Onge and Hillaire-Marcel, 2001.
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 concentration of osmium on filters from the GTC’s
ks is relatively high, the amount of osmium released
ually in the form of solid particles (� 2.5 g of Os per
r for GB, less than a kilogram for all Al-smelting
ivities, see below) when accounting for the particulate
tter emission flow rate at stacks, is low in comparison to

 potential Os emitted from all base metal smelters (up
 few thousand kilograms; Chen et al., 2009).

Finally, when trying to understand the G-B smelter’s
internal balance of osmium, we end up with a significant
deficit on the output side (ca. 65%) (Table 2). We are still
investigating this issue, but excluding an analytical
artefact, we suggest that some of the exhausted osmium
could be released as gaseous specie(s) from GTC. Osmium
tetroxide (OsO4, with Os in +VIII valence state) has a
boiling point of < 130 8C and is known to be volatile at

le 1

ental concentrations of osmium, total organic carbon and isotopic composition of osmium.

mple Depth (cm) 187Os/188Os

� (2s)

[Os] (ppt) TOC (%) Latitude Longitude

97 core 0.5 1.84 48822.0 N 70846.2 W

97 core 1.5 2.75 � 0.01 14 48822.0 N 70846.2 W

97 core 2.5 2.11 48822.0 N 70846.2 W

97 core 4.5 1.71 48822.0 N 70846.2 W

97 core 6.5 2.45 48822.0 N 70846.2 W

97 core 7.5 2.64 � 0.00 22 48822.0 N 70846.2 W

97 core 10.5 2.08 48822.0 N 70846.2 W

97 core 12.5 2.25 � 0.01 24 48822.0 N 70846.2 W

97 core 15.5 2.25 � 0.01 42 48822.0 N 70846.2 W

97 core 20.5 2.25 48822.0 N 70846.2 W

97 core 22.5 2.01 � 0.00 43 48822.0 N 70846.2 W

97 core 27.5 2.32 � 0.01 29 48822.0 N 70846.2 W

97 core 30.5 2.15 � 0.01 34 1.72 48822.0 N 70846.2 W

97 core 34.5 2.58 � 0.01 30 48822.0 N 70846.2 W

97 core 39.5 2.92 � 0.00 26 48822.0 N 70846.2 W

97 core 40.5 1.38 48822.0 N 70846.2 W

97 core 45.5 2.50 � 0.02 29 48822.0 N 70846.2 W

97 core 50.5 1.3 48822.0 N 70846.2 W

97 core 55.5 2.92 � 0.01 25 48822.0 N 70846.2 W

97 core 59.5 2.70 � 0.01 31 48822.0 N 70846.2 W

97 core 60.5 1.23 48822.0 N 70846.2 W

97 core 63.5 2.49 � 0.02 27 48822.0 N 70846.2 W

97 core 68.5 2.58 � 0.01 28 48822.0 N 70846.2 W

97 core 70.5 0.89 48822.0 N 70846.2 W

97 core 74.5 1.99 � 0.01 37 48822.0 N 70846.2 W

97 core 79.5 1.96 � 0.00 32 48822.0 N 70846.2 W

97 core 80.5 0.73 48822.0 N 70846.2 W

10 core 0 1.67 � 0.01 35 1.93 48821.0 N 70848.1 W

10 core 0.5 1.93 � 0.01 42 2.04 48821.0 N 70848.1 W

10 core 1 2.34 � 0.01 34 2.02 48821.0 N 70848.1 W

10 core 1.5 2.04 48821.0 N 70848.1 W

10 core 2 1.98 � 0.01 39 2.06 48821.0 N 70848.1 W

10 core 2.5 1.89 � 0.01 39 2.03 48821.0 N 70848.1 W

10 core 3 2.44 � 0.00 34 1.95 48821.0 N 70848.1 W

four upstream 2.59 � 0.00 12 48817.878 N 70855.856 W

four downstream 2.06 � 0.01 13 48820.023 N 70853.682 W

fluent 1201 2.29 � 0.01 34 48818.317 N 70854.828 W

fluent 1202 2.44 � 0.01 850 48818.584 N 70854.894 W

fluent 1203A 2.41 � 0.00 28 48818.556 N 708 54.692 W

fluent 1203B 3.28 � 0.01 25 48818.652 N 70854.217 W

ricultural field 1 2.52 � 0.00 17 48818.768 N 70854.685 W

ricultural field 2 1.95 � 0.02 10 48817.772 N 70854.105 W

ree lake 1.93 � 0.01 75 48818.600 N 70854.500 W

leon lake 2.11 � 0.01 56 48818.600 N 70854.300 W

ars river 1.41 � 0.01 12 48820.033 N 70853.854 W

ation 2A filter 1.75 � 0.01 207 48818.620 N 70857.100 W

ation 4B filter 2.06 � 0.02 422 48817.750 N 70854.100 W

C filter (n = 4) 2.81 � 0.01 70 939 48818.320 N 70855.500 W

2.85 � 0.00 53 462 48818.320 N 70855.500 W

2.68 � 0.01 63 115 48818.320 N 70855.500 W

2.86 � 0.01 44 007 48818.320 N 70855.500 W

C filter (n = 2) 2.31 � 0.02 264 48818.250 N 70855.700 W

2.77 � 0.00 433 48818.250 N 70855.700 W

ode (n = 3) 2.04 � 0.01 201

2.12 � 0.01 211

2.53 � 0.01 211

B roof vent dust 2.61 � 0.01 6 369

uminum paper 2.46 � 0.01 31
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room temperature. It is known to be a very oxidizing/
reactive chemical species and would thus be reduced to its
non-volatile form quickly once released in open air and
deposited with particulate matter and ambient dust. On
the other hand, the thermodynamics of the fluoride-rich
process of aluminum production might favour the
generation of low-boiling-point (< 50 8C) osmium fluo-
ride species (Haynes, 2011). To help clarify this internal
balance, more work is needed to sequester and isolate
gaseous emissions from the stacks at different condensa-
tion temperatures, in order to measure their respective
osmium contents. If G-B is representative of average
aluminum smelting plants worldwide, then using our
osmium results in the particulate matter annual emis-
sions and worldwide production of primary aluminum
(51.6 M tons; Wang et al., 2012), we can calculate that ca.
600 g of particulate osmium would be released by the
global aluminum industry. Although this amount is low
when compared to global Os emissions to the environ-
ment, it is interesting to include it into the annual global
budget of anthropogenic osmium released into the
environment, as it is a rare source of highly radiogenic
anthropogenic osmium. Because of this feature, alumi-
num smelting activities could mask the apparent impact
estimates of other industries based on the sole 187Os/188Os
ratio in densely industrialized areas with multiple
sources of osmium contamination, as it could shift the
more typical anthropogenic Os isotopic values from
mantle-like signature towards un-impacted continental
crust values.

4. Conclusion

This study presented the potential of osmium isotopes
and concentration as tracers of particulate atmospheric
heavy metal emissions from an aluminum smelter. Many
anthropogenic heavy metal inputs to the natural environ-
ment have been quantified by previous studies, but the use
of radiogenic isotopes as tracers of industrial sources is not
yet widespread, but very promising. This study allowed us to
follow the PM2.5 emissions from the stack of the smelter,
into its nearby vicinity, until natural background level was
found again. When trying to understand the osmium
internal balance within the smelter, we noted a deficit on
the output side. This apparent paradox can be resolved if the
osmium is released as gaseous specie(s) from the smelter.
More work is required regarding this hypothesis and to find
out the exact volatile chemical species involved (both
fluoride and oxide compounds being thermodynamically
possible within this particular setting). More generally, the
strong radiogenic signature of the raw material (anode)
involved in the Al-smelting process makes osmium a
remarkable forensic-like tool to fingerprint the impact of
such industrial input to the environment, and eventually to
discriminate its impact from those coming from other (base
metal ore) smelting activities.
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