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 Introduction

Marine and estuarine harbour sediments are often
bject to anthropogenic impact including elevated con-
ntrations of potentially toxic metals such as Cu, Pb, and
. The degree of metal association with the distinct
ochemical phases in sediment depends on the binding
pacity and physicochemical characteristics of those
ases. Mobility studies are conducted in order to estimate
e mobile metal fraction considered as bioavailable.
cording to the literature (Semple et al., 2007), there are
any definitions of ‘bioavailability’, a term used in many
fferent scientific fields. Here the bioavailable portion is
nsidered to be the amount of a chemical compound that

could be mineralized from soil or sediment through
desorption processes under various physiological condi-
tions, then which could be transferred to biota (Baraud and
Leleyter, 2012; Ehler and Luthy, 2003; Kramer and Ryan,
2000). Various chemical extractions are used to assess
metal mobility, which is equated to the potential
bioavailability of those metals (Da Silva et al., 2002; El-
Azim and El-Moselhy, 2005; Giancoli Barreto et al., 2004;
Gismera et al., 2004; Singh et al., 2005). Chemical
extraction procedures follow two approaches: the ther-
modynamic approach and the kinetic approach. Unlike the
thermodynamic approach, the kinetic approach uses
different extraction times to assess the time frame of
element mobilisation.

Extraction using a single reagent is a simple and cost-
effective way to investigate the metals mobility in soils and
sediments. Numerous reactants may be used for single
extractions; these generally fall into three categories:
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A B S T R A C T

The mobility of Cu, Pb and Zn in harbour sediments was investigated using single,

sequential and kinetic extraction techniques. Each type of extraction provides different

information on the mobility of these elements in the environment. The single HCl

extraction assesses general mobility, the sequential extraction assesses geochemical

partitioning and kinetic extraction allows quickly and slowly mobilized elements to be

identified. Kinetic extraction also allows the influence of extraction duration to be

assessed. The results presented in this paper highlight the complementary information

provided by different types of mobility studies. The lack of correlation between element

mobility and total metal concentration emphasises the inadequacy of using total metal

concentrations in risk assessment.
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cids, unbuffered salts, and complexing reagents. Howev-
r, depending on the matrix and the reactant, the actual
obility can be over- or underestimated. Single or mixed

iluted acids are often used to estimate the mobility of
lements [e.g., 0.10 mol�L�1 CH3COOH (Lebourg et al.,
996), 1.00 mol�L�1 HCl or a mixture such as 0.05 mol�L�1

Cl and 0.0125 mol�L�1 H2SO4 (Mulchi et al., 1992)]. HCl is
ssumed to extract metals due to its acidic properties and
e chelatant property of Cl�. HCl has been studied

xtensively in lability studies and is recommended by
any authors (Doherty et al., 2000; Duinker et al., 1974;

couller et al., 2006), a concentration of 1.00 mol�L�1 is
uggested for harbour sediments (Burton et al., 2005;
arner et al., 2008; Leleyter et al., 2012; Santos et al., 2010;
zefer et al., 1995).

Sequential extractions are widely used to investigate
e association between heavy metals and the different
ineral and organic phases in sediments. Results can be

sed to predict the mobility and potential bioavailability of
e metals. The technique uses reagents to carry out

uccessive leaching of specific geochemical fractions and
everal different protocols are proposed in the literature.
he first, developed by Tessier et al. (1979), proposed a
ve-step extraction to establish the different fractions to
hich the elements are sorbed. Subsequent authors,
cluding Ure et al. (1993), Rauret et al. (1998) and

eleyter and Probst (1999), have adapted this protocol by
sing other reagents or by adding or reducing the number
f steps in order to improve the efficiency and selectivity of
e protocol. However, the sequential extraction protocols

re criticized about the lack of selectivity and re-
dsorption phenomena of the elements (Gleyzes et al.,
002; Gomez-Ariza et al., 1999). Moreover, the element
obility is assessed in specific physicochemical conditions
posed by the chemical reagents used.
The optimum contact time between sediment and

eagent corresponds to the time taken for maximum
xtraction of the elements and is determined using kinetic
xtraction (Fangueiro et al., 2002; Gismera et al., 2004;
abanowski, 2004; Lin and Chen, 1998; Yu and Klarup,
994). Single and sequential extractions assume that the
eaction equilibrium is reached by the end of the extraction
eriod; however, optimum contact times determined by
inetic extraction can be longer than those recommended
r single and sequential extractions (Abi-Ghanem, 2008).
oreover, kinetic extractions allow fast and slow metal
obilisation to be distinguished (Bermond et al., 2005;

ordas and Bourg, 1998). Several kinetic models that
ifferentiate this temporal mobilisation have been pro-
osed in the literature, including the Elovich equation, the

o-compartment model, the diffusion model and an
quation with two constants (Abi-Ghanem, 2008; Abi-
hanem et al., 2009). Fangueiro et al. (2005) assert that the

o-compartment model has the advantage of separating
e elements into three distinct categories; Q1: quickly
obilised, Q2: slowly mobilised and Q3: not mobilised.
ismera et al. (2004) and Labanowski (2004) use EDTA as
n extractant because it is non-specific (only cations) and
an therefore mobilise a large number of elements; it is
lso capable of extracting metal bound to organic matter,

prediction of metal bioaccessibility from these different
sediment phases. EDTA is sometimes considered as over-
estimating bioavailability (Hooda, 2010). However, Leley-
ter et al. (2012) suggest that, in the case of marine
sediment, EDTA is adapted to estimate the bioavailability
of Cu, Pb and Zn.

Cornu et al. (2004) and Gismera et al. (2004) consider
that the kinetic approach is complementary to sequential
extractions and helps to expand understanding of the
geochemical speciation of elements.

The objective of this study is to compare different
procedures in order to assess the mobility of Cu, Pb, and Zn
in marine harbour sediments collected in the English
Channel. These metals are often present at elevated levels
in harbour sediments due to pre-industrial deposition
(Chiffoleau et al., 1999; Hamdoun, 2013; Pirrie et al., 2002).
The mobility was studied using thermodynamic and
kinetic extraction techniques.

2. Material and methods

2.1. Sample collection

Marine sediment samples were taken from the
harbours of Ouistreham, France (S1), Concarneau, France
(S2) and Pool, UK (S3) between March 2010 and June
2011. Each harbour was sampled at one GPS point using a
grab or a suction dredger, water depths ranged from 4 to
11 m. On return to the laboratory, samples were homo-
genised, air-dried for 4 days, sieved at 500 mm using a
nylon sieve and ground with an agate pestle and a mortar.
The granulometric fraction (< 500 mm) was chosen
according studies on harbour sediments (Sorensen and
Milne, 2009; Townsed et al., 2009).

2.2. Total concentrations

The total metal contents in the samples are determined
after a microwave-assisted (Berghof Speedwave MWS-2)
aqua regia acid digestion was performed on 0.2 g of dry
sediment (3.33 mL of HNO3 NORMAPUR 65% and 6.66 mL
of HCl technical 35% VWR) (Alloway, 1995). Each acid
digestion was performed in triplicate. For the three
elements of interest, the metal contents then determined
were similar to those measured after alkaline fusion
(Hamdoun, 2013), for any tested sample. Moreover, the
procedure (Table 1) was applied to a standard certified
material HR-1 (Canada Centre for Inland Waters National
Laboratory for Environmental). As noticed in Table 2,
which compares the measured values to the certified ones,
satisfactory recoveries (considering uncertainties), for the

Table 1

Program mineralization (power: 1000 w).

Step Power (%) Temperature (8C) Time (min)

1 80 175 20

2 40 100 20
3 40 80 10

arbonate and Fe and Mn oxides providing good long-term
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ree elements of interest, validated the acid digestion
ocedure.

. Other parameters

Other physicochemical measurements were realized on
e sediments. In this paper are only reported the results
garding the CaCO3 content, assessed by Bernard calci-
etry, of the total organic carbon (TOC), measured
cording ISO 14235, 1998, and the sediments pH
ccording ISO 10390) (Hamdoun, 2013).

. Mobility determination

.1. Single extractions

The single extractions were performed as batch
tractions; 1 mol�L�1 HCl was used with a ratio of 10:1
quid: solid) (Leleyter et al., 2012), shaken for 1 h at room
mperature. After filtration (0.45 mm HVLP with syrin-
s), the solution was stored at 4 8C (acidified with 5% of
O3) until chemical analyses. Each extraction step was

rformed in triplicate.

.2. Sequential extraction

The procedure used (Leleyter and Probst, 1999; Leleyter
d Baraud, 2005) allows seven mineralogical fractions to

 distinguished successively. The sum of these seven
ctions represents the operationally defined ‘‘labile
ction’’ for this technique. Operating conditions for

quential extraction are summarised in Table 3. Each
traction step was performed in triplicate.

2.4.3. Kinetic extraction

Kinetic extraction was achieved using a 0.05 mol�L�1

EDTA (Abi-Ghanem, 2008; Abi-Ghanem et al., 2009;
Bermond et al., 2005; Bordas and Bourg, 1998) solution
at 13 contact times (using 13 sacrificial batches) ranging
from 15 min to 24 h and a solid/liquid ratio of 1:10. After
filtration (0.45 mm HVLP), the solutions were stored at 4 8C
(addition of 5% of HNO3) until chemical analysis. Experi-
mental kinetic curves resulting from extraction with EDTA
were modelled using two first-order reaction models as
recommended by Cornu et al. (2004), Gismera et al. (2004),
and Abi-Ghanem et al. (2009). The two first-order
extraction reactions may take place simultaneously,
having rates that are assumed to be independent of each
other. This allowed three compartments to be defined:
quickly mobilised, slowly mobilised, and not mobilised.
Each extraction was performed in triplicate.

3. Chemical analysis

Reagents were used in all experiments. Deionised water
with a resistivity of 18.2 MV�cm produced by a Milli-Q
water system (MAXIMA, Millipore) was used throughout.
Standard stock solutions of 1000 mg�L�1 for major metallic
elements and 100 mg�L�1 for trace metallic elements
(VARIAN, PLASMACAL, ULTRA scientific) were used for
calibration. All glassware and plastic materials were soaked
for 24 h in 10% nitric acid and rinsed with deionised water
prior to use. Fifty-millilitre polyethylene vessels were used
for the storage of leachates. All leachate solutions were
analysed using ICP-AES (inductively coupled plasma-atomic
emission Spectrometry, Varian, Vista MPX).

4. Results and discussion

4.1. Total concentrations

Characteristics of the three sediments are presented in
Table 4. Metal concentrations are reported as mg�kg�1 of
dry sediment (complementary results are detailed in
Hamdoun, 2013).

Sediments S1 and S2 have similar concentrations of Cu,
Pb and Zn. Likewise, S3 has similar concentrations of Cu
and Zn to S1 and S2; however it has a lower concentration
of Pb. The metal concentrations in all three sediments are
within ranges previously reported for harbour sediments
in the English Channel area (Dubrulle, 2007; Hamdoun,
2013; Pirrie et al., 2002). However, it should be noted that
this area is submitted to a strong anthropological pressure
(Hamdoun, 2013). Indeed, many authors (Chiffoleau et al.,
2001; Cundy and Croudace, 1995; Ifremer, 2011) report
anthropic contributions of Cu, Pb, Zn due to the mining
industry and riverine inputs. Thus the presence of these
three metals in the sediments probably results from both
natural occurrence and anthropogenic sources. The an-
thropological origin elements are suspected to be more
leachable than natural origin elements (Gabelle et al.,
2012; Tolu et al., 2014).

Inorganic carbon and total organic carbon (TOC) are
reported as percentage of dry sediment. The TOC contents

ble 2

ment recovery for certified sediment HR-1 after microwave-assisted

rghof Speedwave MWS-2) acid digestion (Cu, Pb and Zn in mg�kg�1).

Cu Pb Zn

R-1 certified values 80 � 11 139 � 37 1105 � 173

cid digestion

(three replicates)

68 � 13 114 � 9 1056 � 75

e Hamdoun et al., 2015.

ble 3

quential extractions procedure (order: F1 to F5).

raction Reagent pH Time

(min)

1: water-soluble Water 5.7 30

2: exchangeable 1 M Mg(NO3)2 5.0 120

3: acid-soluble 1 M NaOAc/HOAc 4.5 300

4: reducible

Manganese oxides 0.1 M NH2OH HCl 3.5 30

Amorphous

iron oxides

0.2 M (NH4)2C2O4

+ M H2C2O4

3.0 240

Crystalline

iron oxides

0.2 M (NH4)2C2O4 +

M H2C2O4 + 0.1 M C6H8O6

2.3 30

5: oxidizable 35% H2O2/0,02 M HNO3

(8 mL/3 mL),

then 3.2 M NH4OAc

2.0 300

 mol�L�1; pH can be adjusted with NaOH or HNO3 solutions (1 M).
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easured in these sediments range from 1.9 to 6.0%;
hese values are within the range of 2 and 10%, as
reviously reported in marine sediments (Hamdoun,
013; Isaure, 2001; Schneider, 2008; Tack and Verloo,
999). The CaCO3 values for the three sediments in this
tudy range from 11 and 20%, also falling within the
reviously reported range of 10% to 40% (Dubrulle, 2007;
amdoun, 2013). The pH measured for the three

ediments are within the pH range usually reported for
uch marine sediments.

.2. Single extraction

The metal mobility expressed as the percentage of the
tal content of a metal leached by 1 mol�L�1 HCl is

isplayed for each sediment on Fig. 1.
The mobilities of Cu and Pb are similar in S1 and S3, and

re both significantly reduced in S2. For instance, the
obility of Cu is only 24% in S2 compared with 48% in S1,

espite the fact that Cu total contents are virtually
entical in all three sediments, ranging from 59 to

2 mg�kg�1. It can also be noted that the mobile fraction
f Pb in S1 is close to its value in S3, despite the very

different total content measured (Table 2). The lack of
correlation between element mobility and total metal
concentration emphasises the inadequacy of using total
metal concentrations in risk assessment.

The sediment matrix plays an important role in binding
and immobilising contaminants; these functions are
affected by both the geochemical composition and the
local environmental conditions. Extraction using 1 M HCl
demonstrates here that S2 has a greater capacity to bind Cu
and Pb than S1 and S3, which might be correlated with its
higher TOC content (6%), suggesting that the part of Cu and
Pb bound to the organic fraction is not easily mobilised by
HCl. The Zn mobility is quite similar in the three sediments,
with light variations in the order S2 < S1 < S3, similar to
the trend observed for the CaCO3 content. This might
suggest that the mobile Zn could bind to this fraction,
which is known to be solubilised by HCl.

4.3. Sequential extractions

The metal distribution, expressed as the percentage of
total metal that is present in each of the five sequential
extraction fractions (F1–F5), is displayed on Fig. 2.

able 4

ediment characteristics.

S1 S2 S3 English Channel

sedimentsa

French harbour

sedimentsb

pH 7.2 � 0.1 8.1 � 0.5 8.1 � 0.2 6.8 to 8.2 –

CaCO3 (%) 15.0 � 1.3 11.5 � 1.1 19.2 � 2.1 11.5 to 25.1

TOC (%) 3.8 � 0.3 6.0 � 0.2 1.9 � 0.2 1.4 to 6.0

Cu (mg�kg�1) 59 � 6 60 � 8 62 � 29 12 to 393 41

Pb (mg�kg�1) 133 � 17 135 � 6 42 � 6 11 to 190 41

Zn (mg�kg�1) 286 � 21 290 � 19 233 � 18 53 to 1226 1500

OC: total organic carbon.
a Hamdoun, 2013.
b Padox et al., 2010.
Fig. 1. Percentage of Cu, Pb and Zn mobilised by 1 mol�L�1 HCl for sediment samples S1, S2 and S3.
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The geochemical distribution of Cu, Pb and Zn in the
ree samples showed some differences:

Cu is mainly located in the acid-soluble fraction for S2 and
S3 (35 and 49%, respectively), however in S1 it is mainly
associated with the reducible and oxidizable fractions
(32 and 10%, respectively). Thus, S1 and S3 both have a
large proportion of Cu associated with the reducible
fraction (32 and 20%, respectively). This distribution of Cu
is unexpected, as Cu is often reported to be associated with
the oxidizable fraction (Algan et al., 2004; Azzaoui et al.,
1998; Ramos et al., 1994; Span, 1984);
Pb is mainly associated with the reducible fraction in all
three sediments. The oxidizable fraction, which is the
fraction thought to contain organic matter, does not have
a high affinity with Pb in these samples (1 to 8%). Similar
observations were made by Span (1984), Illou (1999) and
Morillo et al. (2004) for marine sediments;
Zn in sediment S1 is distributed in the acid-soluble,
reducible and oxidizable fractions (18, 12 and 15%
respectively). Zn in S2, which has the lowest percentage
of CaCO3, has a similar distribution to that of Cu; i.e. it is
mainly located in the acid-soluble fraction (37%),
whereas in S3 Zn is mainly associated with the reducible
fraction (25%). Rousseau et al. (2009) have noted that in
natural marine sediments from English Channel, zinc is
mainly scavenged in reducible and in acid-soluble
fractions, whereas Pempkowiak et al. (1999), Baize and
Tercé (2002) have previously also demonstrated the
important role of oxidizable and reducible fractions, in
the retention of zinc in sediments.

The geochemical distribution of Cu, Pb and Zn varies
eatly between the samples reflecting the natural

difference, structure, physicochemical conditions of the
sediments and the complexity of the various parameters
involved. We note a lack of correlation between the CaCO3

percentage (S2, S1 and S3 present respectively S3 11.5%,
15.0% and 19.2% in CaCO3) and the importance of the acid-
soluble fraction (F3) in the Cu and Zn scavenging. This lack
of correlation can be explained by the presence of other
acid-soluble compounds in sediments (some other carbo-
nates, such as dolomite or some phosphates, such as
apatites, as reported by Leleyter and Baraud, 2006).

In the same way, we can notice a lack of correlation
between TOC values (respectively 1.9, 3.8 and 6 for S3, S1
and S2) and the amount of Cu, Zn or Pb scavenged in the
oxidizable fraction (F5). This result can be explained by the
importance of sulphides, which can partially be oxidized
during this step.

4.4. Kinetic extraction

Kinetic extraction has the advantage of allowing
differentiation between the quickly and slowly mobilized
fractions of an element present in the sediment. Preliminary
tests showed that 24 h were sufficient to reach the
equilibrium. Fig. 3 presents the metal mobility expressed
as the percentage of element leached quickly (Q1) or slowly
(Q2) by 0.05 mol�L�1 EDTA relative to its total content.

The amount of element associated with the Q1 or Q2
compartment is linked to the interaction of the sedimen-
tary matrix with elements. Kinetic fractionation shows the
strength binding of the sediment matrix for each of the
elements and provides information on the time frame of
the environmental risk posed by elevated metal concen-
trations, i.e. Q1 is thought to represent the highest
potential environmental risk (Abi-Ghanem et al., 2009).

Fig. 2. Percentages of Cu (a), Pb (b) and Zn (c) mobilised by sequential extractions for the three sediment samples.
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In S1 and S3, mobile Pb and Zn are evenly divided in
he ‘‘rapid Q1’’ and ‘‘slow Q2’’ compartments. By contrast,

 S2, Q1 is more important than Q2 for both elements,
eaning that most of the mobile Zn and Pb are rapidly
obilized from this sediment. This could be linked to the

atural or anthropogenic origin of these elements in S2.
deed, Abi-Ghanem et al. (2009) concluded from
otopic analysis of their EDTA kinetic extracts that the
nthropogenic Pb was more extracted than the residual
thogenic Pb.

The behaviour of Cu is different from that of Pb and
n. For Cu, the results of kinetic extraction show
ifferences in the time frame of the potential environ-
ental risk. The global mobility of Cu (Q1 + Q2) remains

lose for S1, S2 and S3: 73, 67 and 79%, respectively.
owever, the kinetic mobilisation of Cu in S3 is very
ifferent: 28% in Q1 (58 and 53% for S1 and S2) and 51%

 Q2 (15 and 14% for S1 and S2). This indicates that the
obile Cu is rapidly mobilised (mainly present in Q1) for

oth S1 and S2, whereas most of the mobile Cu present
 S3 is slowly mobilised, so that the short-term risk due

o mobile Cu in S3 is much lower than in S1 and S2. This
henomenon is probably linked to the strength of the
teraction between the sediment matrix and the

lements concerned.
These results show the importance of assessing short-

5 min) and long-term (1440 min) metal mobility. In a
cenario where the sample was exposed to elevated
oncentrations of complexing ligands, long contact times
ill cause maximum dissolution of the elements. Howev-

r, the Q1 compartment helps to differentiate samples.
oreover, a feature of the EDTA is an ability to dissolve

ome iron oxides (Sigg et al., 2000). This slow reaction may
xplain somehow the element mobility in the Q2
ompartment for S3.

4.5. Comparison of three approaches

The global mobility (%) estimated by sequential (F6:
sum of fractions F1 to F5), single and kinetic (Q1 + Q2)
extractions is shown on Fig. 4.

Comparison of the two thermodynamic approaches (HCl
and F6), indicates that the global mobilities (as estimated by
HCl or F6) of Cu, Pb and Zn is similar for S1, but are quite
different for S2 and S3. Considering Pb and Zn, HCl extraction
seems to be a little more aggressive than the sequential
extraction. This is surprising, as sequential extractions are
usually expected to be more aggressive than single reagent
extraction using HCl (Larner et al., 2008). It is possible that a
potentially labile fraction (e.g., sulphides) was not leached
during the sequential extraction. Indeed Aranguren (2008)
suggests to use a solution of 8 mol L�1 nitric acid to extract
the trace metals bound to the recalcitrant sulphide phase in
the sediment in order to modify the Leleyter and Probst
(1999) sequential extraction procedure. Thus, we can
suppose (due to the relatively short extraction of the
oxidizable phases) that Cl� and EDTA ligands were able to
desorb Pb and Zn from this fraction by complexation. Pb and
Zn are chalcophile (Goldschmidt, 1954); therefore in an
anoxic environment it is possible that Pb and Zn are trapped
in sulphide mineral phases (Morin, 2010). However, in this
study, the oxidation state of the sediments was changed by
removing them from the anoxic environment on the sea
floor to the oxic environment in the laboratory. This may
have influenced the speciation of the metals with a
redistribution into the geochemical fractions.

The comparison between the three extractions shows a
higher percentage of Cu, Pb and Zn mobilised by the kinetic
extraction for the three samples studied. This result
suggests that the thermodynamic approaches do not reach
reaction equilibrium:

ig. 3. Percentage of Cu (a), Pb (b) and Zn (c) mobilized by kinetic extraction for the three samples (three replicates were analysed for each extraction) in the

o compartments Q1 and Q2.
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it is generally accepted that the metals associated with
the water-soluble, exchangeable and acid-soluble frac-
tions are easily mobilised (Sundaray et al., 2011). For Cu,
Pb and Zn, there is no obvious relationship between Q1
(‘‘rapid’’ compartment) and the sum of the first three
fractions of the sequential extraction analysis
(F1 + F2 + F3);
the sequential and single extractions do not extract the
entire labile fraction from the sediment. EDTA is a
stronger ligand than the chloride ion and as such may
complex metals hosted in the sulphide phases.

Cornu et al. (2004) and Gismera et al. (2004) show that
rtain sequential and kinetic extractions are consistent
d complementary for Cu, Pb and Zn. For example, in river
diments, Gismera et al. (2004) found correlations
tween the mobility of Cu, Pb and Zn between the
changeable and carbonate-bound fraction, and the
ction that was quickly leached by EDTA.
For improved assessment of the environmental risk

sociated with the sediment, a kinetic approach should be
nsidered.

 Conclusion

The aim of this work was to compare several procedures
r the environmental risk assessment. Metal mobility was
rutinized using single, sequential and kinetic extrac-
ns; each method provided different information on the

� the mobility of Cu, Pb and Zn varied from sediment sample
to another and was dependent on the binding nature of
phases present in the sediment matrix;
� of the five sediment fractions distinguished by the

sequential extraction, only the acid-soluble, oxidizable
and reducible fractions appeared to be involved in the
process of retention and release of metals, suggesting that
the remobilization of elements in marine sediments will
be highly dependent on local pH and redox conditions;
� simplification of the sequential extraction method by

starting at step 3 is justified in marine sediments since
the first two fractions, water-soluble and exchangeable,
will have already been dissolved in situ;
� a specific step in the sequential extraction procedure to

estimate the sulphide fraction would provide further
information on the labile metals present in the sedi-
ments. This would involve a modification of the current
extraction for the oxidizable fraction;
� the time frame of one hour for single extractions may be

too short. The results presented here for kinetic
extraction using EDTA raise the possibility that risk is
underestimated (for a time contact exceeding 60 min) if
only the quickly mobilised fraction is considered;
� kinetic fractionation provides additional information

showing a possible underestimation of the quantities of
element potentially released and thus of the potentially
elevated long-term risk. The mobility of Cu, Pb and Zn
assessed by kinetic extraction were higher than by
thermodynamic approaches (single and sequential),

Fig. 4. Percentage of Cu (a), Pb (b) and Zn (c) mobilised by sequential (F1 to F5), HCl and kinetic (Q1 + Q2) extraction for the three sediments.
although a different extractant was used in each case.
diment. Key findings of this research are that:
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Numerous studies conducted on metal mobility from
arbour sediments focus on the thermodynamic aspect of
obility and ignore the kinetic aspect. However, even if

esults comparing the three protocols: single, sequential
nd kinetics are not always consistent, it is important to
onsider kinetic extraction in addition to methods with a
xed extraction time to ensure that the equilibrium has
een achieved and long-term risk can be effectively
redicted.
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l’oued Sebou (Khmiss Hamria, Fès). Afr. Geosci. Rev. 5, 123–127.
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sédiment de curage contaminé : évolution le long du profil pédolo-
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disponibilité des métaux en traces du sol. Agronomie 16, 201–215.

Leleyter, L., Probst, J.-L., 1999. A new sequential extraction procedure for
the speciation of particulate trace elements in river sediments. Int. J.
Environ. Anal. Chem. 73, 109–128.
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