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ntroduction

Due to increased anthropogenic activity, including
ustrial production (e.g., waste incineration, power

plants, metal refining, etc.) and vehicular traffic (leaded
petrol combustion), the input of heavy metals (HM) to the
atmosphere has increased significantly over the past sixty
years (Nriagu and Pacyna, 1988; Patterson and Settle,
1987). Epiphytic lichens are commonly used in biomoni-
toring studies because they derive their nutrients, and
consequently the entire range of atmospheric fallout (dry
and wet), from the atmosphere (e.g., Ayrault et al., 2007;
Bergamaschi et al., 2002; Carreras et al., 1998; Cercasov
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A B S T R A C T

We report on the chemical and Pb isotopic compositions of epiphytic lichens collected from

small tree branches in the urban area of the city of Metz (NE France). Lichens were collected

in five different years between 2001 and 2009. The data are first compared year to year in

order to document any temporal change and trend in metal atmospheric fallout. The area

studied was then subdivided into different zones on the basis of land use (urban, suburban,

rural and industrial) in order to determine potential spatial gradients. The median

concentrations and enrichment factors (EF, normalized to Al) of Pb and other metals (Cu, Zn,

Cd, Ni, Cr, Hg, Fe) in lichens from the urban, suburban, and rural zones show no systematic

variation between 2001 and 2008. However, the metal EFs show spatial variation and are

generally highest in the urban area and lowest in the rural area. Lichens within the industrial

zone (collected in 2009), which is dominated by steel industries, are richest in Al, Fe, Cr, Pb,

and Zn. Although the Al concentration is high in these lichens, the EFs for the cited metals are

several times higher than those measured in lichens from the other three zones. No

significant differences were noted for Hg, Cd, Cu and or Ni. Pb isotopic compositions

measured in lichens may be highly variable from year to year and from zone to zone. The

variation is primarily interpreted to result from mixing between: (i) Pb added to gasoline

(and recycled through re-emission of road dust in the atmosphere); (ii) regional industrial Pb

from long-range transportation and/or mixed with urban Pb; and (iii) local industrial Pb. The

median isotopic compositions of individual zones are distinct, suggesting variable mixing of

these three sources. The annual variations show that 2001 was most affected by gasoline Pb,

whereas 2003 and 2006 were more affected by the local steel industry.

� 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Corresponding author.

E-mail address: cloquet@crpg.cnrs-nancy.fr (C. Cloquet).

Deceased author.

Contents lists available at ScienceDirect

Comptes Rendus Geoscience

ww w.s c ien c edi r ec t . c om

://dx.doi.org/10.1016/j.crte.2015.04.003
1-0713/� 2015 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.crte.2015.04.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crte.2015.04.003&domain=pdf
http://dx.doi.org/10.1016/j.crte.2015.04.003
mailto:cloquet@crpg.cnrs-nancy.fr
http://www.sciencedirect.com/science/journal/16310713
http://dx.doi.org/10.1016/j.crte.2015.04.003


C. Cloquet et al. / C. R. Geoscience 347 (2015) 257–266258
et al., 2002; Conti et al., 2004; Gandois et al., 2014; Getty
et al., 1999; Hissler et al., 2008; Monna et al., 1997;
Palomaki et al., 1992). The HM concentration recorded in
lichens has long been used to monitor the evolution of
atmospheric inputs (Garty, 2001; Getty et al., 1999).

Among the different HM, Pb is widely used to monitor
anthropogenic inputs to the atmosphere. In addition to Pb
concentrations, Pb isotope ratios can be used to identify
different sources and determine their relative contribu-
tions to the atmosphere (Aberg et al., 1999; Haack et al.,
2002; Le Roux et al., 2008; Reimann et al., 2008). Lead has
four stable isotopes (204, 206, 207, 208), three of which are
derived from radioactive decay of U and Th 238,235U (206Pb,
207Pb) and 232Th (208Pb). Pb isotopes are not significantly
fractionated by anthropogenic activity, such as smelting/

refining (Baron et al., 2009; Cui and Wu, 2011; Gale and
Stos-Gale, 1996) and their isotope ratios reflect the age of
the source material. Consequently, differences in Pb
isotope composition can be used to discriminate different
sources. The Pb isotope technique has been employed in a
number of environmental studies often using airborne
particulates (e.g., Aberg et al., 1999; Bollhofer and Rosman,
2001; Deboudt et al., 1999; Flament et al., 2002; Graney
and Landis, 2013; Haack et al., 2002; Lahd Geagea et al.,
2008a, b; Mihaljevic et al., 2011; Monna et al., 1997; Negrel
et al., 2015; Simonetti et al., 2000; Véron et al., 1999; Weiss
et al., 1999). Since the 1995 publication of the pioneering
study by Carignan and Gariepy (1995), numerous studies
have highlighted the advantages of using Pb isotope ratios
in lichens as a powerful tool for identifying atmospheric
Fig. 1. (Color online.) Locations of sampling sites and the different zones defined according to land occupation (modified from Estrade et al., 2010a, b).
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rce end-members (Chiaradia and Cupelin, 2000;
gopolova et al., 2006; Doucet and Carignan, 2001;
nna et al., 1997; Simonetti et al., 2003; Spiro et al.,
4). However, few studies have applied the technique in

 vicinity of urban areas (Cloquet et al., 2006a,b; Cloquet
l., 2009; Gueguen et al., 2012; Hissler et al., 2008; Lahd
gea et al., 2007). The main goal of the present study was

evaluate whether temporal and/or spatial trends in
ospheric fallout occurred over a decade in areas
cted by local to long-range atmospheric contamina-
. To reach this objective, we:

onitored trace element concentrations in lichens in an
rban area and its surroundings over a 10-year period;
sed enrichment factors to evaluate the anthropogenic
ntribution to large spatial and temporal gradients;

sed Pb isotopes to identify the different sources of
etals in the atmosphere.

ampling and methods

This study presents elemental concentrations of select-
etals and Pb isotope compositions in epiphytic lichens

ected during five sampling campaigns conducted
ween 2001 and 2009 in northeastern France. The study
a (Fig. 1) covers around 900 km2 and contains about
,000 inhabitants. The territory was divided into four
graphical area – rural, suburban, urban and industrial –
escribed in Estrade et al. (2010a,b). In brief, the urban

a (8 sites) is represented by the city of Metz (130,000
abitants). The suburban area (17 sites) extends from the

 to the rural area (13 sites), and includes the flatlands to
 south, east, and west. To the north of Metz, a large
ustrial valley has been developed, which contains
stly steel industries and power plants (13 sites). The

inant wind directions are from the southwest and
theast and winds strengthen from south to north.
ing the 2009 field campaign, only the industrial area

s sampled.
A selection of epiphytic lichens (Evernia prunastri,

alina farinacea, and Hypogymnia physodes), represen-
ve of the different areas was collected from small tree
nches, as previously described (Carignan et al., 2002;
quet et al., 2006a, 2009; Doucet and Carignan, 2001).
ens were collected using pre-cleaned plastic tweezers

 then placed inside sealed plastic bags for transport to
 laboratory (Carignan and Gariepy, 1995; Cloquet et al.,
6b). Lichens were isolated from their substratum when
essary, and then dried at 105 8C for 24 h or freeze-dried.
ens were digested using a mixture of HNO3, H2O2 and

and diluted in LiBO2 prior to elemental determination
quet et al., 2006a; Doucet and Carignan, 2001). Major

 trace elements were determined at the ‘‘Service
alyse des roches et des minéraux’’ (SARM), following

 procedure described elsewhere (Carignan et al., 2001).
hermo IRIS ICP-OES was used for major and minor

ent analyses, a PerkinElmer Elan 5000 and Thermo X7
-MS were used for trace element determinations and
AS was used for Hg determination (Estrade et al.,

BCR-CRM 482 reference material were included and
processed in each preparation batch for quality control
purposes.

Lead from the lichens, digested as described above and
then dissolved in HBr 0.8 M, was isolated from the rest of
the matrix using the method described in Manhès et al.
(1980). Lead isotopic analyses were performed on purified
samples using the Micromass Isoprobe MC-ICP-MS at
CRPG (Nancy, France), as detailed elsewhere (Baron et al.,
2006; Cloquet et al., 2006a), and Tl external normalization
(White et al., 2000). NIST SRM 981 Double Spike TIMS
values were used as a reference (Thirlwall, 2002) and
measurements of four BCR-CRM 482 digestions yielded
values of 17.612; 15.574; 37.498; 1.1308; 2.1290 for
206Pb/204Pb; 207Pb/204Pb; 208Pb/204Pb; 206Pb/207Pb and
208Pb/206Pb, respectively. These values are consistent with
previously published ones (Cloquet et al., 2006a; De
Muynck et al., 2008). The two standard deviation of the
mean calculated on Pb BCR-CRM 482 isotope ratios

Table 1

Median values for metals (mg/g)a and Enrichment Factors for lichens

collected between 2001 and 2009.

Year 2001 2003 2006 2008 2009

(n)b 50 35 12 21 12

Al 829 622 590 678 1347

(se) 70 75 125 165 270

Ti 48 57 25 34 52

(se) 5 11 4 6.5 11.5

Fe 765 829 731 900 3720

(se) 85 145 85 215 1560

Pb 8.5 10 8.5 13 31

(se) 2 3.2 2.8 3.3 12.5

Cd 0.26 0.24 0.14 0.15 0.26

(se) 0.03 0.06 0.07 0.04 0.06

Cu 6.4 7.4 6.7 7.6 10.4

(se) 0.65 1.2 1.4 1.4 2.1

Zn 62 67 63 60 157

(se) 6.5 8 9.5 11 45

Cr 3.5 4.1 3.2 3.5 12.4

(se) 0.4 0.6 0.5 1.1 9.8

Ni 2.7 2 1.9 1.9 3.2

(se) 0.2 0.2 0.3 0.3 1

112 111 93 99.5 107

(se) 11 11 6.7 5.5 7.8

EF-Fe 2.2 2.8 2.5 2.9 6.7

(se) 0.09 0.15 0.2 0.15 1.25

EF-Pb 47 57 56 47 105

(se) 5 9 8 18 13

EF-Cd 294 210 261 185 185

(se) 25 50 8 33 18

EF-Cu 25 33 40 38 34

(se) 1.4 1.8 4.5 2.7 2.7

EF-Zn 87 93 113 104 140

(se) 5.5 10 14 8.5 17

EF-Cr 9.8 12.3 12.2 11.8 25.5

(se) 1.9 1 1.6 1 10

EF-Ni 12.8 9.3 13.1 10.8 12

(se) 1.5 1.2 1.7 0.7 2

EF-Hg 504 694 1236 998 379

(se) 340 155 256 138 54

EF: median values for Enrichment Factors normalized to Al and to upper

crust values from Taylor and Mc Lennan (1995): Al: 80,400, Fe: 35,000,

Pb: 20, Cd: 0.1, Cu: 25, Zn: 71, Cr: 35, Ni: 20, Hg: 12 (mg/g except Hg in ng/

g); (se): standard error.
a Except for Hg, ng/g.
b Number of samples for all elements except Hg; n for Hg: 4, 9, 7, 16,
r 2001, 2003, 2006, 2008, 2009, respectively.
0b). Internal reference material and the international 8 fo
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206Pb/204Pb; 207Pb/204Pb; 208Pb/204Pb; 206Pb/207Pb and
208Pb/206Pb were 78 ppm; 65 ppm; 62 ppm; 61 ppm and
61 ppm, respectively.

The enrichment factor (EF) was determined using the
following equation:

EFmetal¼ ð½metal�=½Al�Þsample=ð½metal�=½Al�Þcontinental crust

(1)

where ‘‘metal’’ refers to the metals Pb, Zn, Fe, Cr or Ni, etc.,
using continental crust values reported in Taylor and Mc
Lennan (1995).

3. Results

When the whole dataset is examined (12 to 50 samples
per year), it can be seen that the median elemental
concentrations and enrichment factors (EF) (Table 1)
remained comparable from 2001 to 2008 and then
changed dramatically in 2009. The Ti and Al concentrations
in lichen presented in Fig. 2 show that Ti/Al ratios ranged
from 0.035 to 0.1, and bracket the silicate upper crust Ti/Al
ratio [0.064, (Taylor and Mc Lennan, 1995)] regardless of
the sampling year. Fe vs Al and Cr vs Al relationships (not
shown) exhibit a restricted range of variation around the
average upper crust value from 2001 to 2008, while Fe and
Cr excesses were recorded in lichens sampled in 2009.

The enrichment factors remained relatively constant
from 2001 to 2008, but a large increase in Fe, Pb, Zn and Cr
was again observed in the 2009 lichens. In 2009, the
lichens were exclusively collected in the industrial area
located to the north of the Metz urban area. The
contrasting elemental signatures and EF values highlight
a significant contribution from local anthropogenic
sources, mainly steel industries.

However, the anthropogenic contributions of Fe, Pb, Zn
and Cr are two to three times higher in 2009 than in the
other years, but are similar for Cd, Cu, Ni and Hg (Table 1).
Rather than representing temporal trends in concentra-
tion, the dataset suggests that a spatial interpretation,
linked to the location of the source of these metals, is
appropriate. Median elemental concentrations in each area
are reported in Table 2. Except for Hg and Ni contents,
which are similar in all areas, spatial trends accompany the
median elemental concentrations. An increase in metal
concentrations can be observed from zone to zone:
rural < suburban < urban < industrial.

Enrichment factors (Table 2) illustrate different spatial
trends depending on the element considered. The indus-
trial area had the highest EFs for Fe, Pb, Zn and Cr; the
urban area presented the highest Cd and Cu EFs; the rural
area presented the lowest Fe, Pb, Cd, Cu, Zn, Ni values; and
the EFs in the suburban area presented intermediate values
or values similar to those recorded in urban and rural

Fig. 2. (Color online.) (A) Ti (B) Fe, and (C) Cr vs Al concentration

measured in lichens. Relative proportions of Ti and Al are similar to those

of the silicate upper crust, reflecting the presence of mineral aerosols in

lichens. Relative proportions of Fe–Cr and Al are also similar to those of

the silicate upper crust for lichen collected in urban, suburban and rural

zones (2001–2008), but significant Fe and Cr excesses are found in lichens

Table 2

Median values for metals (mg/g)a and Enrichment Factors for lichens

collected between 2001 and 2009 in the various zones.

Year Urban Suburban Rural Industrial

(n)b 19 32 31 8

Al 893 795 593 1580

(se) 628 803 282 979

Ti 55 45 33 68

(se) 49 61 22 41

Fe 910 841 591 5783

(se) 653 807 267 5515

Pb 17 14 5 43

(se) 26 10 6 44

Cd 0.5 0.2 0.2 0.4

(se) 0.5 0.1 0.1 0.2

Cu 11 7 5 14

(se) 9 5 1 8

Zn 82 65 50 199

(se) 41 25 20 170

Cr 4 5 3 20

(se) 2 3 1 37

Ni 3 2 1 5

(se) 1 1 1 3

Hg 97 108 97 107

(se) 24 21 34 24

EF-Fe 2 3 2 9

(se) 0.4 1 1 4

EF-Pb 74 55 40 123

(se) 86 34 35 32

EF-Cd 209 177 202

(se) 341 94 204 55

EF-Cu 29 25 30

(se) 17 8 15 7

EF-Zn 96 97 89 163

(se) 31 35 58 42

EF-Cr 9 12 11 29

(se) 2 5 6 38

EF-Ni 12 12 11 13

(se) 4 5 5 4

EF-Hg 724 1060 379

(se) 424 555 1229 142

EF: median values for Enrichment Factors normalized to Al and to upper

crust values from Taylor and Mc Lennan (1995): Al: 80,400, Fe: 35,000,

Pb: 20, Cd: 0.1, Cu: 25, Zn: 71, Cr: 35, Ni: 20, Hg: 12 (mg/g except Hg in ng/

g); (se): standard error.
a Except for Hg, ng/g.
b Number of samples for all elements except Hg; n for Hg: 10, 17, 11,
collected in the industrial zone (2009). 7 for urban, suburban, rural, industrial, respectively.
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as. In contrast with these metals, the Hg EF was higher
he rural area than in the industrial area.
In Fig. 3, a large variation in the Pb EF (from 11 to
) is observed over the entire geographical area with
e. The median Pb EF remained in a narrow range
ween 2001 and 2008 (47–57), while a higher Pb EF
5) was observed in 2009 in the industrial area.
thermore, the median Pb EF values presented in Fig. 4
icate a decrease from urban (80) to suburban (55) and
al (40) areas.

Variations in the Pb EF reflect spatial variations in
source contributions rather than a temporal source
variation. In order to better constrain the sources of Pb,
we therefore determined the isotopic compositions of Pb in
the lichens. Pb isotope measurements are reported in Table
3 and Fig. 5 as a function of the geographical area. For
instance, 206Pb/207Pb ranged from 1.146 to 1.157 and each
area is characterized by a distinct median Pb isotope ratio.
Lead isotope ratios are aligned in the triple-isotope
diagram (Fig. 5b), suggesting mixing between at least
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two end-members, one being more radiogenic than the
other.

4. Discussion

Lead is mainly derived from anthropogenic sources and
has been widely used as a reference for tracing the
numerous anthropogenic sources in environmental reser-
voirs (Komarek et al., 2008).

Potential sources of Pb can be identified from the
various isotopic end-members in a tri-isotopic diagram
(208Pb/206Pb vs 206Pb/207Pb; Fig. 6a and b). The known end-
members might include, for instance, gasoline (Roy and
Negrel, 2001; Véron et al., 1999), local industry (mainly
steel industries; see Monna et al., 1997; Véron et al., 1999),
average French industrial Pb (based on measurements
from urban waste incinerator effluents; see Carignan et al.,

2005) and geogenic end-members (Elbaz-Poulichet et al.,
1984). The median industrial Pb ratios (Fig. 5) are found on
the opposite side of the plot to the urban median,
suggesting that the Pb found in suburban and rural areas
mainly originates from a mixture of urban and industrial
Pb. From Fig. 6a and b, it can be seen that the data can be
explained by mixing between at least three end-members.
The Pb isotopic ratios do not lie along a two-component
mixing line. Two of these end-members are represented by
local industrial Pb and gasoline Pb, and the third
corresponds to the regional industrial Pb. The data are
scattered between these three end-members, suggesting
that natural Pb did not contribute significantly to the
overall Pb in lichens. This is supported by the high Pb EF
recorded in the lichens, which indicates that at least 95% of
the Pb measured in lichens is of anthropogenic origin and
that deposition of geogenic Pb is currently low.
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median EF for 2009 (industrial zone). EF values decrease systematically

from industrial, urban, suburban to rural zones.

Table 3

Median values for [Pb], EF-Pb and Pb isotopic ratios measured in lichens

collected between 2001 and 2009 in the various zones.

Year Urban Suburban Rural Industrial

(n)a 16 26 25 8
206Pb/204Pb 17.867 17.920 18.018 18.049

(se) 0.246 0.158 0.219 0.069
207Pb/204Pb 15.590 15.600 15.605 15.612

(se) 0.018 0.020 0.022 0.012
208Pb/204Pb 37.761 37.796 37.853 37.909

(se) 0.253 0.154 0.220 0.037
206Pb/207Pb 1.1461 1.1496 1.1548 1.1566

(se) 0.0146 0.0092 0.0129 0.0039
208Pb/206Pb 2.1131 2.1074 2.1016 2.1005

(se) 0.0153 0.0103 0.0141 0.0075

(n)b 19 32 31 8

[Pb] mg/g 17 14 5 43

(se) 26 10 6 44

EF-Pb 74 55 40 123

(se) 86 34 35 32

(se): standard error from the mean.
a Number of samples analyzed for isotopes.
b Number of samples analyzed for Pb concentrations.
found at opposite ends of the trend suggests distinct Pb sources for these zones.
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Some of the lichens collected in 2008 showed a
ificant contribution from gasoline Pb. This finding

s previously reported in Cloquet et al. (2006a) and Lahd
ge et al. (2008a), and most likely originates from re-

pension of road particles.
Temporal differences in the Pb isotope ratios reported
lichens in each zone are best explained in terms of
nges in the mixing proportions rather than source
iations. This interpretation is also supported by a
ing diagram that reports Pb isotope ratios vs Al/Pb
. 7a). In this figure, the end-members are defined by
ir Pb isotope ratios and their Pb concentration, and
ing between gasoline Pb and local industrial sources is
in inferred. Once more, the geogenic Pb contribution is
ignificant. The third component contributing to the
opic compositions of the lichen is the atmospheric
eline Pb derived from industrial emissions in France.

This end-member is relatively well defined by the Pb
isotopes, but is more complex in terms of concentration.
This is because of the scattered distribution of such a
diffuse source. It might seem surprising to observe a
greater contribution from long-range atmospheric deposi-
tion than from the geogenic source. However, the relatively
high level of industrial emissions of Pb compared to
natural emissions easily explains the difference in terms of
their contributions to the atmosphere. From Fig. 7b, it is
also clear that the contributions from each source have
changed through time. Some of the 2001 lichens exhibit a
Pb isotope ratio (206Pb/207Pb) of between 1.13 and 1.14 and
an Al/Pb ratio of about 100, pointing towards the gasoline
Pb field.

The change in source contribution can also be observed
by reporting the median value for lichen through time. In
Fig. 7b, the median value and filtered median value are

6. (Color online.) Lichen 208Pb/206Pb vs 206Pb/207Pb. For comparison, the fields for gasoline Pb in France, mean industrial Pb in France, local industrial Pb,

 geogenic Pb in local urban soils are reported. The distribution of the data suggests contributions from at least three main sources of Pb. Data for

strial Pb in France are from dust collected from various municipal waste incinerators (Carignan et al., 2005).

7. Lichen 206Pb/207Pb vs (a) Al/Pb and (b) median Al/Pb (all data and filtered data – see Fig. 6 caption). a. The fields for gasoline Pb in France, mean

strial Pb in France, local industrial Pb, and geogenic Pb in local urban soils are reported. b. Arrows point towards these 4 fields. ‘‘Filtered’’: 206Pb/207Pb
es below 1.14 were excluded in order to eliminate the major input of gasoline Pb sources.
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reported. The 206Pb/207Pb data have been filtered to
eliminate the major input of gasoline Pb, which has a
ratio below 1.14. Our decision to filter the data was based
on the removal of lead-additives from gasoline in the early
2000s. No large difference between both total and filtered
values can be observed for 2008. The data from the
different years plot within a relatively restricted area with
the exception of the 2009 data, which exhibits a lower
median Al/Pb ratio. This narrow range in the data supports
the hypothesis that variations are explained by changes in
source contribution rather than by changes in source origin
(the removal/addition of sources). The 2009 data were
sampled close to sites of industrial activity that represent
the local industrial Pb. Based on the end-members defined
above, it can be seen that the 2001 lichens recorded a larger
contribution from the gasoline Pb source. This is probably
because the phasing out of leaded gasoline started at that
time. The 2008 data are similar to the 2001 ones and can be
explained by the re-suspension of old gasoline particles, as
described earlier. However, it is not clear why such
particles were not re-suspended prior to 2008. One
explanation might be that the various activities in the
zone were more intense between 2006 and 2008, but there
is no information available to us to confirm such a
hypothesis. Once the phasing out of leaded gasoline had
been completed, the influence of this end-member became
less important and the contribution from local industrial
Pb became more visible. During the same period, no
significant changes in the French industrial Pb and
geogenic Pb emissions would have been expected. As a
result of this change in source contributions, the median
values for Pb isotope ratios and Al/Pb evolved towards the
local industrial Pb end-member in 2003 and 2006. Next,
the median value for the 2008 filtered data moved towards
higher Al/Pb for a broadly similar 206Pb/207Pb isotope ratio,
i.e., in the direction of geogenic Pb and French industrial
Pb. As discussed above, the latter more likely explains this
change. This shift reflects the lesser impact of local
industrial Pb relative to long-range atmospheric deposi-
tion. This might be explained by reduced industrial
activity, mainly in the steel industry, in the study
area – see Petit et al. (2015) for references.

The temporal variations observed in this study support
the fact that atmospheric Pb isotopes tend to be homo-
genised through time. The atmospheric baseline Pb derived
from industrial emissions across France became an impor-
tant atmospheric pollutant source after the phasing out of
leaded gasoline. This trend towards homogenisation, with a
206Pb/207Pb isotope ratio of 1.15–1.17, is similarly observed
all around the world. It has been reported in lichen samples
from the rest of Europe (Lahd Geagea et al., 2008b) and
North America (Carignan and Gariepy, 1995), and has also
been reported in other archives, such as tree rings (Stille
et al., 2012), Antarctic snow (Van de Velde et al., 2005) and
lake sediments (Aebischer et al., in prep.). The trend also
highlights the importance of undertaking long-term
monitoring studies using appropriate tools. The use of
lichens and mosses is particularly important (Harmens
et al., 2015) because they seem to be insensitive to climatic
change at a regional scale in terms of their accumulation of

spatial and temporal scale, these organisms will become
important proxies for atmospheric metal evolution in the
future.

5. Conclusion

The results obtained in this study show that heavy
metal inputs to the atmosphere did not systematically
change during the decade of monitoring. This could imply
that anthropogenic pressure remained constant in the
atmosphere around the city over the 10-year period.
However, when the data are sorted by area (urban,
suburban, rural and industrial zones), a systematic change
can be observed. Industrial areas are seen to have
experienced higher metal fallout than urban, suburban
and rural areas. Using Pb isotope ratios, the Pb atmospheric
inputs can be explained by Pb derived from three sources:
local industrial activity; average French industrial activity,
via long-range transportation of particulates; and Pb in
gasoline, mainly due to re-suspension of old particles. The
natural Pb input signal is not clearly observed as it has been
obscured by the large input of anthropogenic Pb to the
atmosphere. Urban areas present a higher proportion of Pb
from gasoline emissions whereas industrial areas are
characterized by a large proportion of local industrial Pb.
Overall, a change in source proportions is observed with
time. In the early 2000s, higher proportions of Pb from
gasoline were observed. The distributions then changed
slightly, moving towards higher proportions from local
industrial Pb and then finally towards a higher proportion
of Pb from baseline French industrial Pb via long-range
deposition. These conclusions support observations
reported in other studies that suggest a trend towards a
homogenisation of the heavy metal input to the atmo-
sphere as traced by Pb. In this context, local sources can be
easily identified and may strongly influence the atmo-
spheric signal at a local scale. Lichens and other epiphytic
organisms, such as mosses appear to be good proxies for
atmospheric deposition at a local/regional scale and also
very efficient at recording the urban/periurban atmo-
spheric signal. Since the metal record does not seem to be
affected through time or by local climate change in these
organisms, the technique may prove itself invaluable in
future evaluation of metal atmospheric inputs.
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