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 Introduction

Geostatistical simulation is widely used in the evalua-
n of mineral resources and ore reserves to map
ological heterogeneity at different spatial scales and to
sess the uncertainty in the unknown values of coregio-
lized variables, such as the grades of elements of
terest, petrophysical properties of the subsoil, or
ometallurgical properties (work index, acid consump-
n, metal recoveries) (Boisvert et al., 2013; Rossi and
utsch, 2014). Its practical implementation requires
ecifying a stochastic model, which describes the spatial

distribution of the coregionalized variables (what should
be simulated), and an algorithm, which aims at construct-
ing realizations of the prescribed model (how it should be
simulated) (Chilès and Delfiner, 2012; Lantuéjoul, 2002).

When the coregionalized variables can be modeled (up
to some nonlinear transformation) by Gaussian random
fields, a few exact algorithms, such as the matrix
decomposition (Davis, 1987, Myers, 1989), discrete spec-
tral (Chilès and Delfiner, 1997; Dietrich and Newsam,
1993; Le Ravalec et al., 2000 Pardo-Igúzquiza and Chica-
Olmo, 1993) and moving average (Black and Freyberg,
1990) algorithms, perfectly reproduce their joint distribu-
tion and spatial correlation structure, but such algorithms
are limited, either because they cannot be used for large-
scale problems or because they require the data and target
locations to be regularly spaced.
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A B S T R A C T

Stochastic simulation is increasingly used to map the spatial variability in the grades of

elements of interest and to assess the uncertainty in the mineral resources and ore

reserves. The practical implementation requires specifying a stochastic model, which

describes the spatial distribution of the grades, and an algorithm to construct realizations

of these grades, viewed as different possible outcomes or scenarios. In the case of the

Gaussian random field model, a variety of algorithms have been proposed in the past

decades, but their ability to reproduce the model statistics is often unequal. In this paper,

we compare two such algorithms, namely the turning bands and the sequential

algorithms. The comparison is hold through a synthetic case study and a real case study in

a porphyry copper deposit located in southeastern Iran, in which it is of interest to jointly

simulate the copper, molybdenum, silver, lead and zinc grades. Statistical testing and

graphical validations are realized to check whether or not the realizations reproduce the

features of the true grades, in particular their direct and cross variograms. Sequential

simulation based on collocated cokriging turns out to poorly reproduce the cross

variograms, while turning bands proves to be accurate in all the analyzed cases.
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To overcome these limitations, approximate algorithms
an be applied, allowing dealing with large numbers of
ata on unstructured grids. In this category, one finds the
equential Gaussian (Deutsch and Journel, 1998), continu-
us spectral (Shinozuka and Jan, 1972) and turning bands

atheron, 1973) algorithms. Sequential Gaussian simu-
tion has been widely use in practice due to its simplicity

nd straightforwardness in a variety of areas (Alabert and
assonnat, 1990; Ravenscroft, 1994), but the accuracy of
is method is not always ensured (Emery, 2004; Emery

nd Peláez, 2011; Gómez-Hernández and Cassiraga, 1994;
mre et al., 1993; Tran, 1994) and its applicability to
ultivariate cases may be challenging and require

implifications (Almeida and Journel, 1994; Gómez-
ernández and Journel, 1993). An alternative to obtain
ood-quality realizations is the turning bands approach
roposed by Matheron (1973). In a nutshell, this method
erforms simulation in a multi-dimensional space through

 series of one-dimensional simulations. The algorithm
llows fast calculations and, in theory, yields an accurate
eproduction of the spatial correlation structure (in
nivariate and multivariate cases), although the resulting
istributions may slightly differ from the target ones due

 the use of a finite number of one-dimensional
imulations (stripping effect) (Emery and Lantuéjoul,
006).

The purpose of this paper is to assess the performance
nd check the accuracy of sequential Gaussian and turning
ands simulation, through actual and synthetic case
tudies.

. Theory of joint simulation

It is often of interest to construct numerical models that
eproduce the joint distribution of several coregionalized
ariables at unsampled locations, conditionally to the
formation available at sampling locations (conditional

osimulation). Because the variables are usually spatially
ross-correlated, it is not sufficient to simulate each
ariable separately. Instead, a multivariate approach has

 be used.
In the case of representing the coregionalized variables

f interest by Gaussian random fields, the problem of
osimulation consists in constructing realizations of a
ector Gaussian random field, say Y = {Y(x): x 2 D}, where

 is the domain of interest and x represents a generic
cation in D. For the sake of simplicity, further assume
at the random field has zero mean and that its spatial

orrelation structure can be represented by a linear
oregionalization model (Journel and Huijbregts, 1978;

ackernagel, 2003):

ðhÞ ¼
XS

s¼1

Bs rsðhÞ (1)

here {rs: s = 1,. . ., S} is a set of auto-correlation functions
asic nested structures)
{Bs: s = 1,. . ., S} is a set of real-valued, positive semi-

efinite matrices (coregionalization matrices)
C(h) is a matrix containing the direct (diagonal terms)

components of Y for a given separation vector h:
C(h) = E{Y(x) � Y(x + h)T}.

2.1. Sequential Gaussian cosimulation

Consider that D is composed of n locations: D = {x1,. . .,
xn}. The sequential algorithm aims at simulating the vector
random field Y at each location successively. Specifically, at
location xi (with i = 1,. . ., n), the simulated vector is
obtained as follows:

YðxiÞ ¼ YSCKðxiÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SSCKðxiÞ

q
Ui; (2)

where

� YSCK(xi) is the simple cokriging prediction of Y(xi),
obtained by using the pre-existing data as well as
Y(x1),. . ., Y(xi–1) as conditioning data
� SSCK(xi) is the variance-covariance matrix of the

associated cokriging errors
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

SSCKðxiÞ
q

is the principal square root of SSCK(xi)

(alternatively, the Cholesky factor of SSCK(xi) could be

used instead of the principal square root)
� Ui is a standard Gaussian vector with independent

components, independent of U1,. . ., Ui–1.

The sequential approach is applicable to simulate any
vector Gaussian random field, even when its correlation
structure is not a linear coregionalization model Eq. (1)
(Marcotte, 2012), and, at least in theory, is perfectly
accurate. However, in practice, some simplifications are
required because the cokriging is computationally prohib-
itive when the number of data is too large. This happens
when either the number of pre-existing data or the number
of locations targeted for simulation (n) is large. In this
context, the following approximations are often used.

2.1.1. Full cokriging in a moving neighborhood

Instead of cokriging with all the previously simulated
vectors Y(x1),. . ., Y(xi–1) and all the pre-existing condition-
ing data, one can restrict to the vectors and data that are
located in a neighborhood of the target point xi. The design
of such a neighborhood often considers a maximal search
radius around the target point, as well as the definition of a
maximum number of data and previously simulated
vectors to search for (Deutsch and Journel, 1998;
Goovaerts, 1997; Pebesma, 2004). The use of a local
neighborhood is often combined with a multiple-grid
strategy, which consists in visiting the target grid nodes
according to a set of nested grids (starting from a coarse
grid and following with finer ones), in order to better
reproduce the spatial correlation at different scales (Tran,
1994).

2.1.2. Collocated cokriging in a moving neighborhood

Here, simulation is performed in a hierarchical manner:
the first component of Y is simulated first, using univariate
kriging in a moving neighborhood to determine the
successive simulated values. The second component of Y

s then simulated using cokriging, conditionally to the
nd cross (off-diagonal) covariance functions of the i
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formation of this component (i.e. original data and
eviously simulated values) located in the neighborhood

 the target point, as well as the values of the first
mponent at the target point xi and at the selected points
ith information of the second component. This variant of
kriging is known in the literature as multi-collocated
ivoirard, 2001, 2004; Wackernagel, 2003), although in
e following it will be referred just as collocated cokriging
ig. 1). The process follows with the next components, by
nsidering each time only the collocated information of
e previously simulated components.

. Turning bands cosimulation

.1. Factorizing the target vector random field

To jointly simulate the components of Y, one can split
is vector random field as follows:

 x 2 D; YðxÞ ¼
XS

s¼1

YsðxÞ; (3)

In accordance with the linear coregionalization model,
,. . ., Ys are independent vector Gaussian random fields,
ith B1r1,. . ., Bsrs as their respective matrices of direct and
oss covariance functions. Since each coregionalization
atrix is positive semi-definite, it can be decomposed as
llows:

¼ Q sDsQ
T
s ¼ AsA

T
s ; (4)

ith Qs an orthogonal matrix of eigenvectors, Ds a diagonal
atrix of eigenvalues and As ¼ Q s

ffiffiffiffiffiffi
Ds

p
:

Let Ws be a vector random field with independent
mponents, each with covariance function rs. Then, it can

 shown (Emery, 2008b) that the random field As Ws has
e same correlation structure as Ys. The simulation of the
rget vector random field Y therefore boils down to

ulating independent scalar random fields (the compo-
nts of Ws for s = 1,. . ., S) with covariance functions equal

 the basic nested structures used in the linear
regionalization model.

2.2.2. Turning bands univariate simulation

The simulation of the components of Ws can be
performed via any multivariate Gaussian simulation
algorithm. In the present case, the turning bands algorithm
is chosen for its accuracy and computational efficiency. In a
nutshell, this algorithm consists in drawing many lines in
space, with random or, preferably, quasi-regular orienta-
tions, and simulating a one-dimensional random field
along each line (Lantuéjoul, 1994, 2002). By adequately
choosing the covariance function of such one-dimensional
random fields, their superposition provides a multi-
dimensional random field with the target covariance
function, the distribution of which is practically Gaussian
by virtue of the central limit theorem. The application of
the method is therefore controlled by the number of lines
used and by the way to simulate the basic one-dimensional
random fields. The reader is referred to Emery and
Lantuéjoul (2006) for mathematical details on these
aspects.

2.2.3. Conditioning to data

In order to make the simulated vector random field
conditional to a set of pre-existing data, one can post-
process the realizations obtained by turning bands (non-
conditional simulation) in order to turn them conditional.
This step is based on cokriging the difference between the
simulation at the data locations and the actual condition-
ing data values (Chilès and Delfiner, 2012; Emery, 2008b;
Journel and Huijbregts, 1978). Note that cokriging can be
performed even when the random fields to be simulated
are not observed at the same locations (Wackernagel,
2003), so that the conditioning process does not lose
information whatever the design of the conditioning
dataset, either isotopic or heterotopic.

3. Synthetic analysis

One approach to assess the quality of a simulation
algorithm is to compare the experimental statistics of a set
of realizations (e.g., the mean value or the variogram
calculated for given lag separation distances) with the
underlying model statistics (Leuangthong et al., 2004).

. 1. (Color online.) Data selection for collocated cokriging (case of two variables, in which it is of interest to simulate the primary variable at the target

ation).
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owever because the realizations are constructed over a
ounded domain D (represented by a finite set of spatial
cations), some deviations or ‘‘fluctuations’’ between

xperimental and model statistics are expected, even if
e simulation algorithm is exact. In this context, statistical
sting can be used to reach a solid conclusion on whether

r not the realization statistics agree with the model
tatistics (i.e., whether or not the fluctuations are within
cceptable limits). In particular, one can check the
eproduction of the mean value and of the variogram at
pecific lag distances (Emery, 2008a).

The synthetic case study shown in this section consists
 simulating a single Gaussian random field with zero
ean and isotropic spherical variogram on a two-

imensional regular grid D with 100 � 100 nodes. Two
ases are considered: in the first one, the variogram has a
ange of 15 units and no nugget effect, while in the second
ase the variogram has a range of 60 units and 30% relative
ugget effect. Both the turning bands and the sequential
aussian algorithms are used to produce
 = 100 independent non-conditional realizations, using
ublicly available codes (Deutsch and Journel, 1998;
mery and Lantuéjoul, 2006). For sequential simulation,

 moving neighborhood containing up to 64 previously
imulated points (8 per octant) and a multiple-grid
trategy with three nested grids are considered, whereas
r turning bands, one thousand lines are used for

imulation. The other parameters (variogram model,
umber of realizations and output grid) are the same for
oth the sequential and turning bands algorithms.

.1. Testing the reproduction of the mean value

Consider the average of the Gaussian random field over
e whole grid:

ðDÞ ¼ 1

10; 000

X10;000

i¼1

YðxiÞ (5)

nd denote by ȲðDÞ and by S2(D) the sample mean and
ample variance of Y(D), calculated over the available N

ealizations. Then, one expects the following (Emery,
008a):

ðDÞ
ðDÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

� TN�1; (6)

here TN–1 is a Student random variable with N – 1 degrees
f freedom. Accordingly, if the absolute value of the left-
and side member is greater than a critical value (for a pre-
pecified significance level), one would reject the null

hypothesis that the mean value of the simulated field is
zero. In the contrary case, the hypothesis of a zero mean is
accepted and the simulation algorithm is validated, at least
in what refers to the mean value. This test has been
performed on the realizations obtained by turning bands
and sequential Gaussian simulation. The results (Table 1)
demonstrate that the hypothesis of a zero mean value is
acceptable in all the cases with a significance level of 0.05.

3.2. Testing the reproduction of the variogram

Fig. 2 compares the experimental variograms of the
realizations with the underlying variogram model. It is
seen that, on average over the realizations, the variogram is
well reproduced with the turning bands method, whereas
a bias is perceptible for the sequential algorithm, with an
exaggerated range for the variograms of the realizations
and a different behavior at short distances in the case of the
model with nugget effect. This visual appraisal can be
confirmed by statistical testing.

For a given lag separation vector h, let us denote by G(h)
the experimental variogram of the simulated random field
and by g(h) the theoretical variogram model. Let Ḡ ðhÞ and
S2(h) be the sample mean and sample variance of G(h),
calculated over N independent realizations. For sufficiently
high N, both Ḡ ðhÞ and S2(h) are approximately normally
distributed (due to the central limit theorem) and
independent, so that one should have (Emery, 2008a):

Ḡ ðhÞ � gðhÞ
SðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
N � 1
p

� TN�1 (7)

As for the case of the mean value, if the absolute value of
the left-hand side member is greater than a critical value
(for a pre-specified significance level), one will reject the
null hypothesis that the variogram of the simulated field at
lag h is equal to g(h). Otherwise, the null hypothesis is
accepted and the simulation algorithm is validated in what
refers to variogram reproduction. The test has been
performed on the realizations obtained by turning bands

able 2

tudent test on variogram for synthetic non-conditional simulations.

Simulation algorithm Variogram range Absolute value of T-statistics

Lag 10 Lag 20 Lag 30 Lag 40 Lag 50

Turning bands 15 0.47958 0.13415 0.10243 1.1527 0.8572

60 0.13575 0.37503 0.2262 0.11128 0.3551

Sequential simulation 15 7.5313 1.0281 0.68336 0.69996 1.4693

60 14.5126 0.79557 2.6556 3.4024 3.2084

Table 1

Student test on the mean for synthetic non-conditional simulations.

Simulation algorithm Variogram

range

Absolute value

of T statistics

Turning bands 15 0.9617

60 0.92259

Sequential simulation 15 0.17286

60 0.64154

Theoretical mean value = 0; significance level = 0.05, critical val-

ue = 1.9842.
ignificance level = 0.05, critical value = 1.9842. Bold numbers indicate rejection of the test.
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d sequential simulation for five lags (10, 20, 30, 40 and
) and a significance level of 0.05. The results (Table 2) do
t present any case of rejection for turning bands

ulation, indicating that the variogram is indeed
curately reproduced, whereas sequential simulation
s a rejection rate of 50%.
The previous results concern the reproduction of the

riogram at five different lags considered separately. One
n also test for the reproduction at the same five lags

ultaneously, by using a Hotelling test that can be seen as
ultivariate extension of the Student test (Emery, 2008a).

e results (Table 3) confirm the accuracy of variogram
production for turning bands simulation and the bias for
quential simulation.
Although limited to a single variable, these experiments

monstrate that the choice of the simulation algorithm

has an impact on the quality of the results. In particular,
beyond the visual inspection of the variograms of
realizations, the Student and Hotelling tests prove that
there is statistical evidence that sequential Gaussian
simulation fails in reproducing the target spatial correla-
tion structure (variogram), whereas turning bands proves
to be accurate. The problem of sequential simulation stems
from the iterative nature of the algorithm: the error made
at each stage by using a moving neighborhood approxi-
mation propagates at the next stages, insofar as the value
simulated at one location is used as a conditioning data for
all subsequent locations (Emery and Peláez, 2011). Let us
now examine what happens in a multivariate case, through
a case study on real data.

4. Case study: Dar-Alu porphyry copper deposit

4.1. Data presentation

The Dar-Alu copper deposit is located at 29824’46.6‘‘N
and 57805’56.9’’E, at about 135 km away from Kerman city,
southeastern Iran. It is situated in the Urumieh–Dokhtar
magmatic arc belt (Shafiei and Shahabpour, 2008) and
consists of rhyodacite porphyry, silicified granodiorite
porphyry, microgranodiorite, tonalite and rhyolithe rocks.
The classical alteration for copper ore deposits, such as

ble 3

telling test on variogram for synthetic non-conditional simulations.

imulation algorithm Variogram range Hotelling statistics

urning bands 15 3.0394

60 4.3194

equential simulation 15 120.2051
60 815.0394

nificance level = 0.05, critical value = 12.0375. Bold numbers indicate

ection of the test.

. 2. (Color online.) Variogram reproduction for spherical variogram of range 15 and no nugget effect (left) and spherical variogram of range 60 and 30%

ative nugget effect (right). A, B. Turning bands. C, D. Sequential simulation.
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ericitization and chloritization, prevails in the area and
e mineralization mainly consists of pyrite, chalcopyrite,

phalerite, bornite, covelite, chalcocite, magnetite, hema-
te and limonite, distributed in oxide, leach, supergene
nd hypogene zones (Salehian and Ghaderi, 2010).

A data set has been obtained from an exploration
rilling campaign, where sample cores from 69 drill holes
ere analyzed for Cu (%), Mo (ppm), Ag (ppm), Pb (ppm),

nd Zn (ppm). For statistical analyses, the data have been
omposited at a regular length of two meters. The main
tatistics and experimental distributions of the analyzed
rades are presented in Table 4.

.2. Geostatistical modeling

The modeling stage consists of the following steps:

 in order to have representative distributions of the
original grade data, cell declustering is performed to
correct for the irregular sampling design (Pyrcz et al.,
2006);

 each grade variable is transformed into a standard
Gaussian variable (Deutsch and Journel, 1998). The
different Gaussian variables appear to be cross-correlat-
ed (Table 5), especially between copper and molybde-
num and between lead and zinc. These correlations can
be explained because of similar geochemical and
paragenetic properties in arc-related copper molybde-
num deposits (Taylor et al., 2012);

 the marginal binormality of the pairs of transformed
variables is validated by examining their scatter dia-
grams, which exhibit an elliptic shape (Fig. 3). In turn, the
spatial binormality of the transformed variables is
validated by checking that their experimental mado-
grams are approximately proportional to the square
roots of their experimental variograms (Fig. 4) (Emery,
2005);

 variogram analysis is performed on the transformed data
in order to model their joint correlation structure. Since
no obvious anisotropy was detected, omnidirectional
sample variograms were calculated and fitted with

isotropic models, using mixtures of six basic nested
structures: a nugget effect and isotropic spherical
models with ranges 30 m, 100 m, 150 m, 300 m, and
600 m, respectively. The fitting of the coregionalization

able 4

asic statistics of grade data (Dar-Alu deposit).

Variable Mean Standard deviation Minimum Lower quartile Median Upper quartile Maximum

Cu (%) 0.24 0.22 0.00 0.06 0.19 0.35 3.32

Mo (ppm) 48.18 83.00 0.00 11.61 29.31 58.18 3686.52

Ag (ppm) 0.56 0.63 0.00 0.18 0.41 0.75 22.73

Pb (ppm) 16.70 106.00 0.00 6.00 9.87 17.00 8564.29

Zn (ppm) 76.35 115.03 0.00 41.26 63.56 92.09 8016.48

able 5

xperimental correlation matrix for transformed (Gaussian) variables

ar-Alu deposit).

Cu Mo Ag Pb Zn

Cu 1

Mo 0.69 1

Ag 0.42 0.31 1

Pb 0.10 0.03 �0.17 1

Fig. 3. (Color online.) An example of scatter plot between Gaussian

variables (Cu vs. Mo).

Fig. 4. (Color online.) Experimental madograms of the Gaussian variables

as a function of their experimental variograms. In case of bivariate
Zn 0.33 0.05 0.12 0.43 1
normality, the points should be distributed along the thick solid line.
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matrices was achieved by recourse to a semi-automated
fitting algorithm (Emery, 2010; Goulard and Voltz,
1992). The results of the fitting are partially displayed
in Fig. 5. Positive semi-definiteness of the coregionaliza-
tion matrices (each of size 5 � 5) is imposed by the fitting
algorithm, which ensures the validity of the coregiona-
lization model.

. Joint simulation of grades

Cosimulation is performed on a regular grid with a
esh of 10 m � 10 m � 12 m. In both algorithms
quential and turning bands), simple cokriging is used

ith a moving neighborhood of horizontal radius 500 m
d vertical radius 250 m, containing up to eight original
ta points in each octant and, for sequential simulation,

 to eight previously simulated points in each octant, in
dition to the original data (one may therefore have up to

 selected points for turning bands and up to 128 selected
ints for sequential simulation, each point consisting of a

vector with five components). Furthermore, the same
conditioning data set (original drill hole data), Gaussian
transformation functions, direct and cross variogram
models and numbers of realizations (100) are considered
for both algorithms. Two variants are tested for sequential
simulation: full cokriging and collocated cokriging, as
explained in Section 2, in both cases using a multiple-grid
strategy with three nested grids. For turning bands, one
thousand lines are used, as in the synthetic case study.

In order to validate the results, the distributions of the
simulated grades are compared with the distributions of
original data, through quantile-quantile plots. It is
expected that, on average over many realizations, the
plots fit the diagonal lines, indicating an accurate
reproduction of the data distributions. This is what
effectively happens for the realizations obtained with
both turning bands and sequential simulation (Fig. 6).

To check that the realizations also reproduce the
dependence relationships between grades, one can calcu-
late the correlation coefficients between the Gaussian
transforms of simulated grades in each realization. It is

. 5. (Color online.) Sample (crosses) and modeled (solid lines) direct and cross variograms of Gaussian variables. For brevity, only the Cu–Mo cross-

riogram is displayed, which corresponds to the pair of variables with the highest cross-correlation, although the fitting has been achieved with all the

ss-variograms.

. 6. (Color online.) Quantile–quantile plots between original copper grades and simulated copper grades, for turning bands cosimulation (A), sequential
simulation with full cokriging (B) and sequential cosimulation with collocated cokriging (C).



e
e
C
s
s
In
r
c
c
li
e
v
ta

s
d

F

c

a

F

se

F

se

S. Paravarzar et al. / C. R. Geoscience 347 (2015) 84–93 91
xpected that these coefficients fluctuate around the
xperimental correlations (Table 5), for instance, 0.69 for
u-Mo. This situation happens for turning bands and
equential cosimulation with full cokriging, but not for
equential cosimulation with collocated cokriging (Fig. 7).

 the latter case, the correlations reproduced by the
ealizations are, on average, lower than the expected
orrelations. This bias can be explained because, in
omparison with full cokriging, collocated cokriging is
kely to discard many data of the covariates (Fig. 1), which
ntails a poor reproduction of the dependence between the
ariables to be simulated (proof in Appendix, supplemen-
ry data).

Another criterion for assessing the quality of each
imulation algorithm is to check the reproduction of the
irect and cross variograms of the simulated Gaussian

random fields. The results indicate that the direct
variograms are well reproduced by all the algorithms
(Fig. 8) and the cross variograms are well reproduced with
turning bands and, to a lesser extent, with sequential
simulation using full cokriging. In contrast, sequential
simulation using collocated cokriging leads to an inaccu-
rate reproduction of the cross variograms (Fig. 9), which
can be explained because, unless for very specific
coregionalization models, such a cokriging is usually a
poor approximation of full cokriging (Chilès and Delfiner,
2012; Rivoirard, 2001, 2004). To improve the reproduction
of the cross variograms with sequential simulation, an
alternative would be to follow the same workflow as for
turning bands (Section 2.2), i.e. to (i) factorize the target
vector random field, (ii) sequentially simulate the factors,
(iii) recombine the simulated factors and finally (iv)

ig. 7. (Color online.) Correlation coefficients between Gaussian random fields simulated with turning bands (A), sequential cosimulation with full

okriging (B) and sequential cosimulation with collocated cokriging (C). For brevity, only the correlation between copper and molybdenum is displayed. The

verage correlation is represented with a red line, while the true data correlation is represented with a blue line.

ig. 9. (Color online.) Cross variograms of Gaussian random fields simulated with turning bands (A), sequential cosimulation with full cokriging (B) and

ig. 8. (Color online.) Direct variograms of Gaussian random fields simulated with turning bands (A), sequential cosimulation with full cokriging (B) and

quential cosimulation with collocated cokriging (C). For brevity, only the variograms for copper are displayed.
quential cosimulation with collocated cokriging (C). For brevity, only the cross variograms between copper and molybdenum are displayed.
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ndition to the original data by cokriging. This would
oid using cokriging in the sequential simulation stage,
sofar as the factors would be simulated separately at step
), so that the errors due to a moving neighborhood
plementation would not propagate from one factor to
other one. Provided that the spatial correlation of the

ctors is accurately reproduced, so will be the direct and
oss variograms of the target vector Gaussian random
ld.

. Cross validation

The previous analyses allowed assessing the quality of
e simulation algorithm (turning bands or sequential) but

 not provide much insight into the chosen stochastic
odel (namely, a Gaussian random field model with the
atial correlation structure given by the variograms fitted

 Fig. 5). To corroborate the suitability of this model to the
ta, a leave-one-our cross-validation exercise is pro-
sed, which consists in cosimulating the grades at each
ta location, conditionally to the information available at
e other locations only, then in comparing the actual data
ades with the average of the simulated values (consid-
ed as the best prediction of the true grades) at the data
cations. For the sake of simplicity, the turning bands
orithm is used for cosimulation.
It is seen (Fig. 10) that, for each element, the average of
ulated grades fluctuates around the true data grade and

at the conditional regression between true and simulat-
 grades is close to the identity, which reflects conditional
biasedness (Rivoirard, 1987; Vann et al., 2003). These

sults indicate that the Gaussian model used to represent

the grade data is adequate in this case study, as the results
of simulation are in agreement with the actually observed
data.

5. Conclusions

This study aimed at assessing the performance of two
popular algorithms (turning bands and sequential) for
jointly simulating coregionalized variables, through a
synthetic case study (univariate) and a real case study
(multivariate) from a multi-element deposit. The algo-
rithms are fed with the same inputs: original conditioning
data and Gaussian transformation functions in the real
case study, variogram models, moving neighborhoods,
output grids and numbers of realizations. The only
differences are the use of previously simulated points in
sequential simulation and the use of a finite number of
lines in turning bands simulation, which is explained by
the specificities of each algorithm.

In both cases, turning bands accurately reproduces the
spatial correlation structure, measured by the direct and
cross variograms of the coregionalized variables under
consideration, while sequential simulation produces some
biases. Such biases are explained by a propagation of errors
caused by the use of a moving neighborhood to determine
the successive conditional distributions. This problem is
more severe in the multivariate case when using collocated
cokriging, in which case the reproduction of the cross
variograms turns out to be poor. Accordingly, the choice of
the simulation algorithm is relevant to accurately repro-
duce regionalized properties and the turning bands

. 10. (Color online.) Scatter plot between true data grades (ordinate) and predicted grades (abscissa) for (A) copper, (B) molybdenum, (C) silver, (D) lead

d (E) zinc. Predicted grades are calculated as the average of 100 realizations obtained with turning bands.
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lgorithm appears as an alternative of the sequential
lgorithm for the modeling of multi-element deposits.
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