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ntroduction

The Earth’s gravity field and (quasi)geoid can be
resented by a superposition of fields produced by the
ial Basis Functions (RBFs) (Barthelmes and Dietrich,
1). RBFs are functions of the spherical distance

ween two points. They have a quasi-compact support
 their response decreases rapidly with the distance

 their centre. Due to the characteristics of RBFs, they
w flexible treatment in the regional modeling. Many
dies have been done to evaluate the performance of RBF
roximation of the gravity field. The point-mass kernel
rthelmes and Dietrich, 1991; Lin et al., 2014), radial

multi-poles (Foroughi and Tenzer, 2014; Marchenko,
1998; Safari et al., 2014), Poisson wavelet (Tenzer et al.,
2012), and Poisson kernel (Klees et al., 2008) are examples
of applicable types of RBFs in gravity field modeling. The
quality of the gravity field and of (quasi)geoid models
parameterized by RBFs depends on the choice of the RBF
parameters and their number, and on the applied
procedure for solving the problem.

The RBF parameters include centres of RBFs, RBF
bandwidths (or depths), and scaling coefficients. Barthelmes
and Dietrich (1991) used a non-linear optimization algo-
rithm to fix the position of RBFs in a stable approach. They
claimed that optimization of the 3D configuration of RBFs
and their magnitudes at the same time minimized the
number of required RBFs for modeling. Weigelt et al. (2010)
and Safari et al. (2014) used the non-linear regularization
algorithm of Levenberg–Marquardt to optimize the 3D
position of RBFs. Weigelt et al. (2010) demonstrated that
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A B S T R A C T

Radial Basis Functions (RBFs) have been extensively used in regional gravity and

(quasi)geoid modeling. Reliable models require the choice of an optimal number of RBFs

and of their parameters. The RBF parameters are typically optimized using a regularization

algorithm. Therefore, the determination of the number of RBFs is the most challenging task

in the modeling procedure. For this purpose, we design a data processing scheme to

optimize the number of RBFs and their parameters simultaneously. Using this scheme, the

gravimetric quasi-geoid model can be validated without requiring additional information

on the quasi-geoidal geometry obtained from GPS/leveling data. Furthermore, the

Levenberg–Marquardt algorithm, used for regularization, is modified to enhance its

numerical performance. We demonstrate that these modifications guarantee the

convergence of the solution to the global minimum while substantially decreasing the

number of iterations. The proposed methodology is evaluated using synthetic gravity data

and compared with existing methods for validating the RBF parameterization of the

gravity field.
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they avoided an over-parameterization and yielded stable
observation equations by applying minimum number of
base functions. Safari et al. (2014) claimed that they
improved the model quality while reducing the number of
RBFs significantly. Since RBF bandwidths have a more
important effect on their spatial behavior, in many studies,
centres and bandwidths of RBFs were determined separately
by using different solver methods. Hardy and Göpfert (1975)
estimated the best depth of base functions based on the
number of RBFs and the extent of the study area on a sphere.
Marchenko (1998) located the radial multi-poles below data
points and optimized their horizontal locations using the
sequential multi-pole algorithm. He determined the depth
and order of each radial multi-pole whenever the covariance
function of the signal in the vicinity of data point was rather
matched to the shape of base functions. Klees and Wittwer
(2007) and Klees et al. (2008) designed a data adaptive
method to fix the centres and depths of RBFs. They located
the RBFs in equiangular grids and used the generalized cross-
validation technique to evaluate the depths as a function of
signal variation and data distribution. Tenzer and Klees
(2008) investigated the performance of the RMS minimiza-
tion technique as an alternative to the generalized cross-
validation technique in the optimization of the RBF depths.
They found that both techniques provide very similar
results; however, they showed that the generalized cross-
validation technique is less efficient than the RMS minimi-
zation technique in the processing of large datasets.

The determination of the optimal number of base
functions is a fundamental task in the gravity field
approximation with RBFs. Selecting too many RBFs causes
an over-parameterization, while a low number of RBFs
cannot model the signal variations properly. The number
of RBFs depends on the applied procedure for solving the
unknown parameters; optimizing the 3D position of RBFs
simultaneously by using a non-linear solver method can
reduce their number (see Barthelmes and Dietrich, 1991;
Safari et al., 2014) while using different solver methods for
optimizing the centres, depths, and magnitudes requires
more RBFs (see Klees et al., 2008; Tenzer and Klees, 2008).
Almost in all studies related to RBF parameterization of the
gravity field, the focus was given only to the optimization
of unknown parameters, while the number of RBFs was
determined empirically or with the use of different types of
gravimetric data. Tenzer and Klees (2008) suggested that
the number of RBFs should be at least 20–30% of the
number of observations in flat to hilly regions. In
mountainous regions, Tenzer et al. (2012) found a typical
number of 70% for this ratio. However, they demonstrated
that applying topographic corrections to the gravity data
reduces this number to about 30%. They also claimed that
after finding a suitable number of RBFs, adding more RBFs
does not have a significant effect on the model’s accuracy.
Safari et al. (2014) used different types of gravimetric data
at the same time to find the optimal number of RBFs. They
claimed that in gravity field modeling with RBFs using
gravity anomalies as input data, the number of RBFs can be
considered as a function of the RMS of residual height
anomalies. However, they did not offer an empirical
methodology, but the disadvantage of this method is

validation of the obtained results, which might not be
always available.

In the inversion of gravity data to the quasi-geoid model
using RBFs, a systematic bias between the geometric
height anomalies (observed at GPS/leveling points) and
gravimetric height anomalies (modeled by RBFs) is
inevitable (Foroughi and Tenzer, 2014). Klees et al.
(2008), for instance, reached a large bias of about 0.5 m.
This bias might be the result of achieving a local minimum
solution on gravity data and not the global one, and can be
minimized by applying a reliable data processing ap-
proach. In this study, a data processing scheme is designed
to justify the 3D position of RBFs and their magnitudes,
while it simultaneously optimizes the number of base
functions. This strategy is proposed based on the direction
of the changes in parameters and spectral content of
gravimetric signal. In this methodology, the Levenberg–
Marquardt algorithm is chosen as the non-linear optimi-
zation method that was proposed by Marquardt
(1963). The solution of this algorithm might converge to
a local minimum and may not necessarily be the global
minimum. However, most of the iterative regularization
methods are sensitive to the initial values of unknown
parameters and appropriate initial values can minimize
this effect (Ortega and Rheinboldt, 1970). For this purpose,
the RMS minimization technique is utilized to find the
proper initial values of RBF depths, while the RBF centres are
initialized in equiangular grids. It is worth mentioning that
the Levenberg–Marquardt algorithm has been widely used
in the gravity field modeling with RBFs (for instance, see
Foroughi et al., 2013; Safari et al., 2014; Weigelt et al., 2010).
In these studies, the regularization parameter was initial-
ized with an arbitrary constant value and sequentially
updated by a constant factor, which increased the number of
iterations significantly. In order to improve the performance
of the proposed data processing scheme, we modify the
Levenberg–Marquardt algorithm by providing an appropri-
ate formula for the initialization of the regularization
parameter and suggesting a specific updating rule for this
parameter. In order to evaluate the performance of the
proposed methodology, synthetic gravity anomaly data
are utilized for the implementations. For the localization of
the gravity observations required for a regional modeling,
the Remove-Compute-Restore (RCR) technique is applied to
subtract the global effect of the gravity field before
computations and restore it after finding the solution.
Based on the numerical experiments, the following refine-
ments are achieved due to the proposed data processing
strategy and applied modifications to the optimization
algorithm:

� achieving a reliable approach on choosing the optimal
RBF parameters and their optimal number;
� obtaining an accurate approximation of the quasi-geoid

model;
� reducing the systematic bias between geometric and

gravimetric height anomalies to a few centimeters;
� obtaining all the results after several iterations.

This paper is organized in six sections. In Section 2, the

RBF parameterization is described in the context of gravity
that it requires different types of gravimetric data for
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d modeling. The optimization algorithm and suggested
difications are described in Section 3. In Section 4, a
a processing scheme is designed to optimize the
tion of the ill-posed problem. Section 5 presents

ults of numerical experiments. The summary and
clusions are given in Section 6.

BF parameterization of the Earth’s gravity field

The disturbing potential is a harmonic function outside
 Earth’s surface. Based on the Runge–Krarup theorem, a
ular harmonic function outside the Bjerhammar sphere
h the radius R can be expanded into a linear
bination of non-orthogonal base functions. In other

rds, instead of the main fundamental solution of
lace’s equation, the superposition of a set of non-
tral fundamental solutions can represent the disturbing
ential (Marchenko, 1998):

Þ ¼
XN

n¼1

anc x; ynð Þ (1)

ere T(x) is the disturbing potential evaluated at the
ervation point x, an are the scaling coefficients, c x; ynð Þ

 the non-central fundamental solutions called Radial
is Functions (RBFs), and yn denotes the 3D position of
s with spherical coordinates (r, w, l). The horizontal
rdinates of RBFs (w, l) are called RBF center, their
tical coordinate (r) is called RBF bandwidth, and d = R – r

nown as the depth below the Bjerhammar sphere. The
endre polynomial expansion of RBF kernels is expres-
 as follows (Klees et al., 2008):

; ynÞ ¼
X1
k¼0

ck

2k þ 1

4PR2

R

xj j

� �kþ1

Pk xT yn

� �
(2)

ere Pk is the Legendre polynomial of degree k, and ck

cifies RBF type. Different types of RBFs were described
Wittwer (2009).
Any linear functional of the disturbing potential can be
ressed in terms of RBFs. The gravity anomaly Dg is a
ar functional of the disturbing potential that is
uently used in regional gravity field modeling (Moritz,
0):

xð Þ ¼ @T xð Þ
@ xj j �

2

xj j T xð Þ (3)

odification of the Levenberg–Marquardt algorithm

Gravity field modeling with RBFs is a non-linear ill-
ed problem that requires a regularization method to
ain a reliable solution. The Levenberg–Marquardt
orithm is an efficient damping method for finding an
imal least-squares solution for non-linear problems.

 solution of this algorithm, which is obtained in an
ative procedure, is expressed as follows (Tyagi, 2011):

¼ � H þ m diag Hð Þð Þ�1J xkð ÞTr xkð Þ (4)

ere xk is the vector of unknown parameters, Dxk is the
tor of changes in parameters at the kth iteration, J(xk) is

the Jacobian matrix, H = J(xk)TJ(xk) is the Hessian matrix,
r(xk) is the vector of residuals defined as the difference
between observations and their predicted values, and m is
the regularization parameter. At each step, the regulariza-
tion parameter must be updated. The updating rule is
based on the output errors. In general, if the error goes
down following an update, m is decreased by a specific
constant factor. Otherwise, if the error increases following
an update, m is enlarged by the same factor. In order to
enhance the numerical performance of the Levenberg–
Marquardt algorithm, this optimization method is modi-
fied by means of suitable initialization of the regularization
parameter and suggesting a specific updating rule for this
parameter. The initial value of the regularization parame-
ter can be determined as follows (Gavin, 2013):

m ¼ m0 max diag J x0ð ÞTJ x0ð Þ
� �� �

(5)

where J(x0) is the Jacobian matrix evaluated with the initial
parameters x0, and the factor m0 is an arbitrary constant
value. In the Levenberg–Marquardt algorithm, the amount
of damping affects the behavior of the system of
observation equations. Therefore, a specific updating rule
for the regularization parameter is proposed as follows. If
the error of the outputs decreases following an update, the
regularization parameter is updated according to the
following formula (Gavin, 2013):

mkþ1 ¼ mk max b0; 1� 2Pk�1ð Þ3
h i

(6)

rk¼ a0

where b0< 1 and a0 are user-specified constant values,
and:

Pk ¼
e xkð Þ�e xk�1ð Þ

s2
k

(7)

where e(xk) is the summation of the squares of residuals,
and s2

k denotes the summation of changes in parameters
and residuals defined as follows:

s2
k ¼ 2DxT

k mDxk þ J xkð ÞTr xkð Þ
� �

(8)

On the other hand, if the output error increases
following an update, the regularization parameter is
updated as follows:

mkþ1 ¼ rk mk; rkþ1 ¼ a0rk (9)

4. Data processing scheme

The data processing strategy is designed based on the
spectral content of the gravimetric signal and on the
variations of the RBF parameters. The signal variations
have a direct effect on the number of base functions;
obviously, high-frequency signal variations require more
RBFs. In addition, the non-linear solver method must be
stopped at the right moment, that is, whenever the error of
parameters starts to increase (Engl and Kugler, 2005).
According to this fundamental task, it can be concluded
that the minimum value of parameters’ error corresponds
to the optimal set of base functions. This optimal set
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consists of the optimum 3D positions of RBFs and their
magnitudes, and the optimal number of base functions. For
this purpose, Eq. (8), which is defined as the summation of
changes in parameters and residuals, is proposed as a
special criterion to control the process of RBF selection.
Data processing starts with a coarse grid network of RBFs,
and this network becomes denser gradually until the
optimal solution is attained. Therefore, the approximation
technique is not only done by optimizing the 3D positions
and magnitudes of RBFs, but also by selecting a sufficient
number of base functions according to the signal contents
and parameters. The proposed scheme consists of the
following four steps.

Step 1: The residual gravity anomaly is considered to
set the system of observation equations. The residual
gravity anomalies are obtained after subtracting the
reference gravity field up to degree/order of L.

Step 2: For a RBF network of N grids, the Levenberg–
Marquardt solution is computed in an iterative procedure
via Eq. (4). The stopping condition for the iterative
algorithm is defined according to s2

k in Eq. (8). If this
criterion goes down following a step of iteration, the
regularization algorithm is repeated with the same RBF
network. Otherwise, if it increases in the following
iteration, the optimization algorithm stops and the process
will continue to step 3.

Step 3: In this step, the number of grids in the RBF
network is increased to N + 1 and the Levenberg–Mar-
quardt solution is computed iteratively. Then, s2

k related to
the last iteration of this step and the previous one are
compared to each other. If the value of s2

k is decreased, step
3 will be repeated with a denser RBF network. Otherwise,
the solution related to the network with a lesser number of
RBFs is chosen as the optimal solution, and the optimi-
zation procedure stops. Finally, the obtained optimal
solution is applied to start step 4.

Step 4: In this step, the quasi-geoid heights at the
observations points are computed. First, the residual
disturbing potential of the observation points are comput-
ed using the optimal least-squares solution obtained in
step 3. Then, the reference disturbing potential is
computed up to degree/order of L at the same points.
Finally, the disturbing potential is computed as a sum of
the residual and reference disturbing potential, and quasi-
geoid heights are computed via the Bruns formula.

5. Numerical experiments

The optimal gravity field and quasi-geoid modeling
with RBFs is investigated based on the proposed data
processing scheme and on the modifications applied to the
Levenberg–Marquardt algorithm. The study area is situat-
ed between 528 < l < 588 and 288 < w < 348 in Iran. The
topographic heights are retrieved from the ACE2 Global
Digital Elevation Model (SRTM 2) dataset with a spatial
resolution of 2.5 � 2.5 arcmin. The topographic heights at
the study area vary from 152.56 to 3963.09 m (Fig. 1). The
gravimetric dataset consists of 21,006 synthetic surface
gravity anomalies computed with a spectral resolution
complete to degree/order of 2160 using the EGM2008

obtained after removing the long-wavelength part of the
gravity field from the original data (see Fig. 2). The
reference gravity field is computed up to degree/order of
360 using the same geo-potential model. All the residual
gravity anomalies are disturbed by the white Gaussian
noise with the STD of about 0.5 mGal. Nine hundred and
seventy-six independent points are considered as the
gravity control points for the implementation of RMS
minimization technique and avoiding over-parameteriza-
tion. In addition, the gravimetric height anomalies at
40 independent points are synthesized using the EGM2008
up to degree/order of 2160. These height anomalies are
used to evaluate the accuracy of the gravimetric quasi-
geoid model parameterized by RBFs.

Fig. 1. Topographic map of the study area.
Fig. 2. Residual gravity anomaly map of the study area.
harmonic coefficients. The residual gravity anomalies are
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Due to numerical simplicity of the Newtonian point-
ss kernel for gravitational potential, this kernel is
sen as RBF to investigate the capability of the proposed
thodology. The analytical form of point-mass kernel is
ressed as follows (Wittwer, 2009):

; ynÞ ¼ 1

x�ynj j (10)

ere x�ynj j is the Euclidean distance between the
ervation point x and the nth point-mass yn. In the
erical coordinate system, this Euclidean distance is
ned as follows (Lin et al., 2014):

ynj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xj j2 þ ynj j

2�2 xj j ynj jcosu
q

(11)

ere u is the spherical distance between the observation
nt and point-mass that is defined as:

u ¼ sin’ sin’n þ cos’ cos’n cos l�lnð Þ (12)

ere xj j; ’; lð Þ is the spherical coordinates of the
ervation point (radius, latitude and longitude), and
; lnÞ is the center and ynj j is the bandwidth of RBF
lized at the nth point-mass.

In order to solve the non-linear problem of gravity field
deling parameterized with RBFs, the unknown param-
rs are initialized as follows:

BF centers: the positions of the RBF centres depend on
e size of the study area, the spectral content of

ravimetric data, the distribution and density of the
bservations. For a homogeneous data distribution, the
itial locations of RBF centres can be set in an

quiangular grid network;
BF bandwidths or depths: the depths of RBFs depend
n the type of RBFs, the horizontal configuration of RBFs,
e spectral content of gravimetric data and the variation

f topographic heights. Larger depths are expected for
e coarser RBF grids. Areas with high altitudes that have

igh-frequency signal variations can be recovered by
calizing smaller depths. The numerical experiments
ow that the accuracy of the gravimetric models

epends on the choice of the initial values of the depths.
or a specific RBF network, depths vary less than several

millimeters during the iterative optimization procedure.
The initial values of the RBF depths can be considered the
same and chosen based on the RMS minimization
technique (Tenzer and Klees, 2008). In this method,
the RMS of the differences between the observed and
predicted gravity data is computed at the control points.
If initial values of the RBF depths are chosen properly, the
minimum RMS is obtained at these control points. In this
study, the proper initial value of the depth is about
6.5 km below the Bjerhammar sphere;
� Scaling coefficients: these parameters specify the

magnitude and contribution of each RBF in the recovery
of gravity observations. If the initial 3D positions of RBFs
are chosen, the initial values of the scaling coefficients
can be determined using a linear least-squares adjust-
ment.

The data processing scheme starts with a coarse grid
network of RBFs with the 10 arcmin grid size consisting of
1369 base functions. Then, the RBF grid is gradually made
denser. Due to the modifications applied to the optimi-
zation algorithm, the number of iterations reduces
significantly and all the results are obtained after at most
33 iterations (Table 1). Based on the designed data
processing strategy, it is expected that adding more RBFs
yields smaller values of s2

k in Eq. (8), but after selecting a
specific number of RBFs, adding more RBFs causes this
quantity to start to increase. This specific number of RBFs
corresponds to the optimal number of base functions and
optimal RBF parameters. As seen in Fig. 3 (see also Table 1),
a network of 1764 RBFs provides the optimal solution. In
order to validate the results of the proposed approach, it is
compared to the existing methods. Based on the trial-and-
error approach proposed by Safari et al. (2014), the
minimum RMS of residual height anomalies is the result
of an optimal number of RBFs. Fig. 4 shows the RMS of
residual height anomalies as a function of the number of
RBFs. The corresponding numerical results are shown in
Table 1. As can be seen, the use of 1764 RBFs gives the
minimum RMS at the height control points. Therefore, the
reliability of the proposed optimization methodology is
confirmed by the approach of Safari et al. (2014). An
important advantage of the proposed methodology is,

le 2

istics of heights anomalies at control points.

Min Max Mean STD

asi-geoid height (m) –17.130 –2.980 –8.943 3.994

ight anomalies modeled using RBFs (m) –17.101 –2.918 –8.928 3.993

le 1

parison of different methods used to validate the RBF parameterization of the gravity field with the proposed methodology.

. of RBFs 1369 1444 1521 1600 1764 1849 1936 2025 2116 2209 2304

. of iterations 28 32 33 29 31 32 32 33 28 31 29

(�10�6) 12.730 6.546 0.727 0.382 0.026 0.081 0.194 0.477 0.606 0.869 2.302

S of residual height anomalies (m) 0.125 0.069 0.066 0.034 0.022 0.043 0.047 0.063 0.066 0.072 0.075

S of least-squares residual gravity

anomalies (mGal)

5.103 3.147 1.953 1.366 0.901 0.842 0.792 0.773 0.740 0.710 0.671
sidual height anomalies (m) –0.092 0.017 –0.016 0.022
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however, that the validation of the parameterized gravity
field model does not require different types of data, namely
the GPS/Leveling information. If we define the least-
squares residual gravity anomaly as the difference
between the observed and predicted residual gravity
anomalies with RBFs, it can be seen that after selecting
the optimal number of RBFs, adding more RBFs has no
significant effect on the RMS of the least-squares residuals,
and the RMS changes are less than 0.1 mGal (see Fig. 5 and
Table 1). Based on the optimal solution, the residual gravity
anomalies are approximated with the accuracy of
0.9 mGal. The least-squares residual gravity anomaly
map is presented in Fig. 6. The gravimetric quasi-geoid
model is determined with the accuracy of 2.2 cm at the

Fig. 6. Least-squares residual gravity anomalies (mGal); min = –7.44,

max = 8.73, mean = –0.0005, STD = 0.901.

Fig. 4. RMS of residual height anomalies (m) as a function of the number

of RBFs.

Fig. 3. Variation of s2
k as a function of the number of RBFs.

Fig. 5. RMS of least-squares residual gravity anomalies (mGal) as a
Fig. 7. Gravimetric quasi-geoid model of the study area (m).function of the number of RBFs.
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ght control points, and no-significant bias is observed in
se points (Table 2). The gravimetric quasi-geoid model
he study area is shown in Fig. 7.

ummary and conclusion remarks

In order to optimize the non-linear problem of gravity
d and quasi-geoid modeling with RBFs, we designed a
cific data processing scheme using the Levenberg–
rquardt algorithm as the regularization method. Due to

 simplicity of the point-mass kernel, this kernel was
sen as RBF to investigate the performance of the
posed strategy. In order to improve the performance of

 designed processing scheme, we considered some
es: two modifications were applied to the Levenberg–

rquardt algorithm, and proper initial values of RBF
ameters were provided. We modified the Levenberg–
rquardt algorithm through suggesting a novel formula
nitialize the regularization parameter, and proposing a
cific updating rule for this parameter. Proper initial
ues of the RBF centres were selected in an equiangular
. The RBF bandwidths were initialized based on the

S minimization technique, in which the minimum RMS
least-squares residual gravity anomalies at control
nts is the result of properly selected depths. Considering

 initial values of the 3D positions of RBFs, the initial
ues of scaling coefficients were determined by applying
near least-squares adjustment. The reliability of the
posed data processing strategy was confirmed with
vious methods for finding the best number of RBFs.
ally, we found the regional gravity field model with a

dard deviation of 0.9 mGal, and the gravimetric quasi-
id model with a standard deviation of 2.2 cm.
Compared to the previous methods, some of the most
ortant advantages of the methodology proposed in this

dy are that:

e found that 8.4% is the ratio between the number of
BFs and the number of observations in our study area,
hich comprises a rough mountain terrain. This low
umber of applied RBFs improved the time efficiency of
mputations significantly;
e provided a novel approach to initializing the RBF and
gularization parameters. Therefore, the probability of
nvergence of the solution to the global minimum was

nhanced while reducing the number of iterations
gnificantly, and thus, increasing numerical efficiency;

� we proposed a reliable validation technique based on our
data processing scheme in which the gravimetric quasi-
geoid model is validated without requiring any external
information about the Earth’s geoid, such as the GPS/
leveling data that might not be always available.
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