
Te

P

G
A
Ca
a U
b B
c D
d U
e In
f U
g U

1.

cr
Ea
se
ne

C. R. Geoscience 348 (2016) 194–202

A 

Art

Re

Ac

Av

Ha

Ke

Py

Ero

Pe

Mo

Iso

Lit

*

Ca

htt

16

cre
ctonics, Tectonophysics

eneplanation and lithosphere dynamics in the Pyrenees

emma V. Bosch a,b,*, Jean Van Den Driessche a, Julien Babault c,
lexandra Robert d, Alberto Carballo e, Christian Le Carlier a, Nicolas Loget f,
roline Prognon b,g, Robert Wyns b, Thierry Baudin b
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epartament de Geologia, Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain
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 Introduction

Moving plate tectonics and deep mantle dynamics
eate uplift and subsidence of the Earth’s surface, whereas
rth’s surface processes, namely erosion, transport and
dimentation, tend to counteract these positive and
gative vertical movements. Uplift (or subsidence) has

two origins: isostasy that is controlled by the difference
between crustal and mantle densities, and dynamic
topography that is controlled by mantle dynamics (e.g.,
Molnar and Houseman, 2013). Wavelength and elevation
changes for local isostasy are respectively of several tens to
hundreds kilometers and up to several kilometers, whereas
for dynamic topography they are typically of several
hundred to thousand kilometers, and several hundred
meters up to one kilometer, respectively (e.g., Braun,
2010). Whether or not surface uplift equates to rock uplift
depends on whether or not erosion is active (England
and Molnar, 1990). As surface uplift is controlled by crust
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A B S T R A C T

The morphology of the Pyrenees is characterized by the presence of high-elevation, low-

relief surfaces. The origin of these Lower-Miocene surfaces is still debated. Two major

interpretations have been proposed, both assuming that these surfaces are remnants of a

single composite planation surface. The first interpretation proposes that this surface

corresponds to a peneplain developed near sea level before the Late Miocene,

subsequently uplifted and dissected. The present-day Pyrenees is therefore supposed

to rise from the Late Miocene. In the second interpretation, the rise of the efficient base

level of the chain induced the progressive inhibition of erosion and the smoothing of the

relief before the Late Miocene, resulting in a highly elevated peneplain. According to this

latter interpretation, the high elevation of the low-relief surfaces does not equate to post-

orogenic uplift. We test these two interpretations by investigating, among other

considerations, the relation between the elevation of the planation surface remnants

and the deep structure of the chain. We find that (1) the isostatic compensation of the

dissected Pyrenean planation surface by crustal thickening and (2) the absence of thinning

of the lithosphere mantle below the chain favors the second interpretation.

� 2015 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
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nd/or mantle dynamics, the resulting elevation change
ust be considered in terms of mean elevation at a
inimum area of a thousand of square kilometers (e.g.,

ngland and Molnar, 1990). In a general way, crustal
ickening causes surface uplift. The growth of a mountain

elt by crustal thickening requires a rate of erosion much
wer than the rate of rock uplift. When increasing erosion

ate tends to equate to rock uplift rate, a dynamic
quilibrium occurs once the mountain belt has risen.
rustal thinning will result in surface lowering that can be
artially compensated for by sedimentation and/or by
oncomitant thinning of the lithospheric mantle. Extreme

inning of the continental lithosphere inevitably causes
urface lowering below sea level. Only thinning of the
thospheric mantle and its concomitant replacement by
ss dense asthenospheric mantle can produce surface
plift when crustal thickness is kept constant. So, any
ttempt to determine the evolution of the topography
equires investigating both Earth’s surface and deep
rocesses at the origin of the relief (e.g., Casas-Sainz and
e Vicente, 2009; Molnar et al., 2015). The Pyrenees is an
mblematic example: how the topography of the belt has
hanged over time and what were the deep processes
volved is highly debated.

The Pyrenees are classically described as an intraconti-
ental orogen that results from the inversion of a
ontinental rift during the convergence between Eurasia
nd Africa (Choukroune et al., 1990; Muñoz, 1992). Beyond
e considerable debate that is currently concerned with
e width of this rift that developed during the Cretaceous

nd resulted in mantle exhumation (Jammes et al., 2009;
agabrielle and Bodinier, 2008), no doubt exists that
rustal thickening was at the origin of the Pyrenees uplift
uring Eocene and Oligocene times. Indeed, the Moho
eneath the central Pyrenees reaches a depth of about
0 km (Chevrot et al., 2014; Choukroune et al., 1990).

The ‘‘Pyrenees’’ geographic and geomorphologic labels
iffer from the Pyrenean orogen (‘‘tectonic’’ Pyrenees). The
yrenean orogen extends from the Cantabric Range in
orth-western Spain to the west, to Provence in south-
astern France to the east. The initial chain was about
000 km in length, whereas the geomorphologic Pyrenees
re only 400 km in length. The disappearance of the
yrenean orogen below the Mediterranean is due to the
ctonic collapse of the former during considerable
ligocene to Aquitanian crustal and lithospheric thinning

 the Gulf of Lion margin and subsequent oceanic
ccretion in the NW Mediterranean (Séranne et al.,
995). This event succeeds the continental rifting that
eveloped in Western Europe from the Oligocene. It also
ffected the easternmost part of the geomorphologic
yrenees. We refer hereafter the geomorphologic Pyrenees

 the Pyrenees.

. The high-elevation, low-relief erosional surfaces in
he Pyrenees

The most striking feature of the Pyrenean morphology
 the occurrence at high elevation of low-relief erosional

urfaces, which are considered as remnants of a single
omposite planation surface recently dissected (Babault

et al., 2005; Calvet, 1996; de Sitter, 1952; Kleinsmiede,
1960; Zandvliet, 1960). This planation surface erodes the
Pyrenean tectonic structures and is locally overlapped by
Upper Miocene continental deposits in the Val d’Aran and
Cerdanya, providing an upper limit age for its development
(Cabrera et al., 1988; Roca, 1996; Ortuño et al., 2008, 2013;
de Sitter, 1953). The high-elevation, low-relief surfaces
form smooth reliefs paradoxically situated at crest zones
up to �2800 m asl in the Axial Zone of the Pyrenees (Fig. 1).
They occur irrespective of lithology, mainly granitic rocks
and micaschists. Typically, the slope along these surfaces
does not exceed 208. Depending on their altitude in the
chain, they are more or less disrupted by glacial erosion.
Within the high-elevation, low-relief surfaces, glacial
erosion produces excavation surfaces, easily identifiable
by their concave-up geometry, their steep slopes and their
marked roughness. To reconstruct the Pyrenean planation
surface, we analyzed and mapped several remnants of this
surface and we used literature data to compile a regional
map (Babault et al., 2005; Calvet, 1996; Kleinsmiede, 1960;
Ortuño et al., 2008; Zandvliet, 1960). Then we used an
automatic method of landform classification called TPI
(Topographic Position Index; Jenness et al., 2013; Weiss,
2001) to map these remnants across the Axial Zone of the
Pyrenees.

The Weiss method uses digital elevation models to
measure the difference between the elevation of each cell
and the mean elevation with a variable radius of
calculation. The variation of the radius, the TPI type and
the slope permit to distinguish different landforms in the
landscape. We use 25-m resolution DEMs from the French,
the Spanish and the Andorran Geographical Institutes,
allowing us to detect areas down to 500 m2. TPI type, TPI
radius and slope were determined from surfaces previous-
ly mapped by field investigations. We have developed the
methodology. It will be the subject of another publication.
The applied methodology results in a limit between the
remnants of the planation surface and glacial landforms
more consistent and regular than using traditional
interpretative mapping (Fig. 1). We then verify on the
field the existence of the surfaces identified by the Weiss
method, which were not previously mapped.

Fig. 2a shows the pervasive occurrence of the remnants
of the Pyrenean planation surface in the Axial Zone.
Hypothesizing that these surfaces are the remnants of a
single paleosurface of planation, we tentatively restore this
latter by interpolating the neighboring remnants (Fig. 2b).
The resulting surface is gently undulating with a mean
elevation of about 2400 m. Local relief does not exceed
300 m (Fig. 2c). This surface can therefore be described as a
high peneplain (Davis, 1899; King, 1953). Note that the
mean elevation of the restored planation surface is
some hundred meters higher than the mean elevation of
the present-day topography.

3. Moho depth and deep structure in the Pyrenees

The first works on the Moho depth below the Pyrenees
(Choukroune and ECORS Team, 1989; Daignières et al.,
1982; ECORS Pyrenees team, 1988; Roure et al., 1989;
Souriau and Granet, 1995; Vacher and Souriau, 2001)
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ve revealed the presence of a crustal root that
rresponds to the thickening of the Iberian crust during
e incipient subduction of the Iberian lithosphere
low the European lithosphere. Recent studies coupling
ceiver functions and local tomography investigation
ve provided more accurate images of both the crustal
d lithospheric structures below the Pyrenees (Chevrot

 al., 2014).
In order to compare independently geophysical approa-

es for the calculus of the depths of the Moho and of the
se of the lithosphere, we present a new geophysical
odeling using topographic data and geoid anomaly
gether with thermal analysis in a 1D approach (Fullea

 al., 2007; Robert et al., 2015). Topographic and
thymetric data are extracted from the ETOPO1 database
mante and Eakins, 2009) and the geoid anomaly from
M2008 global model (Pavlis et al., 2008). In order to
oid sub-lithospheric density variations, we filtered the
oid so that the signal corresponding to the lower
herical harmonics until degree and order 10 is ruled
t. Our modeling approach assumes that (1) local isostasy
verified, considering a depth of compensation of 300 km,
d (2) the system is in thermal equilibrium. It also
nsiders a four-layered density model composed of
mosphere/sea water, crust, lithospheric and astheno-
heric mantle. The crustal density linearly increases with
pth, and the density of the lithospheric mantle is
mperature dependent.

Fig. 3 shows three models involving variable crustal
nsities (Table 1). We compare the Moho depths with the
taset from Chevrot et al. (2014), which involves recent
ceiver functions data and reflection–refraction profiles
m France and Spain (see references in Chevrot et al.,
14). We perform a new interpolation of the Moho
rface from Chevrot et al.’s dataset, using the 3D GOCAD
odeler (Mallet, 2002). This interpolation reveals the main
ttern of the Moho surface, avoiding short wavelength
riations (Fig. 3).
The three models are in agreement with the Moho

pth determined from the dataset of Chevrot et al.
014). We observe that the mean elevation of the
renees is generally compensated by crustal thickening,

 that the variation of elevation across the chain matches
at of the Moho depth. Similarly, the base of the
hosphere parallels the Moho surface, and does not show
y anomalous thickening or thinning that could trigger
e mean elevation of the chain.
In the easternmost Pyrenees, the Moho and the

hosphere–asthenosphere boundary rises progressively
hereas the mean elevation of the chain decreases.
hospheric thinning increases offshore in relation with
e opening of the Gulf of Lion (e.g., Séranne, 1999). In this
ea, there is a misfit between our models and the data set

 Chevrot et al. (2014) that does not exceed 5 km. Whether
is misfit has to be related to the error inherent to both
ethods (Gómez-Ortiz et al., 2011; Molnar et al., 2015)
mains to be determined. Our density model for the crust
probably not fully pertinent in this area where the thick
ogene sedimentary cover makes the mean crustal
nsity lower than in the rest of the Pyrenees. To what
tent this affects the results of our modeling is to

evaluate. Further investigation, especially 2D and 3D
modelling, is needed to improve the fit (work in progress).

4. Discussion

The above considerations about the ‘‘Pyrenees’’ labeling
highlight the prominent part played by isostasy on the
surface expression of the Pyrenean orogen as a whole. We
argue here that isostasy, and not mantle dynamics, is
responsible for the occurrence of low-relief erosional
surfaces at high elevation in the Pyrenees.

Low-relief erosional surfaces are considered to be
produced by long-term erosional processes that result in
the peneplanation near sea level of earlier reliefs such as
mountain belts (Davis, 1899). Thus low-relief surfaces at
high elevation at the Earth surface are classically inter-
preted as a result of a surface uplift (e.g., Chorley et al.,
1973; Davis, 1899; de Sitter, 1952; Farı́as et al., 2008;
Hetzel et al., 2011; Phillips, 2002). Uplift generates relief
rejuvenation so that these surfaces appear as relics of a
dissected peneplain. Mantle dynamics is required to
trigger surface uplift because these relics appear rather
flat and not deformed, while considerable crustal thicken-
ing would inevitably induce their folding and faulting. A
major consequence of such an interpretation is the lack of
crustal root together with an extreme thinning of the
lithospheric mantle below these surfaces (Fig. 4a). In the
eastern Pyrenees a similar interpretation involving a near-
2000-m post-orogenic uplift has been proposed for the
high altitude of these low-relief surfaces (e.g., de Sitter,
1952; Gunnell et al., 2008).

The present preliminary results show that these
surfaces are ubiquitous in the Pyrenees. Their interpolation
at the scale of the chain suggests that they are remnants of
a single, gently undulating planation surface. The elevation
variation of the latter follows that of the present-day mean
topography, which appears to be in isostatic equilibrium.
We do not find any crustal overcompensation of the
elevation of the chain as previously suggested (Vacher and
Souriau, 2001) or anomalous thinning of the mantle
lithosphere to explain the elevation of the planation
surface in the eastern Pyrenees (Gunnell et al., 2008). Our
results therefore contradict the hypothesis of peneplana-
tion near sea level, and subsequent uplift due to mantle
dynamics (Fig. 4a).

The difference in altitude between the restored plana-
tion surface and the present-day mean topography of the
Pyrenees is explained by the isostatic rebound due to the
dissection of the former (Babault et al., 2005). This
difference in altitude stems from the fact that our
restoration ignores the isostatic rebound consecutive to
recent dissection of the planation surface (Babault et al.,
2005).

Additionally, the present-day level of erosion in the
central and eastern Pyrenees also disagrees with the
hypothesis of peneplanation near sea level. The pene-
planation of an initial mountain belt with a mean altitude
of 2000 m asl would require to remove by erosion a crustal
thickness of about 12 km. The rocks exposed along the
peneplanation surface would therefore show a metamor-
phic imprint corresponding to a minimum burial of 12 km.



Fig. 1. (Color online.) Examples of high-elevation, low-relief surfaces in the Axial Zone of the Pyrenees. Field examples (left) and corresponding topographic

maps (right) (location in Fig. 2). Top: Pla d’Envalira (Andorra) (2500 m asl); middle: Pla de Boldis (Cardos Valley) (2500 m asl); dashed line: ECORS profiles;

bottom: Pla de Prüedo (Val d’Aran) (2000 m). These surfaces have been previously mapped by Kleinsmiede (1960), Zandvliet (1960), Calvet (1996), and

Ortuño et al. (2008). The color in surfaces represents its elevation.
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Fig. 2. (Color online.) The planation surface of the Pyrenees. A. Top: map of the different remnants of the Pyrenean planation surface; bottom: map of the

planation surface obtained by the interpolation of neighboring remnants using GOCAD 3D modeler. B. East–west and north–south profiles of the restored

planation surface (red). Thick black lines: mean elevation.
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he Hercynian basement in both the central and eastern
yrenees show a remarkable similar metamorphic zona-
on (e.g., Carreras and Capella, 1994) that reveals a similar
vel of erosion. To our knowledge, there is presently no
ata to support a differential 12-km crustal thickening

during Pyrenean tectonics between the central and eastern
Pyrenees. So in the easternmost Pyrenees, thinning of the
crust is not achieved by greater erosion, resulting in
downwearing and peneplanation, as previously suggested
(Gunnell et al., 2008). Crust thinning rather results from

ig. 3. (Color online.) 3D superposition of topography, Moho and LAB in the Axial Zone of the Pyrenees. A. Left: Superposition of the three surfaces

opography, Moho and LAB) (see text for further explanation). A. Right: Topography and Moho surfaces. The figure shows the comparison between the

oho surface interpolated from Chevrot et al.’s dataset (orange) and three Moho surfaces and the corresponding LAB surfaces (green) resulting from the 1D

ravity modeling using different three crustal densities (see Table 1 for parameters). B. East–west and north–south profiles of the three surfaces

opography, Moho and LAB). Thick black lines correspond to the mean elevation. The red line corresponds to the remnants of the planation surface. The

range line is the Moho profile from Chevrot et al.’s dataset (the margin of error (� 5 km) is shown). The green lines are the profiles of the Moho and the

rresponding LAB resulting from 1D gravity modeling.
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Upper Oligocene to Lower-Miocene extensional tectonics
(Séranne, 1999).

We conclude that the high-elevation, low-relief sur-
faces of the Pyrenees are the remnants of the single
planation surface. This surface formed at high elevation in
response to the progressive inhibition of erosion, as shown
by thermochronological data (Fitzgerald et al., 1999;
Gibson et al., 2007; Gunnell et al., 2009) and the
concomitant sediment aggradation along the Pyrenean
piedmonts during the mountain growth from the Late
Eocene to the Early Miocene (Babault et al., 2005, 2007).
This process allowed the preservation of a thick crustal
root below the Pyrenees (Fig. 4b). Reactivation of fluvial
incision and glacial erosion is responsible for the removal
of thick detrital sediment accumulation and the dissection
of the initial planation surface into disseminated remnants
as observed today (Babault et al., 2005). According to the
Molnar and England’s model (1990), if any post-tectonic
uplift of the planation surface did occur in the Pyrenees, it
was caused by isostatic rebound consecutive to erosion
and did not exceed 400 m (Babault et al., 2005). Whether
relief rejuvenation occurs during the Plio-Quaternary

. 4. (Color online.) Two end-member conceptual models for the explanation of high-elevation, low-relief erosional surfaces. A. Model 1 considers

nation near sea level, then uplift triggered by mantle dynamics and relief rejuvenation. Note the absence of crustal root below the dissected peneplain. B.

del 2 considers planation at high elevation due to erosion inhibition emphasized by thick piedmont sedimentation and the persistence of a crustal root

low the high-elevated planation surface.

ble 1

rameters used in the 1D modeling using topographic data and geoid

omaly together with thermal analysis.

Minimum Preferred Maximum

ensities (kg/m3)

Sea water density rw 1031

Upper crust density rc.up 2660 2760 2810

Lower crust density rc.dw 2900 2900 2950

Mean crust density rc.m 2780 2830 2880

Lithospheric mantle

density (rl)

3200 [1 + 3.5�10�5� 3200(1300–Tm)]

Asthenosphere density (ra) 3200

hermal parameters

Kc 2.7 W�K�1�m�1

Km 3.2 W�K�1�m�1

Ts 15 8C
Ta 1300 8C
a 3.5�10�5

H0 0.7 mW�m�3

er Parsons and Sclater, 1977; Clauser and Huenges, 1995; Fernàndez

al., 1998; Robert et al., 2015.

and Km: thermal conductivity for the crust and the mantle,

pectively; Ts: temperature at the Earth’ surface; Ta: temperature at

 base of the lithosphere; a: coefficient of thermal expansion; H0:

stal surface heat production.
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limate change or from the Early Miocene onwards (e.g.,
abault et al., 2005, 2006; Coney et al., 1996; Fillon and van
er Beek, 2012; Garcı́a-Castellanos et al., 2003) is still a
atter of debate and behind the scope of the present study.

. Conclusion

Remnants of planation surfaces at high elevation are
biquitous in the Pyrenean Axial Zone. A first attempt to
terpolate these remnants suggests that they correspond
 a single planation surface that was completed before the

ate Miocene and later dissected. The presence of a crustal
oot together with the absence of lithospheric mantle

inning below the Axial Zone precludes any peneplana-
on near sea level before the Late Miocene. This also

plies that no subsequent uplift triggered by mantle
ynamics occurred as classically proposed to explain such
lanation surface remnants at high elevation. Rather, in the
ase of the Pyrenees, it favors a process of erosion
hibition at high altitude, a process probably undervalued
 many other mountain belts where remnants of

lanation surfaces are observed.
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P., Bareyt, M., Seguret, M., Camara, P., Deramond, J., 1989. ECORS deep
seismic data and balanced cross sections: geometric constraints on
the evolution of the Pyrenees. Tectonics 8, 41–50.
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