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 Introduction

Relicts of ancient surfaces have been observed in the
renees (Fig. 1), mostly in their eastern part (Babault

 al., 2005; Calvet, 1996; Calvet and Gunnell, 2008; Goron,
37; Ortuño et al., 2013). Similar surfaces have been
served in other mountain ranges like the Rocky
ountains, the Atlas, the Betic Cordillera, or the Altay
d Gobi-Altay mountains (e.g., De Sitter, 1952; Farines

 al., 2015; Jolivet et al., 2007b; Scott, 1975). They are
nsidered key features for investigating the recent history

 such mountain ranges, with special attention paid to
eir relief and elevation history (Calvet et al., 2015). Here,
e evidence that some of these surfaces are associated

with strong weathering profiles, before reconstructing
their shape and determining whether they record defor-
mations related to recent tectonic activity.

The nearby Massif Central is known to have undergone
strong weathering phases whose ages are: (i) pre-Late
Carboniferous; (ii) pre-Permian; (iii) pre-Triassic; (iv) pre-
Liassic; (v) pre-Late Cretaceous; and (vi) Eocene (e.g.,
Gandolfi et al., 2010; Migoń and Lidmar-Bergström, 2001a;
Pierre, 1989; Wyns et al., 2003). During these weathering
phases, a weathering profile developed, which, from
bottom to top, encompasses bedrock, fissured zone, and
alterites (or saprolite), subdivided into a laminated zone
and loose saprolite. In plutonic rocks, the fissured zone is
characterized by horizontal jointing due to the swelling of
some minerals when hydrating, the most efficient one
being biotite, whose volume increases by 40% when it is
transformed into chlorite or vermiculite (Wyns et al.,
2004). The fissure density increases upwards, up to
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A B S T R A C T

Flat high-elevation surfaces in the Pyrenees are defined by thick weathered horizons that

were developed from granitic lithology. We analysed such horizons in detail within two

areas: the Bordères–Louron granite and the Aston massif. They are characterized by a

lower fissured zone overlain by unconsolidated saprolite. Mapping these horizons allows a

3D reconstruction of the ancient palaeosurface with an elevation uncertainty of 50 m. We

discuss the age of weathering by means of stratigraphy and low-temperature

thermochronology. The surfaces are clearly postorogenic, postdating Eocene–Oligocene

denudation. Their incision and the fact they are stepped suggest (1) an increase of the local

relief and (2) recent normal faulting.
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 fissure per 10 cm. The alterites consist of highly
eathered minerals. In the bottom part (the laminated

one), it is laminated and the original rock structure is still
bserved, whereas in the upper part the rock is trans-
rmed into loose material. The very top of the profile is a

lanar surface that formed before further weathering,
nsuring the necessary low-draining conditions that allow
hemical weathering rather than physical erosion. The
rmation of a weathering profile implies a long duration,

–10 Ma at least under such low-draining conditions
yns, 2002; Wyns et al., 2003). In Europe, excluding

ubsidence areas, saprolite thickness can reach several
ns of metres, but usually less than 50 m (Migoń and

idmar-Bergström, 2001b; Wyns et al., 2003).
In the Pyrenees, the link between ancient weathering

eriods and planar surface development has never been
vestigated. Because plutons and gneisses are good

rotoliths for the development of weathering profiles,
e focused our work on two of such well-developed planar

urfaces at Bordères–Louron in the Neste Valley and at
ston in the Ariège Valley, within the central and eastern
yrenees, respectively (Fig. 1).

. Planar surfaces of the central and eastern Pyrenees

In the Nestes Valley, the 310-Ma-old Bordères–Louron
luton is exposed southeast of Arreau, the main village
leizes et al., 2006). It is centred on Bordères–Louron
.388E; 42.888N), a village lying within the Louron Valley

t 850 m asl. The granite intruded Early Carboniferous
hale and limestone, and is unconformably overlain by

Triassic sandstone and shale (Fig. 2). Where preserved,
planar surfaces appear mostly on top of the interfluves,
well above the main moraine systems and associated
glacial deposits. Many villages are settled on the most
prominent surface, as Lançon for at � 1100 m asl (Figs.
2 and 3). To the east and southeast, this main surface can be
connected to smaller remnants, mostly located along the
Louron Valley, for example around Ilhan and Ris villages, at
similar elevations of 1100 and 1120 m asl, respectively
(Fig. 4). In addition to these sub-horizontal surfaces, the
landscape exhibits low-relief morphology up to 1360 m
above Lançon village. Weathered rocks outcrop below
every surfaces of the area.

The Aston area lies mostly south of the N120E-trending
Ariège Valley for � 20 km between Tarascon and Ax-les-
Thermes (1.78E; 42.7N), with a valley floor at �500 m asl. It
is characterized by 5–10 km wide planar surfaces, as
already indicated by local names, such as ‘‘plateau’’ or
‘‘pla’’, the best known being the Plateau de Beille on which is
built a Nordic skiing station (� 1800 m asl). The main
surface, which we called Aston surface, is developed at
elevations between 1300 and 2100 m and gently dips north
with an average slope of 3 to 5 degrees. The Aston planar
surface developed over various lithologies, the most
common being the Riète Gneiss formation (Fig. 5A). A
section parallel to the Ariège Valley, five kilometres to the
south (Fig. 5B), shows the different plateaus, separated by
three valleys, defining a dissected low-relief surface. To the
north of the Aston massif, near the Ariège Valley, the
surface is associated with stepped surfaces at lower
elevations: two levels are observed at 1700–1800 m and

ig. 1. The relief of the Pyrenees and palaeosurfaces mapped within the mountain belt. The compilation of palaeosurfaces is derived from the computation

f slopes lower than 108, and from Calvet (1996) and Delmas (2009). Fig. 2: Bordères–Louron area; Fig. 5: Aston area. Dashed line is the border between

rance and Spain, with Andorra in the middle.



Fig. 2. Simplified geological map of the Bordères–Louron area, derived from the 1/50 000 geological map (Barrère et al., 1984), showing the location and

elevation of the computed surfaces (the DEM was created by IGN and has a resolution of 50 m). The colour gradient shows surfaces from light grey for low

elevations to black for the high ones. A–B. Location of the cross-section of Fig. 4. View point symbol for Fig. 3.

B. Monod et al. / C. R. Geoscience 348 (2016) 184–193186
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t 1300–1500 m. These surfaces are of similar origin as
eathered rocks equally mantle them. The main step and

ome smaller offsets of these surfaces trend N1108, quite
arallel to the North-Pyrenean Fault (Fig. 5).

The Aston area is thus characterized by a � 10 � 20 km2

et of related surfaces, whose morphology is a northwest-
ending low-relief glacis that has been dissected since the
evelopment of these surfaces.

. Weathering

In both study areas, the planar surfaces are developed
ver significantly weathered rocks that are directly
xposed. On granitic and gneissic rocks, the weathered
rofiles exhibit a common organization of the successive
eathered horizons (Fig. 6). In addition to the macroscopic

tudy of the weathered profiles, X-ray and microscopic
bservations on samples taken from the fissured zone
dicate the presence of supergene minerals like goethite

r lepidocrocite on both sites.
In the Bordères–Louron area, the planar surfaces

eveloped on any lithologies and are all associated with
nconsolidated alterites (Fig. 4). This is consistent with the
/50,000 geological map (Barrère et al., 1984). Over the
ordères granite, the surfaces developed on top of
nconsolidated quartz alterites (Fig. 6). Fissured granite

 observed at the bottom of Louron Valley, about 300 m
elow the planar surfaces (Fig. 4).

Under the Aston surface, we found both the alterites at
e ski station (1800 m asl) and a fissured horizon dipping

gently to the north at the summit of the surface (�1900 m
asl) (Figs. 6 and 7). This indicates more pronounced
denudation since the weathering period than in the
Bordères–Louron area. Part of the denudation occurred
during the Quaternary by glacial dynamics until at least
1450 m asl, where the presence of glaciers is proved by
glacial deposits overlying the laminated zone of the Riète
Gneiss (Delmas, 2009). However, the glacier may have
reached an elevation of 1900 m asl (Delmas et al., 2012).

Observation of landscape together with the analysis of
the weathering profile indicates that the Aston surface
extends to the northern side of the Ariège Valley. We
clearly observed surface remnants both in the southwest-
ern Saint-Barthélémy massif flank, where a fissured
horizon in gneiss gently dips northward (Fig. 7), and on
its southeastern flank around Trimouns and Chioula. On
the northern flank of the Aston massif, the surface is
lowered by N110-trending faults towards the Ariège River
(Figs. 5C and 8). North of the river, the surface is affected by
south-dipping faults, but crosses the North-Pyrenean fault
without offset. Normal faults cross-cut the weathering
profile, preserving alterites on the lowered fault block
(Fig. 5C).

4. Discussion

4.1. Estimating the age of the surfaces

Theoretically, the best method for dating weathering
stages is to date supergene minerals, e.g., cryptomelane

ig. 4. NE–SW geological cross-section across the Bordères–Louron granite, showing the elevations of the different surface levels, such as the main one at

ig. 3. The Nestes Valley (including Aure and Louron Rivers) observed from the NNE (View point shown on Fig. 2).
100 m asl. See location in Fig. 2.
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eauvais et al., 2008) or goethite (Shuster et al., 2005), or
laeomagnetic dating (e.g., Ricordel-Prognon et al., 2010).
wever, up to now, none of these methods was successful

 our study area, and we have to use published ages

obtained from surrounding sites for discussing the
formation age of the surfaces.

For many granite plutons in the Pyrenees, fission tracks
and (U–Th)/He dating on apatites indicate major cooling

. 5. A. Simplified geological map of the Aston area, derived from the 1/50,000 geological map (Destombes et al., 1969), and location of the surfaces (colour

dient from light grey for low elevations to black for high ones). PB: Plateau de Beille; PF: Pla du Four; PBr: Pla de Bourbourou; PdM: Pla du Mont; PT: Pla de

be; PM: Pla de Madame. A–B: Location of the cross-section. B. NW–SE cross-section from Pla du Four to Ax-Bonascre. The thalwegs are made by planar

faces used to define the envelope surface. This surface is interrupted by incised valleys like the Aston one. The surface deflection between Pla de Bourbourou

d Ax-Bonascre is concomitant with a step. C. North–south cross-section from the Plateau de Beille to the Saint-Barthélémy summit, showing the stepped

faces and preserved alterites controlled by normal faults (not mapped in Fig. 5A) on both sides of the Ariège River (see the text for further explanations).
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etween 40 and 30 Ma ago (Fitzgerald et al., 1999; Gunnell
t al., 2009; Jolivet et al., 2007a; Morris et al., 1998; Sinclair
t al., 2005). These low-temperature thermochronological
ges correspond to periods of significant denudation that
receded weathering. Moreover, micro-mammalian assem-
lages in superficial rock fissures within the surfaces in the
astern Pyrenees (Madres and Agly massifs) show that little
rosion occurred since 26 Ma (Gunnell et al., 2009).

Based on (U–Th)/He dating on zircons and apatites, the
ston massif underwent major denudation at 32–40 Ma
enèle, 2007). South of the Aston massif, the Hospitalet
assif yields younger ages, 28–34 Ma (Denèle, 2007),

uggesting a slightly faster denudation and relative motion
elated to tectonic deformation along the Merens fault
eparating the two massifs. The Hospitalet ages indicate that
enudation probably lasted until 28 Ma ago. To the
outheast, the Canigou and Mont-Louis massifs show
imilar range of cooling ages with a denudation rate slowing
own around 21 Ma ago (Maurel et al., 2002). Northwest of
e Aston massif, analyses indicate consistent ages in the

rize and Trois-Seigneurs massifs, with youngest (U–Th)/He
ligocene ages on apatites (Vacherat, 2014).

Thermochronological data are also available from the
outhern flank of the central Pyrenees. The Maladeta
assif shows a palaeosurface associated with a weathering

rofile (Ortuño, 2008; Ortuño et al., 2013). Pollen collected

within small basins showed the surface predates the
Vallesian (11.1–8.7 Ma). Low-T thermochronology indica-
tes rapid denudation that decreased after 30 Ma (Fillon,
2012; Fitzgerald et al., 1999; Gibson et al., 2007; Sinclair
et al., 2005). This Eocene–Oligocene denudation episode
led to infilling of the valleys, about 9 Ma ago (Fitzgerald
et al., 1999; Fillon and van der Beek, 2012).

To sum up, the weathering profiles associated with the
surfaces may have developed between the Eocene–
Oligocene and the Late Miocene (Calvet, 1996; Hautmann
and Lippolt, 2000; Migoń and Lidmar-Bergström, 2001b),
and thus seem to be related to the Pyrenean orogeny. This
agrees with the earlier interpretation by Hautmann and
Lippolt (2000), who considered that Neogene weathering
episodes were controlled tectonically rather than climati-
cally. Development of the weathering surfaces seems to
have ended around 10 Ma ago, and their subsequent
disappearance was probably driven by incision and relief
rejuvenation, as is shown by the Pliocene deposits filling
the valleys in the northern Pyrenean piedmont (Monod
et al., GARVEMIP working group, 2014).

4.2. Reconstructing the planar palaeosurface

Our work allows reconstructing the geometry of the
surfaces (Figs. 5 and 8). The Aston surface has a relatively

ig. 6. A. Sketch of a granite weathering profile. The arenites and the laminated zone define the unconsolidated alterite unit. The fissured zone is about twice

s thick as the unconsolidated alterite. Photographs show unconsolidated alerites of the weathered profile. B. Under the planar surface at Lançon in

ordères–Louron granite. C. Under the Plateau de Beille of the Aston massif in Riète gneiss formation.
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ple geometry, while the Bordères–Louron surface is
ghtly more complicated. We thus mainly focus our
terpretation on the first one, for which more data are
ailable. The reconstructed surfaces top intermediate
terfluves and are connected with the foothills of the
ghest reliefs (see for example the southern boundary of
e Aston surface, Figs. 8 and 9). In our interpretation, these
edmont surfaces correspond to an episode of relief
ifference in elevation between thalwegs and crests)
crease, and were later incised by deep valleys, partly of

acial origin. Our reconstructed surface for the Aston area

shows low relief, resembling a gently dipping wide glacis
between some higher ground. The latter was smooth and
shaped during a period of relief decrease, probably
corresponding to the reworking of higher surfaces (Gunnell
et al., 2009). On the basis of the low-temperature thermo-
chronology data (Denèle, 2007; Maurel, 2003; Morris et al.,
1998), we suggest that these reliefs were less than 1000 m
above the piedmont, as a greater height seems impossible.
Our reconstruction fits Goron’s (1937) observations, who
noted that these surfaces are at about 1200 m on the
northern side of the range, well above the current piedmont

. 8. 3D view of the modern Ariege Valley between Ax-les-Thermes and Tarascon, and the reconstructed palaeo-weathering surface. At Ax-les-Thermes,

. 7. A. Fissured horizon under the Aston surface at Plateau de Beille (1900 m asl). B. Fissured horizon in the gneissic rocks of the southwestern flank of

int-Barthélémy (1600 m asl). Open fissures are underlined by thick lines, foliation (S1) is represented by white lines.
 current Ariege river level is 700 m below the reconstructed surface.
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levation, implying either infilling of the piedmont basin or
plift of the range after their development.

Such perched piedmont surfaces allow estimating the
ubsequent denudation that affected this area of the
yrenees. The denudation was twofold: on the surfaces, it
orresponds to surface lowering, while in valleys, it
orresponds to incision after the surface developed. First,

e weathered rocks below the surface remnants indicate
at saprolite stripping is not complete and less than 50 m;
is value of 50 m thus is an upper boundary for surface
wering by weathering since their formation (and

robably before incision, as discussed below). Second,
e measured the incision to be 200–250 m in the Louron
alley (Fig. 4) and 850 m in the Ariege and Aston valleys
ee Figs. 5 and 9). In the Aston area, the average incision

an be measured as the difference between the current
EM and the reconstructed surface, i.e. about 300 m.

Consequently, if we consider an age of � 10 Ma for the
urfaces, the upper boundary for an average denudation
ate is around 5 m/Ma for the surfaces themselves (without

cision), a value typical for low-erosion areas as indicated
y cosmogenic nuclides (Portenga and Bierman, 2011) and
y modern fluxes (Summerfield and Hulton, 1994). For the
ntire Aston area, the denudation rate must be about
50 m (300 m of average incision and 50 m of weathered
urface lowering). This corresponds to 35 m/Ma and maybe
uch more (up to 300 m/Ma), if we consider valley carving

s having occurred mostly during the last 1 Ma, similarly to
e data for Alpine valleys (Valla et al., 2011).
Surface remnants are found all through the Pyrenees,

ut the present work is too preliminary to prove that they
ll have a similar history to that shown in Fig. 9, as
uggested by Goron (1937). For instance, the Aston surface
ay be older than the Borderes one, since it has recorded
ore denudation. However, close to the study areas, the

Canigou (to the southeast) and Maladeta (to the south)
massifs seem to have undergone a similar evolution:
strong denudation ending in the Oligocene, making place
for surface- and weathering profile development before
incision after the Miocene (e.g., Gunnell et al., 2009;
Ortuño et al., 2013). The latter incision would have been
triggered by uplift (Calvet and Gunnell, 2008) or piedmont
infilling by regressive erosion (Babault et al., 2005).

4.3. Surface faulting

In our study area, the Aston surface is deformed by
normal faults with facet-like morphologies, oriented N110,
thus paralleling some of the main tectonic boundaries,
though as yet no visible striation on the fault surfaces was
seen. The north-dipping high-angle faults expose a fissured
zone in the footwall and unconsolidated alterites in the
hanging wall. This structure is found from the summit of
the Aston surface to the river level, giving the Ariège Valley
a graben shape. Interestingly, Ortuño et al. (2013) describe
a similar weathered surface from the Maladeta (assigned
to Vallesian, cf. before), offset of around 440 m by the
N100-trending normal Maladeta fault. Thus, a N110
normal faulting in Aston is considered possible (offset of
about 150 m). The structure described here is consistent
with post-Miocene extension in the Pyrenees, as already
proposed by earlier studies dealing with active tectonics
(Lacan, 2008; Lacan and Ortuño, 2012; Ortuño, 2008),
normal focal mechanisms (Chevrot et al., 2011), and digital
models (Vernant et al., 2013).

5. Conclusions

We describe planar surfaces associated with highly
weathered rocks in the Pyrenees, based on the examples in

ig. 9. Surface development and incision: the example of Aston/Plateau de Beille. By the end of Miocene, an erosional surface associated with a weathered

rface (alterites) shaped the valleys between remnants of relief built during the Pyrenean orogeny (unknown in dashed lines). Since the Miocene, this

rface has been denudated by no more than 50 m (dashed yellow line) and partially dissected by incision.
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e Bordères–Louron (central Pyrenees) and Aston (eastern
renees) areas. We conclude that these surfaces are
storogenic and developed between 30 Ma and 10 Ma
o. After that, they were abandoned during rejuvenation

 the relief, involving either regional uplift or large-scale
gressive erosion. These surfaces, which are found
roughout the Pyrenees, represent outstanding morpho-
gical markers for analysing the postorogenic processes,
tably the question of the extensional tectonics that
ems to have occurred recently.
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nèle, Y., 2007. Formation des dômes gneissiques hercyniens dans les
Pyrénées : exemple du massif de l’Aston-Hospitalet (PhD). Université
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thermo-cinématique et interactions tectonique-érosion au Nord

des Pyrénées. (PhD Thesis). Université Pierre-et-Marie-Curie, Paris,
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