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 Introduction

Heavy mineral-rich laminae (HMRL) occur in many
dimentary environments from continental settings (flu-
al: e.g., Carling and Breakspear, 2006; eolian: e.g.,
wakuchi et al., 2009) to nearshore environments (e.g.,
bu et al., 2007; Dillenburg et al., 2004; MacDonald and
zendaal, 1995). They are generated by instantaneous
draulic or aerodynamic processes such as selective grain
trainment and transport, or shear sorting (e.g., Hughes

 al., 2000; Komar and Wang, 1984; Slingerland, 1977).
RL are either scattered or form thick horizons (from a few

centimetres to several metres thick) that are of potential
economic interest (placer). Pleistocene and Holocene
marine placers have been the subject of numerous studies
and the influence of sea-level variations has been mentioned
in some of these works (e.g., Dinis and Soares, 2007; Roy and
Whitehouse, 2003; Roy et al., 2000; Sawakuchi et al., 2009);
however, little attention has been paid to the position of
palaeoplacers in the stratigraphic record. The aim of this
work is to analyse the role of allocyclic processes in the
genesis of some marine Ordovician (lower Palaeozoic)
palaeoplacers. This study was carried out in terrigenous
successions located in two regions of the North Gondwana
domain (Fig. 1): the Sarrabus area (Punta Serpeddı̀ Forma-
tion) in Sardinia (Italy), and the Crozon Peninsula (Grès
Armoricain and Postolonnec formations) in the Armorican
Massif (western France).
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A B S T R A C T

The aim of this work is to analyse the role of allocyclic processes in the genesis of marine

Ordovician palaeoplacers laid down on a terrigenous shelf dominated by storm waves.

Sedimentological (facies, sequence stratigraphy) and petrographic analyses combined

with natural radioactivity measurement (gamma ray) are carried out. Two facies

containing heavy minerals are identified: a shoreface facies and a proximal upper offshore

facies. Heavy minerals (mainly titaniferous minerals, zircon and monazite) are

concentrated in laminae that can amalgamate to form placers that are several decimetres

thick. Their occurrence is highlighted by an increase in the total radioactivity (up to

140,000 cpm) and in the U and Th contents (up to 130 ppm and 800 ppm, respectively). The

palaeoplacers are the result of a combination of autocyclic and allocyclic factors. In the

stratigraphic record, the palaeoplacers are located in the retrogradation phases and

express condensation processes in the nearshore environments.
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. Geological setting

In the Sarrabus area (Fig. 1A, C), the Punta Serpeddı̀
ormation (Fm), Sandbian–Katian in age, rests on the
Porfidi Grigi’’ volcanic rocks that were emplaced in a
agmatic arc setting (Darriwilian to Sandbian: Oggiano

t al., 2010; Pavanetto et al., 2012a, 2012b). The
edimentary succession is deposited in a post-arc rift
ontext (Gaggero et al., 2012) and is overlain by the Tuviois
m (Katian–Hirnantian?). The Punta Serpeddı̀ Fm (60 to
40 m thick) consists of fine- to coarse-grained lithic
ackes containing intercalations of conglomerates, micro-

onglomerates, and siltstones. It is subdivided into three
embers; HMRL are abundant in the Sa Murta and Bruncu

e Is Mallorus members (Loi and Dabard, 1997; Loi et al.,
992) and are scattered in the Bruncu Spollittu Member

b). Three stratigraphic sections have been studied
istis, 2009); however, only the most complete one (the

’Enne Sa Pira section) is presented here.

In the Crozon Peninsula (Fig. 1B, D), the Grès
Armoricain Fm (Floian–Dapingian) rests either uncon-
formably on the Brioverian strata (upper Proterozoic to
lower Cambrian) or conformably on the Initial Red Beds
(Floian). It consists of fine- to coarse-grained quartzare-
nite and quartzwacke beds with some intercalations of
clayey siltstone. It is subdivided into three members and
the placers are mainly located within the Upper Mb
(Faure, 1978; Noblet, 1984). The overlying Postolonnec
Fm (Dapingian to Sandbian) consists of four clayey-silty
members containing subordinate sandy intercalations
and two sandy members (Kerarvail and Kerarmor
members); the HMRL are located at the base of the
formation (Kerloc’h Mb) and in the uppermost part of the
Kerarvail Mb. After a major sea-level fall, the Postolonnec
Fm is overlain by the transgressive Katian Kermeur Fm
(Vidal et al., 2011). Five stratigraphic sections have been
studied (Pistis, 2009); however, only the Morgat and
Postolonnec sections are presented here.
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Fig. 1. Location and lithologic columns of the studied sections in the Sarrabus area (A, C) and in the Crozon Peninsula (B, D).



3.

w
ge
in
un
un

(1
lam
In
m

Fig

dif

Fig

(co

an

M. Pistis et al. / C. R. Geoscience 348 (2016) 150–157152
 Methods

A sequence analysis based on detailed logs (1:50 scale)
as carried out following the integrated approach of
netic stratigraphy: based on the facies analysis and the
terpretation of the depositional environments, genetic
its were identified and the stacking pattern of these
its was established (see Loi et al., 2010).
Petrographic analyses coupled with modal analyses

000 points per thin section, in direction orthogonal to the
ination) were performed in intervals containing HMRL.

 sediments, radioactivity is mainly linked to heavy
inerals containing U and Th, and to potassic clay and

feldspars. Highly radioactive minerals, such as zircon and
monazite, are present in the studied sections and the total
radioactivity (total counts per minute) is positively
correlated (Fig. 2) with the relative abundance of heavy
minerals (Pistis et al., 2008). Natural radioactivity was thus
measured along the sedimentary successions using a
portable spectrometer RS-230 (Radiation Solutions, Inc.,
Canada). Measurements were taken with a counting time
of 120 s and a stratigraphic interval varying between
10 and 50 cm. The counts per minute (cpm) in the selected
windows were converted into K (%), U (ppm) and Th (ppm)
concentrations.

4. Depositional environments and sequence analysis

Facies occurring in the studied successions have been
formerly documented (Botquelen et al., 2004, 2006;
Dabard and Loi, 2012; Dabard et al., 2007; Durand,
1985; Loi and Dabard, 2002; Loi et al., 1999). Sandy facies
are characterised by the occurrence of sedimentary
structures, i.e. hummocky cross-stratification (HCS), swa-
ley cross-stratification (SCS), planar or gently inclined
lamination and graded rhythmites, which indicate deposi-
tional environments dominated by storm wave action.
They are interbedded with silty to clayey facies containing,
in some places, facies generated by condensation/diage-
netic processes (e.g., siliceous and phosphatic concretions,
shellbeds).

In the Sarrabus area (Fig. 3), the Bruncu Spollittu and
Sa Murta members were laid down in a nearshore
environment (restricted marine to shoreface settings); a
deepening trend toward the distal upper offshore is
recorded from the Sa Murta Mb (Loi et al., 1992). The

0

10

20

30

40

50

60

70

80

090

100

110

120
TUVIOIS 

Fm

B
ru

nc
u 

 d
e 

Is
 M

al
lo

ru
s 

M
b

Br
un

cu
  S

po
llit

tu
 M

b

Sa Murta
Mb

"PORFIDI 
GRIGI"

P
U

N
T

A
 

S
E

R
P

E
D

D
I

 
F

m

S
A

N
D

B
I

A
N

K
A

T
I

A
N

Ar     Si    VFS   FS    MS   CS   VCS   P cpm Tot.

0

5,
00

0

10
,0

00

15
,0

00

20
,0

00

25
,0

00

30
,0

00

40
,0

00

50
,0

00

60
,0

00

70
,0

00 20 40 60

0 10 20 30

0 Th ppmU ppmK %2 4 6

80 10
0

15
0

20
0

25
0

30
0

35
0

40
0

45
0

40
8

0

50
0

RESTRICTED
MARINEUpper Offshore Shor.

OPEN MARINE
Lower Off.

10,6-16,1%

5,2-9,6%

3,2-3,3%

3,3-7,2%

0,6%

3%

. 3. Vertical evolution of the sedimentary environments of the Puna Serpeddı̀ Fm (S’Enne Sa Pira section). Heavy mineral contents of samples from

0 10 20 30 40
103

104

105

Heavy minerals (%)

Total counts 
(cpm)

. 2. Heavy minerals contents (%) versus gamma ray total counts

unts per minute) in sandstones from the Armorican Massif (squares)

d Sarrabus (circles).
ferent sections (vertical red lines); gamma ray spectral logs: total counts (cpm), K (%), U (ppm) and Th (ppm).



s
F
(
A
in
U

o
a
e
b
s
th

F

c

M. Pistis et al. / C. R. Geoscience 348 (2016) 150–157 153
tacking pattern of the facies along the Punta Serpeddı̀
m therefore attests to a major retrogradation phase
Loi et al., 1992) known as the ‘‘Caradocian transgression
uct’’. This deepening coincides with a significant
crease in the total radioactivity with increases in the

 and Th contents.
In the Armorican Massif (Fig. 4), the combined influence

f tides and storms controlled the deposition of the Gador
nd Upper members of the Grès Armoricain Fm (Dabard
t al., 2007; Durand, 1985). Sediments were laid down
etween the nearshore (restricted marine and shoreface
ettings) and the proximal upper offshore, and at least

ree retrogradation phases are recorded. The transition to

the base of the Postolonnec Fm (Fig. 5) is linked to a
significant deepening toward the lower offshore. Then,
several progradation–retrogradation cycles followed, with
environment shifts restricted to the offshore (Dabard et al.,
2015). At the transition between the Kerarvail and the
Morgat members, a new deepening episode from the
shoreface to the lower offshore is recorded. Later, this was
followed by minor environmental variations limited to the
lower offshore and the distal upper offshore. In the two
Armorican formations, the retrogradation phases toward
the shoreface or proximal upper offshore coincide with
a significant increase in the total radioactivity and in the
U and Th contents (Figs. 4 and 5).

0

10

20

30

40

50

60

70

80

90

 100

 110

F
L

O
I

A
N

G
R

E
S

 
A

R
M

O
R

I
C

A
I

N
 

 
F

m
DA

PI
NG

IA
N

G
a

d
o

r
 

M
b

U
p

p
e

r
 

M
b

Ar     Si    VFS   FS    MS   CS   VCS 
cpm Tot.

0
5,

00
0

10
,0

00

20
,0

00
25

,0
00

30
,0

00
40

,0
00

50
,0

00
60

,0
00

70
,0

00
80

,0
00

90
,0

00
10

0,
00

0
11

0,
00

0
12

0,
00

0
13

0,
00

0
14

0,
00

0

15
,0

00

0 1 2 3 4 5 6

0 5 10 15 20 25 35 45 55 65 75 85 95 10
0

11
0

12
0

13
0

14
0

10 20 30 40 50 70 90 11
0

13
0

15
0

17
0

19
0

20
0

30
0

40
0

50
0

60
0

70
0

80
0

90
00

K %
U ppm
Th ppm

TIDAL  OR
LAGOONUpper Offshore Shor.

OPEN MARINE
Lower Off.

0,4-1,8%

22,4-47,6%

20-40,6%

14-31,2%

2,2-4,8%

ig. 4. Vertical evolution of the sedimentary environments of the Gador and Upper members of the Grès Armoricain Fm (Morgat section). Heavy minerals
ontents (vertical red lines); gamma ray spectral logs: total counts (cpm), K (%), U (ppm) and Th (ppm).



5.

(F
to
lam
th
up
ca
de
Sp
th
Fm
Th
(1

Fig

(ve

M. Pistis et al. / C. R. Geoscience 348 (2016) 150–157154
 Description of the placer deposits

Placers occur in two sedimentary facies. The first one
ig. 6A and B) consists of coarse-grained sand strata (0.2 m

 2 m thick), showing SCS, planar or gently inclined
inations and cross-laminations; it was laid down on

e shoreface. Heavy minerals are concentrated in laminae
 to 1 mm thick, alternating with quartz laminae. HMRL
n amalgamate to form placer deposits that are several
cimetres thick (Fig. 6A). This facies occurs in the Bruncu
ollittu Mb (Punta Serpeddı̀ Fm), at the topmost part of
e Gador Mb and in the Upper Mb of the Grès Armoricain
, and at the top of the Kerarvail Mb (Postolonnec Fm).

e second facies is made up of fine-grained sand strata
 to several decimetres thick) with HCS; it was deposited

in the proximal upper offshore (Fig. 6C and D). Heavy
minerals form dark and yellow-brown laminae that
highlight HCS and alternate with quartz laminae contain-
ing some scattered heavy minerals. This facies occurs in the
Bruncu de Is Mallorus Mb (Punta Serpeddı̀ Fm) and at the
base of the Postolonnec Fm.

In the Punta Serpeddı̀ Fm, heavy minerals can account
for more than 16% of the clastic components (Fig. 3).
Assemblages are mainly made up of rutile, pseudo-rutile,
anatase, zircon and monazite; tourmaline, xenotime,
ilmenite and opaque minerals are less abundant. The
grain size varies with the species: titaniferous minerals can
reach 300 mm, zircon and tourmaline are roughly 100 mm
in size and monazite is always smaller than 60 mm. A
mineralogical segregation of the heavy minerals according
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 the host-sediment granulometry is observed. In the
oarse-grained facies of the shoreface, HMRL are enriched
ith titaniferous minerals (represented by TiO2 in Fig. 7),
hile in the fine-grained facies of the upper offshore,

ircon and primarily monazite (represented by Zr and
e + La, respectively, in Fig. 7) are more abundant. This
ineralogical segregation explains the natural radioactiv-

y variations between the different facies. In the coarse-
rained sands of the Bruncu Spollittu Mb, the total
adioactivity is relatively low (ca. 5000 cpm) even in the
MRL (e.g., approximately 25 m in Fig. 3); this feature can

be explained by the abundance of titaniferous minerals. In
the fine-grained sands of the Sa Murta and Bruncu de Is
Mallorus members, the radioactivity increases (up to
71,000 cpm) with high U and Th contents (up to 46 ppm
and 450 ppm, respectively) in the placers due to the
abundance of zircon and monazite.

In several placers of the Armorican succession, heavy
minerals are very abundant and can reach more than 40%
of the clastic components (e.g., Upper Mb of the Grès
Armoricain Fm, Fig. 4). HMRL are mainly made up of
titaniferous minerals (rutile, anatase, brookite, leucoxene)
that represent more than 70% of the whole heavy minerals
content; zircon, monazite and tourmaline are less abun-
dant. Other heavy particles are present, such as Lingula
shell fragments in the Grès Armoricain Fm and phosphatic
and siderite clasts at the base of the Postolonnec Fm
(Dabard et al., 2007). The grain size of heavy minerals
species varies little, between 50 and 120 mm. The
distribution of the placers is perfectly shown by the
natural radioactivity. Several radioactivity peaks are
present, especially in the Grès Armoricain Fm where a
radiation level higher than 70,000 cpm was measured (up
to 140,000 cpm at about 75 m in Fig. 4) with very high Th
and U contents up to 800 ppm and 130 ppm, respectively.
At the base of the Postolonnec Fm (Fig. 5), the total
radioactivity peaks of HMRL reach 18,000 cpm with Th and
U contents up to 110 ppm and 13 ppm, respectively. The
total radioactivity is lower in the Kerarvail Mb, with a value
of approximately 11,500 cpm and Th and U contents of
45 ppm and 11 ppm, respectively.

6. Discussion

Instantaneous autocyclic processes can produce heavy
mineral segregation in high-energy environments, but
placers are not present in all of the shoreface and proximal
upper offshore deposits. These features indicate that other
factors, such as the renewal of source areas or the
modulation of the volumes of the siliciclastic supply,
must be invoked to explain their stratigraphic distribution.

In Sardinia, the source areas of the Punta Serpeddı̀ Fm
are constant throughout the succession and are mainly
represented by the underlying volcanic rocks of the
‘‘Porfidi Grigi’’, and, to a lesser extent, by the Cambro-
Ordovician sediments of the ‘‘Arenarie di San Vito’’ and
some Precambrian cratonic and metamorphic complexes
(Dabard et al., 1994; Loi and Dabard, 1997; Loi et al., 1992).
In the Armorican Massif, the Panafrican craton is likely the
main source area for the Palaeozoic sediments, and, in any
case, the fluctuations in the concentrations of the heavy
minerals observed particularly in the Grès Armoricain Fm
occur at much faster rates (high-frequency cycles) than the
rate of renewal of the source areas. Therefore, the
occurrence of placers is not linked to the renewal of
source areas but can be explained by recurrent heavy
mineral enrichment processes.

Our study shows that the placers are preferentially
associated with episodes of relative sea-level rise, suggest-
ing a combined influence of short-term autocyclic factors
and long-term allocyclic factors (i.e. relative sea-level
changes). During a relative sea-level cycle, ‘‘sediment
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lume partitioning’’ (Cross and Lessenger, 1998; Gardner
 al., 2004) leads to fluctuations in terrigenous inputs
ng the depositional profile. During periods of prograda-
n (Fig. 8), the siliciclastic supply is abundant in marine

ttings. On the shoreface, a daily segregation of high-
nsity particles occurs, but continuous supplies of sand
sult in dilution and do not favour the formation of
acers. On the contrary, during periods of retrogradation,
e preferential storage of sediments on the continent and
e coastal plain leads to a relative starvation of the
iciclastic supply in the marine areas. On the shoreface,
gregation processes affect a sandy stock that is weakly fed.
ese conditions allow for a progressive enrichment in
avy minerals via the winnowing of fine and light particles
d the genesis of HMRL on the shoreface. These deposits
n then be reworked by the storm waves and can supply the
ndy strata of the upper offshore. Only the finer sand is
moved during the reworking, resulting in a granulometric
gregation in the assemblage of heavy minerals. Thus, in
e Punta Serpeddı̀ Fm, the coarse titaniferous grains stay in
e shoreface and the HCS sandy strata of upper offshore are
riched with zircon and monazite.
The placers are formed during the retrogradation and

gradation phases when the sandy bodies of the shoreface
ogressively move landward on the coastal plain deposits,
ng the transgressive ravinement surface. Morphological

conditions play an important role in the enrichment with
heavy minerals. During the retrogradation phases, a weak
coastal plain slope favours a lagoon-barrier system (e.g.,
Beets et al., 2003; Dillenburg et al., 2004). In these
conditions, accommodation is important in the coastal
plain where the sediments are trapped, which limits
sedimentary inputs toward the shoreface. Marine deposits
are then condensed and placers are the expression of
condensation in nearshore environments.

The superposition of several sea-level cycles of different
frequencies (e.g., Milankovitch cycles) can enhance the
process (Fig. 9). Indeed, the higher frequency sequences,
located in the progradation phase of the lower frequency
sequences, have a higher supply than those located in the
retrogradation phase. The sequences located in the
retrogradation phase are thinner and are amalgamated,
resulting in a long-term heavy mineral concentration
through the continuous reworking and the mineralogical
and granulometric segregation of the same sandy stock.

7. Conclusion

The studied placers are the result of a combination of
autocyclic factors (e.g., shear sorting) and allocyclic factors
(sea-level changes and sediment supply variations). They
are produced during phases of retrogradation in shoreface
and proximal upper offshore environments and represent
condensation facies. These placers can be used to establish
isochrones surfaces for intrabasinal correlations over a
wide geographical area and especially for stratigraphic
reconstructions in the geological mapping of metamorphic
and/or deformed marine successions. In monotonous
sandy successions, the distribution of palaeoplacers is a
tool to identify genetic units and in well-log gamma ray
analyses they are used to distinguish certain retrograda-
tional sandy facies, with placers, from certain prograda-
tional sandy facies, without placers. Finally, in geological
exploration, the understanding of the autocyclic and
allocyclic processes responsible for the formation of
placers provides a useful predictive tool for heavy mineral
prospecting.
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