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ntroduction

Geological and geophysical observations and measu-
ents provide limited information on the 3-D structure

 notably on the formation and evolution of faults,
ticularly at large scale. Natural fault structure is far

 simplistic planar or single-surface schemes and has a
plex 3-D architecture with different segments and

nches that can be reactivated at different periods of the
lt’s evolution. Microseismicity data indicates that the
terial around the faults undergoes damage during the
rseismic periods at a distance up to � 10–30 km from

 fault. In some areas, this damage (microseismicity) is
used (during the observation time), but in others, it is
centrated in narrow zones corresponding probably to
lt branches (e.g., Bulut et al., 2012; Valoroso et al., 2014).

Co-seismic ruptures (e.g., Fu et al., 2005), the distribution of
aftershocks (e.g., Fukuyama et al., 2003) as well as the surface
traces of fault branches and segments (Perrin et al., this issue)
also reveal a complex structure of natural faults. The fault
branches and segments themselves are not zero-thickness
interfaces but represent zones of various thicknesses where
the material undergoes continuous damage and property
changes (e.g., Caine et al., 1996; Faulkner et al., 2010; Haines
et al., 2013; Schulz and Evans, 1998). Understanding all these
processes via the development of progressively more
adequate mechanical models based on both physical analysis
and geological data, is a necessary step toward a possibility of
earthquake prediction. Knowledge of the structure of natural
faults at different scales and the associated variations of
stress and porosity also is fundamental for various applica-
tions in oil industry, waste storage, or hydrothermal energy.

The mechanical (experimental/physical or numerical)
models can partially fill the gap between the complexity of
natural faults and the fragmentary information we have
about them. Of course, the models are always simpler than
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A B S T R A C T

The initiation and the initial evolution of a strike-slip fault are modeled within an

elastoplasticity constitutive framework taking into account the evolution of the hardening

modulus with inelastic straining. The initial and boundary conditions are similar to those

of the Riedel shear experiment. The models first deform purely elastically. Then damage

(inelastic deformation) starts at the model surface. The damage zone propagates both

normal to the forming fault zone and downwards. Finally, it affects the whole layer

thickness, forming flower-like structure in cross-section. At a certain stage, a dense set of

parallel Riedel shears forms at shallow depth. A few of these propagate both laterally and

vertically, while others die. The faults first propagate in-plane, but then rapidly change

direction to make a larger angle with the shear axis. New fault segments form as well,

resulting in complex 3-D fault zone architecture. Different fault segments accommodate

strike-slip and normal displacements, which results in the formation of valleys and

rotations along the fault system.
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nature, but they must be sufficiently realistic to capture
essential features of the natural process. Most of existing
models are purely elastic and therefore do not meet the
above requirement. The material damage, fracturing, and
faulting are essentially non-elastic phenomena caused by
strongly non-linear and irreversible deformation. A des-
cription of these processes requires constitutive models
that become more sophisticated with the progress in our
understanding of the rock behavior, which is attested by
the extensive literature on this subject (D’Adetta and
Ramm, 2005; Kamrin et al., 2007; Lyakhovsky and Ben-
Zion, 2014; Mas and Chemenda, 2015; Nicot and Darve,
2007; Nova et al., 2003; Sulem et al., 1999; Tengattini et al.,
2014; Wong and Baud, 2012; Zhu et al., 2010) to mention
only a few papers. Recent processing of large data sets from
mechanical tests of different rocks (Mas and Chemenda,
2015) shows, for example, that all constitutive properties
(such as the internal friction, dilatancy, and cohesion)
change with deformation, meaning that at each stage of
inelastic straining the material is different. This is in
agreement with the previous studies (e.g., Sulem et al.,
1999) on initially intact rocks but also on severely strained
gouge rocks that undergo microstructure and property
change during deformation (e.g., Haines et al., 2013),
which must be taken into account in the models of faulting.

As a first step, a simplified version of the constitutive
model from (Mas and Chemenda, 2015) is used in this
paper, but a more general formulation is presented as well.
This model is applied to simulate numerically the
formation of a strike-slip fault (fault zone/system) under
Riedel-type loading conditions. Unlike Riedel experiments,
both analog (e.g., Bokun, 2009; Dooley and Schreurs, 2012;
Naylor et al., 1986; Richard et al., 1995; Riedel, 1929;
Tchalenko, 1970) and numerical (Braun, 1994; Stefanov
et al., 2013), we apply ‘softer’ boundary conditions to the
bottom of the model by imposing tractions instead of
velocities, which appears to be more realistic in many
geological contexts. The obtained results show a scenario
of fault formation from initial distributed material damage
to deformation localization resulting in Riedel shears
evolving into complex 3-D fault architecture within an
initially homogeneous layer. Such a scenario was obtained
in a numerical model for the first time and corresponds
fairly well to the initial stages of the evolution of sandbox
models (e.g., Naylor et al., 1986).

2. Setup and constitutive model

2.1. Modeling Setup

The model represents a layer (Fig. 1a) with elastoplastic
properties described in the next section. The layer is
subjected to a gravity force that generates the initial
stresses, characterized by the vertical gradient defined by
the model density r and the depth as well as the
acceleration due to gravity g. Along the y-parallel vertical
boundaries, roller conditions (free along–boundary slip)
are applied. Along the y-normal boundaries, a kinematic
condition is imposed: at all corresponding points (having
the same coordinates x and z) (x, 0, z) and (x, D, z) at these

boundaries, the velocities are the same and equal to the
velocities at points (x, D/2, z), where D is the model length
in the y-direction. This annuls the boundary effects as if the
model were infinite in the y-direction. A shear stress, tzy,

Fig. 1. (Color online.) Modeling setup, showing elastoplastic model layer

(a) and a profile of shear stress tzy (b) applied to the layer bottom in the y-

direction. Also is shown a profile of the displacement uy (c) in the same

direction at the model bottom for a certain stage of the elastic loading. The

model sizes in the x, y, and z directions are respectively: L = 50 km,

D = 100 km, H = 5 km. The reference model parameter values are: Young’s

modulus E = 1 � 1010 Pa; Poisson’s ratio v = 0.25; internal friction

coefficient a = 0.6; dilatancy factor b = 0.1; initial and end normalized

hardening moduli, hini = 0.001 and hend = �0.12 (the latter is reached

when gp ¼ gp
0 ¼ 0:04); initial and residual cohesion, kini = 1 � 107 Pa and

kend = 2 � 105 Pa; density r = 2700 N/m3. The cubic grid size is

320 � 640 � 32.



Fig. 2. (Color online.) Evolution of the g
¯
p field in the reference model. The total shear displacement in (f) is 250 m.
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which increases progressively during deformation, is
applied to the layer bottom, which is fixed in the z-direction.
The x-profile of this stress is shown in Fig. 1b and does not
vary along y. The resulting y-displacement (uy) profile is
presented in Fig. 1c. It shows a smooth change in the
displacement (and hence of the velocity) in the x-direction.
In the classical Riedel experiment, the deforming layer is
supposed to be coupled to the two adjoining rigid basement
boards displaced horizontally one past the other. Therefore
the x-profile of uy seems to be imposed to have a shape
similar to that of tzy in Fig. 1b. One can consider that, in our
numerical experiments, there is a relatively weak plastic
layer between the deforming model and the rigid boards.
This layer transmits tractions (rather than velocities) to the
model base. The velocities and displacements are not
imposed and can vary both in time and space during the
experiment. This setup also can correspond to the constant
friction condition at the interface between the layer and the
rigid boards and seems to be more realistic in many
geological situations, as, for example, at the crustal scale,
when a quasi-brittle upper crust is underlined by a weak
and ductile lower crust. The magnitude of the applied
traction tzy is increased during cycling progressively and
slowly enough to keep the process quasi-static.

2.2. Constitutive model

To describe the inelastic behavior, we use two invariant
yield F(sij) and plastic potential G(sij) functions

F ¼ t�P sm; gp� �
(1)

G ¼ t�Q sm; gp� �

where t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sijsij=2

p
; sm ¼ sijdij=3, is the mean stress, sij is

the Cauchy stress, i, j = 1,2,3, sij = sij� sm, gp ¼

R
2 dep

ij dep
ij

� �1=2
is the accumulated equivalent inelastic

shear strain representing a material damage,

ep
ij ¼ ep

ij�e
pdij=3, dij is the Kronecker delta, ep ¼ ep

ijdij, and

ep
ij is the inelastic strain. The functions P sm; gp� �

and

Q sm; gp� �
are related as follows (Mas and Chemenda,

2015)

@Q sm; gp� �
@sm

¼
@P sm; gp� �

@sm
�a0 (2)

where a0 is a dimensionless parameter depending on sm

and gp. For limited ranges of these variables, a0 was shown
to vary very little. The results reported in this paper were
obtained for a0 = const. The derivatives in (2) correspond to
the dilatancy factor b (the left part of the equation) and the
internal friction coefficient a. In general, a is a function of
both sm and gp (Mas and Chemenda, 2015), but for
simplicity, we assume it to be constant and equal to a
typical value of 0.6. In this case function P sm; gp� �

is
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Fig. 3. (Color online.) Along-x-axis profiles of the incremental

displacement uy in the y-direction at different stages of the model’s

evolution (in all cases the displacement at x = 0 and x = L is � 0.5. 1: Purely

elastic deformation stage; 2 and 3: successive stages with inelastic

deformation).
Fig. 4. (Color online.) 3-D architecture of the fault system (shown in red are zones with gp > 0:05).
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reduced to the form P ¼ asm�k, where the sm-indepen-
dent integration constant k has the meaning of the material
cohesion. Parameter a0 is set to 0.5. This gives a reasonable
value for b of 0.1, which is thus also constant.

According to the experimental data (e.g., Mas and
Chemenda, 2015), the normalized hardening modulus h

progressively reduces during the material loading. This
modulus is defined as h ¼ @F=@gp� �

=G, where G is the shear
modulus. For the presented constitutive framework, h ¼
@k=@gp�sm@a=@gp� �

=G (Chemenda, 2007). We assume a
linear function h gp� �

h ¼ hini þ gp hend�hinið Þ=gp
0 (3)

where hini = 0.001 and hend = �0.12 are the initial and the
end hardening moduli, respectively. The change of h is due
to the evolution of k, which first increases from its initial
value of kini = 1�107 Pa and then gradually reduces to the
residual value kend = 2 � 105 Pa at gp ¼ gp

0 (gp
0 thus is a

function of hini hend kini, and kend, and for the chosen
parameter values is 0.04).

The elastic properties of the model both before and after
reaching the yield condition are described by Hook’s
equations with Poisson’s ratio v = 0.25 and Young’s
modulus E that was varied from 1 � 1010 Pa to
8 � 1010 Pa, corresponding respectively to the sedimentary
and crustal rocks. The modeling results do not depend
much on this modulus. Therefore, we present results
obtained only with one value, E = 1 � 1010 Pa.

5. (Color online.) Vertical displacement, uz, field at the last stage in

2 showing four valleys. The model deformation is magnified by a

or of 50 to clearly display the deformation features. The indicated uz

es are not affected by this magnification.

6. (Color online.) Incremental total (elastic and inelastic) equivalent shear strain during one calculation step (corresponds to the strain rate) at the last

e in Fig. 2.

7. (Color online.) Mechanical state of the model at the last stage in Fig. 2. 1: zones affected by the inelastic straining in the past and active at the
rmation stage shown. 2: all zones affected by inelastic straining in the past (inactive now). 3: zones that were not strained beyond the elastic limit.



Fig. 8. (Color online.) Velocities at the model surface on a background of the gp field at the last stage in Fig. 2 (only the central part of the model with faults is

shown).

Fig. 9. (Color online.) Four stages of evolution of the model that differs from the reference model by 2 times higher hend: hend = �0.06. The previous

evolutionary stages are similar to those in Fig. 2.

A.I. Chemenda et al. / C. R. Geoscience 348 (2016) 61–6966
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The formulated constitutive model has been imple-
nted into the finite-difference 3-D dynamic time-
tching explicit code Flac3D (Itasca, 2012) used for the

erical modeling in this work. The simulations were
ried out in large-strain mode, with different model
ameters. Below we report the results from the
resentative (reference) model (the model parameter
ues are given in the caption of Fig. 1) and present
ther model with more ductile behavior.

esults

During the initial stages of the model’s evolution
used by the increasing traction at the layer’s bottom),
response is purely elastic. At a certain stage, the

lastic deformation starts at the surface in the axial
ng y) area (Fig. 2a). The inelastic zone thickens and
idly widens in the x-direction (Fig. 2b). At a certain
e, the damage (inelastic deformation) starts at the

del bottom (Fig. 2b). At the next stage, a dense set of
allel deformation localization bands (incipient faults) is

ed. The whole band set first evolves uniformly (the
lastic deformation within all bands increases), and then

 observes a sort of ‘‘band selection’’ process: most of the
ds die, while the others continue evolving (Fig. 2c and
The shape of uy (and y-velocity) profiles also changes
ing the evolution of this non-linear inelastic deforma-

 (Fig. 3). Finally, only 4–5 well-developed bands
lts–Riedel shears) persist (Fig. 2d). They propagate

t in-plane, then out-of-plane (forming splay faults
ording to the terminology of Naylor et al. (1986)) and

 faults form as well (Fig. 2e and f). The less developed
ds formed at the previous stages are not seen in Fig. 2d–

ecause the damage intensity (i.e., inelastic strain gp)
hin them is much smaller than in the visible bands. The
lt pattern considerably changes with depth (Fig. 4). This
re (as well as Fig. 2c) shows that the initial Riedel
ars affect the model only to a depth shallower
n � 0.3H and that the fault branches have different
. From Fig. 5, it can be inferred that these are normal
rmal-shear) faults whose activity results in the forma-

 of � 100-m-deep valleys.
At the last stage of the model’s evolution (Fig. 2f), the
st active are the three fault segments (Fig. 6), but the

age affects other segments and zones as well (Fig. 7).
 velocity field at the model surface, resulting from both
ing along the active at this stage fault segments and the
ributed deformation, shows two counterclockwise
ting zones (Fig. 8).

In Fig. 9, we present the model with the two times
er end hardening modulus, hend = �0.06. The initial
es of deformation (not shown) in this model are similar
hose in the reference one.

oncluding discussion

The modeling setup and the constitutive framework
d in this work were chosen to be as simple as possible,
 at the same time reproducing the principal features of
lting in the experimental sandbox models. The forma-

 of classical Riedel shears followed by splay faulting in

sandbox experiments (Naylor et al., 1986) were obtained in
the numerical models presented for the first time. There
are many examples of natural Riedel-type fault systems at
different scales (they are given in most of the numerous
papers on analogue modeling of Riedel faulting, some of
which are cited in the introduction). The surface traces of
the San Andreas Fault and its branches show that this
large-scale fault system belongs to the same Riedel-type
class (e.g., Supplementary material in Perrin et al., this
issue).

Analogue and numerical models are complementary.
An important advantage of numerical models is that they
allow one to follow the evolution of deformation,
velocity, and stress fields with great precision and in 3-
D, and thus to see details hardly detectable in the
experimental models. It was unexpected, for example,
that inelastic deformation and fracturing/faulting start at
the surface (Fig. 2a and c), but this has a simple
explanation. The material strength increases with depth
due to the frictional component of the strength, which
grows with lithostatic pressure (or more exactly with
sm). The strength therefore is the lowest in upper
horizons where fracturing occurs first under the condi-
tions tested.

The inelastic deformation strongly reduces the tangent
modulus (the apparent stiffness), making the material’s
response much more compliant. On the scale of the
modeled layer, the compliance of the response increases
with the increase in the material volume involved into the
inelastic deformation and with the reduction of the
hardening modulus. That is why the gradient of the
incremental displacement uy (or of the displacement rate
u

˙y
) across the fault zone increases with inelastic deforma-

tion and with the material volume involved into this
deformation (Figs. 2a–c and 3). The profiles like those in
Fig. 3 are typically obtained across the active faults during
interseismic phases from GPS and InSAR data (e.g., Wright
et al., 2001). Purely elastic models are usually used to
interpret these profiles. Two blocks separated by a
dislocation represent the crust in these models. The
dislocation is locked from the surface down to a certain
depth (the locking depth) and is unlocked below this depth
where the blocks are allowed to move freely one past the
other (Savage and Burford, 1973). By adjusting the locking
depth and the spatial distribution of the elastic stiffness,
one can obtain a good fit between the model and the data
(e.g., Fialko, 2006). Such an approach, however, does not
really contribute to the understanding of the underlying
deformation mechanisms and is not satisfactory from a
physical point of view. Indeed, the interseismic micro-
seimicity clearly attests to irreversible, dissipative defor-
mation processes affecting large areas/volumes of the crust
(e.g., Bulut et al., 2012). These processes cannot be
captured by elastic models. For high across-fault displace-
ment rate gradients measured, these models require very
small locking depths (a few kilometers) (e.g., Cavalié et al.,
2008), which is not realistic. To avoid this inconsistency, an
aseismic slip in the seimogenic zone is postulated (e.g.,
Jolivet et al., 2012), but a more physically sound solution
should take into account the inelastic deformation in a
wide fault zone, as shown in Figs. 2a–c, 4 and 7. This
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deformation causes an increase in the displacement
gradient (Fig. 3).

In our models, the inelastic deformation starts after
reaching certain (sufficiently high) stressing level propor-
tional to the interseismic displacement, which itself is
proportional to the time span from the last earthquake. A
prediction from the presented models would be therefore
that the across-fault displacement gradient should in-
crease with time while approaching the next large seismic
event. Although it appears to be too simplistic, this
prediction seems to work, at least in some cases. The
North and East Anatolian faults (NAF and EAF, respectively)
are good examples confirming this prediction (Cavalié and
Jonsson, 2014). For the NAF, at the location where the last
ruptures occurred in 1949 and 1992, the across-fault
displacement rate gradient is relatively low and corres-
ponds to a locking depth of 14 km. For the EAF, where the
last rupture occurred in the 19th century, this gradient is
much higher, with the predicted (from the elastic model)
locking depth of only 3 km. Similar results were obtained
for the Haiyuan fault, where high gradients were measured
along a segment that did not rupture since 1092 AD. The
adjacent segment that ruptured in 1920 shows a much
lower gradient (Cavalié et al., 2008; Jolivet et al., 2012).

The reported numerical models show that the first
generation of a dense set of Riedel shears does not exceed
in depth � 1/3 of the model thickness H (� 1.5 km); they
are the deepest along the model axis (Fig. 2c). Only a few
faults of this set persist with further evolution. They cut
through the whole model thickness, undergo some in-
plane propagation, and then rapidly change their orienta-
tion (Fig. 2e). New fault segments are formed as well. At the
model’s base, the faults are not aligned along the y-axis
(Fig. 4) as they would be in classical Riedel experiments,
but have a freedom to deviate from this axis because the
model bottom is not kinematically constrained (as
described in section 2.1).

Fig. 7 shows that the width of the damage zone at the
surface is � 5H (25 km for H = 5 km in the presented
model), while at the bottom, it is only � 2H (excluding
fault branches). This zone therefore has a flower-type
structure, which also characterizes natural strike-slip
faults (e.g., Sylvester, 1988). Such structures (but not
Riedel shears) have been obtained in numerical models by
Finzi et al. (2009) using a different constitutive frame-
work, but their width is much smaller than in our models,
only several kilometers, which may correspond to the core
(central) zone in our models with the highest damage
intensity. The microseismicity however affects a zone
wide of several dozen kilometers, as indicated in the
introduction.

Each point of the damage zone in Fig. 7 underwent
active damage at some stage of the model’s evolution. At
the stage shown in this figure, only some fault segments
and zones are active (in red). At the next stage, other fault
segments and zones will be active. Such damage events can
be viewed as microseismicity within a wide fault zone,
although the time-scale of the presented modeling does
not allow us to talk about seismic cycles. Moreover, this
modeling is not designed to be specifically applied to large-

a sedimentary layer having approximately the same
coefficients a and b, and a comparable ratio k/rgH. If
these conditions of physical similarity are not met (for
example, when k is the same, but H is much smaller–a
strong, thin layer), the modeling should be done with other
parameters.

The specificity of a large (crustal) scale faulting
(compared to the faulting in a relatively thin layer) is that
practically all material properties change with depth,
which should certainly affect the results. Fig. 9 shows, for
example, that the increase in the hardening modulus hend

(which corresponds to a more ductile material response)
leads to very different fault evolution and pattern. This
suggests that the fault pattern at depth (where the
material is more ductile) should be rather similar to that
shown in Figs. 9 and, at a shallow depth, to the one in Fig. 2,
although it is clear that faulting does not occur indepen-
dently at different depths. Further modeling is needed to
obtain more complete scenarios.
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