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 Introduction

In land seismic exploration, the reflection events are
ed to characterize rock properties for surveying oil and
s resources. However, the contamination of seismic data
ith noise greatly degrades the geological information and
nders further processing. Usually, noise can be generated

 various sources (e.g., wind and swell) and classified as
o categories: coherent noise and incoherent noise.
like coherent noise, the incoherent noise is unpredict-
le in space and time that possesses randomness, and

 the complexity of the geological conditions increases.
 complex geological condition, for example in the

mountainous areas in Northeast China, where storm
weather covers more than six months of a year and among
which five months suffer from severe winter storm. Then
the random noise in the seismic record becomes more
powerful and complicated (Wu et al., 2014). Therefore, the
noise attenuation is an essential step for the seismic data
analysis. In this paper, the removal of incoherent or
random noise is our main focus.

Many methods in a variety of different fields have been
developed to improve the signal-to-noise ratio (SNR) of
seismic data by removing random noise, such as f–x

deconvolution (Canales, 1984), frequency-spatial predic-
tion (Wang, 1999, 2002), wavelet transform (Cao and Chen,
2005), polynomial approximation (Lu et al., 2006), and
singular value decomposition (Lu, 2006). These techniques
are often effective to mitigate random noise, but when the
SNR is below a given threshold (for example, 0 dB), they no
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A B S T R A C T

The fractal conservation law (FCL) is based on the Cauchy problem of the partial differential

equation (PDE), which is modified by an anti-diffusive term of lower order. The analysis

indicates that it can eliminate the high frequencies and preserve or amplify the low/medium

frequencies. The performance of FCL depends on the threshold selected for the PDE. This

threshold corresponds to the cut-off frequency of FCL in the frequency domain. Generally,

the threshold is fixed. Thus, the FCL cannot track the signal beyond the cut-off frequency, and

it removes the higher-frequency components of the signal. To solve this problem, an adaptive

FCL filtering method is presented. The main purpose of this method is to select the optimal

FCL threshold in each sample index such that it can adaptively track the rapid changes in the

signal. In the adaptive FCL, we select FCL estimations with different thresholds and construct

a convex hull of these estimations of each sample index. Consequently, we introduce a

quadratic functional with respect to FCL estimation to ensure that we select the optimal

estimation from the convex hull of each sample index. This leads to a box-constrained convex

problem, which can be solved by the Viterbi algorithm.
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nger exhibit good performance. Some useful informa-
on, such as the relative maxima or minima of the signal,
an be masked by these methods.

The fractal conservation law (FCL) filtering method
zerad et al., 2012), which is simply the forward heat

quation modified by a fractional anti-diffusive term of
wer order, has been successfully applied for seismic data

enoising (Meng et al., 2014, 2015) and was demonstrated
 exhibit good performance compared to time-frequency

eak filtering (TFPF) (Boashash and Mesbah, 2004;
oessgen and Boashash, 1994). By using an integral
rmula, which is based on Taylor-Poisson’s formula and

ubini’s theorem for an anti-diffusive term, and then
king the Fourier transform of the equation, the frequency

esponse can be derived. The study showed that this
esponse eliminates the high frequencies, amplifies the

edium frequencies and preserves the low frequencies.
he numerical computation based on the Fourier trans-
rm scheme runs fast, which is very conducive to practical

pplication. However, there is a pair of contradictions in
electing the threshold frequency for filtering. If we choose

 high threshold for filtering, it allows good preservation of
e signal components but relatively poor random noise

eduction, and because FCL can amplify the medium-
equency components, both the noise components and
e signal with this frequency are also amplified.

onversely, if we choose a low threshold for filtering,
ffective random noise reduction is achieved, but the
ignal frequency components exceeding the threshold
equency are attenuated. Therefore, the conflict between

ignal preservation and noise attenuation cannot be
esolved using a fixed threshold.

In this paper, we utilize a group of frequency responses
t least two responses) of FCL determined using different

arameters to construct a convex hull (upper and lower
ounds) of the filtering results. Then, we take the filtering
onvex set for each sample index and choose an optimal
stimation with respect to time to minimize a given
uadratic functional. Thus, adaptive FCL is equivalent to a
onvex optimization problem with box constraints (Boyd
nd Vandenberghe, 2004), which can be solved using the
iterbi algorithm (Todd and Wynn, 2000). The idea of this
daptive method was first introduced by Zeng et al.
015). The recovery of seismic events using our algorithm

 presented here. The experiments illustrate that the
daptive FCL is better than conventional approaches for
andom noise reduction and signal preservation.

The rest of this paper is organized as follows. Section 2
troduces the basic theories of the FCL method. In Section

, we describe the proposed adaptive FCL method in detail.
he performance of the novel approach is tested using both
ynthetic and field data and is compared with the
erformance of conventional FCL and other well-known
enoising methods in Section 4. Finally, Section 5
oncludes the paper.

. Theory and computation of the FCL method

In this section, we provide a brief review of the theory of
e FCL method and analyze its frequency response. The

partial differential equation (PDE), with two antagonistic
terms: a common Laplace diffusion term �@2

xx and a
nonlocal anti-diffusive term Il of lower order (Azerad et al.,
2012). The PDE is implemented on seismic data trace by
trace and is given by:

@tyðt; xÞ�a@2
xxyðt; xÞ þ bIl½yðt; xÞ�ðxÞ ¼ 0; t 2 ð0; TÞ; x 2 R;

yð0; xÞ ¼ sðxÞ; x 2 R

�

(1)

where y = y(t, x) is the filtered signal and s(x) is the initial
signal, which is the noisy seismic signal. t is merely a
parameter, whereas x represents the time of one seismic
trace. T, a and b are positive constants, and Il is a fractional
operator defined as follows for l 2 1; 2ð Þ:

Il½y�ðxÞ ¼ al

Z
R

y00 x�eð Þ
ej jl�1

de; (2)

where al is a suitable constant, and the double apostrophe
denotes twice differentiation with respect to time. By using
an integral formula for the anti-diffusive term, which is
based on Taylor–Poisson’s formula and Fubini’s theorem,
and then taking the Fourier transform of the PDE, the
solution of (1) can be derived as (Azerad et al., 2012):

yðt; xÞ ¼ kðt; xÞ�sðxÞ; (3)

where � represents convolution and kðt; xÞ ¼
F�1 Kl

a;b t; vð Þ
� �

is the kernel of the operator Il�@2
xx and

Kl
a;b t; wð Þexp �t 4p2av2�b vj jl

� �� �
: (4)

Equation (4) is the frequency response of the FCL
method, and v represents the frequency. Thus, the filtering
process can be realized in the frequency domain for
computational efficiency. Finally, by applying the inverse
Fourier transform, we obtain the estimated value y(x) from
the frequency domain into the time domain. To facilitate
the calculation, t can be fixed at a value of 1. We draw Kl

a;b

in Fig. 1 and note that the � vj jl is the symbol of the
nonlocal anti-diffusion operator Il, which creates ins-
tabilities and enhances the contrast. Conversely, the term
4p2v2 corresponds to the diffusion operator �@2

xx, which
controls these instabilities and reduces the noise. Of
course, the amount of denoising and enhancement are
variable and are quantified by the parameters a and b,
Fig. 1. The behavior of Kl
a;b with 4p2a = 0.01, b = 0.05 and l = 1.5.
CL method is based on the Cauchy problem of the linear
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spectively. Hence, signal enhancement and denoising are
t antagonistic.
As seen in Fig. 1, there are three important values

garding the choice of parameters a and b. One is the
reshold frequency v1, which satisfies Kl

a;bðv1Þ ¼ 1 and

;bðvÞ < 1 for v > v1. Two additional important values
e vM and M. We can obtain vM by taking the derivative

 Kl
a;b, and M is the maximum of Kl

a;b. Therefore, we
duce that v1 controls the frequency range to amplify;

 can be interpreted as the amplification factor of the
termediate frequency. From (2), because l 2 1; 2ð Þ,
tting parameter l to be a fixed value is sufficient. We
t l as 1.5 for all experiments in this paper. According

 the actual situation, we give a fixed value of v1 and M,
hich can, in turn, be used to determine the parameters
and b. For more details on choosing the parameters,
e refer the reader to (Meng et al., 2015) and (Azerad
 al., 2012), who provide an explicit discussion of this
ue.
Fig. 2 shows the behavior of the frequency response

;b for fixed v1 and different values of M. It must be
ted that as the value of M decreases, the decline in the
lative high frequency will occur more slowly. Ignoring
th the noise-reducing and contrast-enhancing abilities

 this method and considering only its denoising ability,
e can set the M to a smaller value (greater than but

se to 1) and v1 to be relatively small. This is a
mpromise solution.

 Adaptive algorithm for FCL

Corresponding to the linear mapping Kl
a;b ! y (boldface

ter y is equivalent to y(x) in equation (3)), we let Y ={y}
 a set of signals recovered by FCL filtering. Take

= sup{Y} and l = inf{Y} as the upper bound and the lower
und of Y at each sample index i, respectively. Then, the
ntinuum and bounded convex set conv(Yi) at each
mple index can be constructed as follows:

nvðYiÞ ¼ ½li; ui� ¼ ½minfyi; Kl
a;bg; maxfyi; Kl

a;bg�: (5)

here yi 2 [li, ui] and our purpose is to identify the optimal
o minimize a strictly convex functional defined over an
isting area V = {y, l � y � u}.

We applied the following quadratic functional as the
convex optimization problem (Zeng et al., 2015):

J yð Þ ¼ kA y � sð Þk2 þ kB Dyð Þk2; y 2 V: (6)

The jj � jj denotes the l2(V) norm; A, B 2 Rn � n are
nonnegative diagonal parameter matrices, which enable
(6) to track the magnitude attenuation of both signal and
noise; and D 2 R (n�1) � n is a difference matrix with the
form:

D ¼
�1 1 � � � 0

} }

0 � � � �1 1

2
4

3
5

The upper bound for the filtering error within V at the
sample index i is (Zeng et al., 2015):

max ui�yi; yi�lið Þ�ui�li ¼ wi þ kci; k > 0; (7)

where wi is the maximum magnitude of the attenuation of
the signal and ci ¼ s kKui

k�kKli
k

� �
is the average magni-

tude of the attenuation of noise. Kui
and Kli

denote the
filters Kl

a;b at the boundaries of V, and the estimation of the
standard deviation of the noise is given by (Zeng et al.,
2015):

s ¼ Median si�si�1; i ¼ 2; 3; :::; nj jð Þ=0:6745: (8)

According to the analysis above, A and B are assigned by

Að Þi;i ¼ ui�lij j�ci

�� ��
Bð Þi;i ¼ kci:

(9)

Thus, with no a priori information regarding the noise-
free signal, we know all the variables in objective function
J(y), and it is possible to find the optimal solution y. The
Viterbi algorithm, which shows good numerical stability, is
suitable in this case.

We construct a trellis diagram with weights for
adaptive FCL, which is illustrated in Fig. 3. The column Si

is called a stage, and each point in Si is called a node. The
values of the nodes at every sample index i are assigned by
. 2. Evolution of the frequency response Kl
a;b for different parameters. Fig. 3. Trellis diagram for adaptive FCL.
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ividing the closed interval [li, ui] into (N–1) equal sections:

i ¼ yj;i : yj;i ¼ li þ j ui�lið Þ= N�1ð Þ; j ¼ 0; 1; 2 � � � N�1
n o

:

(10)

An edge is a connection between two nodes yp,i and

q,i+1 (p, q =0, 1, 2,. . ., N–1) in two stages Si and Si+1; the
irection is from i to i + 1 (as indicated by arrows) and
epresents a transition to a new state at the next time

stant. According to (6)–(9), the length of each edge is
eighted by the metric:

A Þ2i;i yp;i�si

� �2
þ Bð Þ2i;i yp;i�yq;i�1

� �
: (11)

The cost of a path is the sum of the weights along the
ath from stage S1 to Sn (n is the amount of the samples).
e apply the Viterbi algorithm to identify the shortest

ath (survivor path) y to minimize the cost, which are
omputed according to the objective function in (6). That is

 say, at each stage Si, the estimation value (node) yj, i is
ptimal and adaptive. In fact, the choice of yj, i is equivalent

 the choice of an optimal frequency response for each
ata point. The main strategy of the adaptive method is to
elect a low threshold frequency where the signal changes
moothly or the local SNR is relatively low; otherwise, a
igh threshold frequency will be selected. As a result, it not
nly effectively attenuates the random noise but also
reserves the amplitude of the valid signal.

. Application to seismic records

First, we present a synthetic seismic trace to better
lustrate the adaptive performance of our method. As
lustrated by Fig. 4a, the ideal signal contains three Ricker
avelets, whose dominant frequencies are 60, 40 and

0 Hz; and the sampling frequency is 1000 Hz. A white
aussian noise (WGN) of 5 dB is added to this ideal signal.
ig. 4b shows the filtering results using the FCL method
ith different parameters. When the threshold frequency

 set to 60 Hz (M = 1.05), we observe that the peak and the
ough of each wavelet in the filtered signal are well
reserved, but the denoising ability is relatively poor.
onversely, when the threshold frequency is set to 20 Hz

 = 1.05), we can see that the FCL method can effectively
educe the random noise but results in a serious
ttenuation of the signal amplitude.

In Fig. 4c, we select a threshold frequency of 40 Hz as a
ompromise threshold for the whole data set (M = 1.05)
sing the conventional FCL method. For the proposed
daptive FCL method, we choose two filters with different
reshold frequencies and M values. The two group

arameters are {75 Hz, 1.2} and {15 Hz, 1.05}. Clearly,
ur method better attenuates the random noise and
reserves the local extremum, especially for the high-
equency wavelet (60 Hz), which exhibits large
mplitude attenuation after the FCL filtering. The detailed
omparison of the filtering results in Fig. 4d–f highlights

ese points.
Second, we synthesize a seismic model that consists of
o reflection events with linear and curving shapes. In

ig. 5a, there are 40 traces with 600 samples in each

channel, and the sampling interval is 0.002 s. The seismic
wavelets of the two events are modeled by Ricker
wavelets with the dominant frequencies of 35 and
20 Hz, respectively. The SNR of the noise data in Fig. 5b
obtained by adding random noise to the noise-free
synthetic data is 0 dB. We process the noisy data using
the wavelet-denoising method, F–X deconvolution, the
FCL method and the adaptive FCL method trace by trace.
The threshold frequency and the M value in the FCL
method are set as 25 Hz and 1.1, respectively. For the
adaptive FCL, we also choose two filters with the following
two group parameters: {50 Hz, 1.05} and {7 Hz, 1.05}. The
wavelet-denoising method uses the soft threshold ap-
proach with detailed coefficients obtained from the
decomposition of the seismic traces at level 3 by the
db4 wavelet (Lin et al., 2013, Tian et al., 2014). A
comparison of the results obtained by using the wavelet
method, F–X deconvolution method, FCL method and
adaptive FCL method is shown in Fig. 5c–f. We can see that
the wavelet-denoising method, the F–X deconvolution
method and conventional FCL can suppress some of the
random noise, but their denoising results are not
satisfactory. Moreover, the shallow layer event is serious-
ly attenuated. Conversely, a larger amount of noise is
removed by the adaptive FCL method, and the two events
are thus more clearly recovered.

We extract time windows around the arrivals in the
41st trace derived from the above six records for a
further comparison. From Fig. 6a and b, it can be
observed that the amplitudes of the two wavelets are
closer to the original signal and that the random noise is
significantly lower when the adaptive FCL method is
used compared to when the other three methods are
used. Figs. 6c and d present a comparison of the 41st
trace of the synthetic record in the frequency domain.
We observe that the filtered signal after the wavelet-
denoising method and the F–X deconvolution method
are used exhibits a serious distortion in the low/
medium-frequency components. To preserve the signal,
regardless of the choice of l 2 0; 2ð Þ, the FCL filtering
method will always amplify the medium-frequency
components. Therefore, both the noise components
and the valid signals in this frequency range will be
preserved or even amplified. As presented in Fig. 6 (c, red
line), because the threshold frequency is set as 25 Hz, the
FCL method actually struggles to denoise the frequencies
at 0–25 Hz. Once that threshold is exceeded, the filtered
signal begins to decrease. This result is caused by a
shortcoming of the conventional algorithm itself. This
shortcoming is effectively resolved by using the adaptive
method, which can track the rapid change in the
waveform in both the time and frequency domains.
We observe in Fig. 6c and d that the adaptive FCL
method (blue line) provides an amplitude spectrum that
is a good match to the noise-free spectrum for the signal
components in the low/medium-frequency band.

For the quantitative comparison of the denoising and
signal-preserving abilities, we utilize the following formu-
la to compute the SNR and mean square error (MSE)
after adding different levels of WGN, as listed in
Table 1. Correspondingly, Fig. 7a and b present the curves



of

SN

M

w
sig
(B

Fig

filt

F. Meng et al. / C. R. Geoscience 348 (2016) 350–359354
 SNR and MSE drawn based on the data shown in Table 1.

R ðdBÞ ¼ 10log10

XN

i¼1

XM
j¼1

u0ði; jÞ2

XN

i¼1

XM
j¼1

ðu0ði; jÞ�uði; jÞÞ2

0
BBBBB@

1
CCCCCA

(12)

SE ¼ 1

MN

XN

i¼1

XM
j¼1

u0ði; jÞ�uði; jÞð Þ2: (13)

here u0 is the noiseless original signal, u is the filtered
nal, and N and M are the input matrix dimensions

addari et al., 2011).

Through observation and comparison using Table 1 and
Fig. 7, we know that the SNR is higher after filtering by
adaptive FCL and that the MSE is smaller than those of the
other three denoising methods. This is a consequence of
the better estimation of the waveform by the adaptive
method in both the time and frequency domains compared
with the other three methods.

Third, we synthesize a more complex seismic model
that consists of horizontal and slant linear events,
hyperbolical events, broken events, and conflicting events,
as shown in Fig. 8a. There are 80 traces with 2300 samples
in each channel, and the sample frequency is 1000 Hz. The
dominant frequencies of the reflection events are from
50 to 12 Hz. To more accurately simulate the real situation,

. 4. a: Noisy signal and ideal signal; b: filtering results by conventional FCL with different parameters; c: waveform comparison of ideal signal, FCL

ering signal and adaptive FCL filtering signal; d–f: partial enlarged images of each wavelet.



Fig. 5. Example of a synthetic seismic model. a: Clean record; b: noisy record with a SNR of approximately 0 dB; c: record filtered using the wavelet-

transform denoising method; d: record filtered using the F–X deconvolution method; e: record filtered using the FCL method; f: record filtered using the

adaptive FCL method.

Fig. 6. Waveform and spectrum comparison of the four methods in the 41st channel. a and b: Waveform comparison of the shallow and deep layer signals

(35 and 20 Hz), respectively; c and d: spectrum comparison of the shallow and deep layer signals (35 and 20 Hz), respectively.

F. Meng et al. / C. R. Geoscience 348 (2016) 350–359 355



Table 1

SNRs and MSEs of the filtering results.

Original record (dB) Wavelet-denoising record F–X deconvolution

filtered record

FCL filtered record Adaptive FCL filtered record

SNR (dB) MSE SNR (dB) MSE SNR (dB) MSE SNR (dB) MSE

10 13.3316 9.0969e-04 6.2854 0.0046 11.0850 0.0015 17.9123 3.1683e-04

5 9.3281 0.0023 5.8873 0.0051 9.3674 0.0023 13.1925 9.3929e-04

0 4.6998 0.0057 4.9872 0.0062 6.3824 0.0045 7.1127 0.0038

–5 1.8848 0.0127 3.4967 0.0088 2.1561 0.0119 3.6507 0.0085

Fig. 7. a: SNR values in the wavelet-transform denoising method, F–X deconvolution method and FCL method in comparison to the proposed method; b:

MSE values in the wavelet-transform denoising method, F–X deconvolution method, and FCL method in comparison to the proposed method.

Fig. 8. Example of a synthetic seismic model. a: Clean record; b: noisy record (SNR = –4.56 dB) contaminated with real seismic noise; c: record filtered by

the wavelet-denoising method; d: record filtered by the F–X deconvolution method; e: record filtered by the FCL method; f: record filtered by the adaptive

method.

F. Meng et al. / C. R. Geoscience 348 (2016) 350–359356



Fig. 9. a: Real seismic record; b: record filtered using the F–X deconvolution method; c: record filtered using the wavelet-denoising method; d: record

filtered using the FCL method; e: record filtered using the adaptive FCL method.

F. Meng et al. / C. R. Geoscience 348 (2016) 350–359 357
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 this example, we add real seismic pure noise, which was
tained from an actual seismic record in the Daqing area

 Northeast China, to the synthetic model. We utilize the
rmula (12) to determine that the SNR of the noisy seismic
ta is approximately �4.56 dB, as shown in Fig. 8b. As
en, the continuity of the seismic reflection events is
tally hidden in the real seismic noise. We process the
ta using the wavelet-denoising method, the F–X

convolution method, and FCL and adaptive FCL methods,
d the results are shown in Fig. 8c–f, respectively. The
reshold frequency and the value of M in the FCL method
e set as 30 Hz and 1.05, respectively. For the adaptive
L, we also choose two filters with two group parameters:

{55 Hz, 1.2} and {6 Hz, 1.05}. It should be noted that the
events in Fig. 8 c, d and e exhibit a serious distortion,
especially the shallower events. For the F-X deconvolution,
some events can hardly be identified. Conversely, Fig. 8f
shows that the adaptive FCL results in the cleanest
background among the tested methods, allowing the events
to be identified easily. The SNR of the wavelet denoising is
approximately 2.72 dB, that of the F–X deconvolution
filtering is approximately 3.94 dB, that of the conventional
FCL filtering is approximately 3.18 dB, and that of the
adaptive FCL filtering is approximately 4.11 dB.

Finally, to verify the versatility of the proposed method,
we test it on a common shot point seismic record, as shown

. 10. Partial magnified images from Fig. 9: a: Unfiltered, magnified record; b: filtered, magnified record with the F–X deconvolution method; c: filtered,

gnified record with the wavelet-denoising method; d: filtered, magnified record with the conventional FCL method; e: filtered, magnified record with the
aptive FCL method.
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 Fig. 9a. This record is a 4-ms sampling with 168 channels.
he vertical axis represents the sampling time, and the
orizontal axis represents the seismic trace. This record
ontains both hyperbolic events and approximately linear
vents, and the shapes of these events are different and
regular. The continuity of some of the seismic reflected
vents is obscured by the interference of random noise.
ig. 9b–e show the results of the F–X deconvolution
ethod, the wavelet-denoising method, and the conven-

ional and adaptive FCL methods, respectively. The
hreshold frequency and the M value for the FCL are set
s 25 Hz and 1.1, respectively. For the adaptive FCL, we
lso choose two filters with two group parameters:
100 Hz, 1.2} and {5 Hz, 1.05}. It can be seen that the F–

 deconvolution, wavelet-denoising and conventional FCL
ethods cannot reduce random noise as effectively as the

daptive FCL method. Moreover, Fig. 9b shows that the
equency of the valid signals varies (the reflection events
ecome fatter) and that some details are lost. Compared
ith the conventional FCL, F-X deconvolution and
avelet-denoising methods, Fig. 9e shows better results,

resenting better filtering performance regarding noise
eduction and events preservation in the field seismic
ata. For a detailed comparison, we magnify the records
etween traces 27 and 148 and sampling time from
404 to 7200 ms, as indicated by the rectangles shown in
ig. 9. The magnified areas are shown in Fig. 10. Again, as
een from Fig. 10b–e, our method was able to suppress the
eismic random noise more effectively and recover the
alid information more clearly and continuously than the
ther methods tested. We indicate these improved
atures with ovals.

. Conclusion

An adaptive FCL filtering method for the elimination of
eismic random noise is proposed in this article as an

provement of the conventional FCL method. The
reshold frequency has a significant effect on the filtering

esults of the FCL. The conflict between noise suppression
nd signal preservation cannot be resolved by a fixed
reshold frequency. In the proposed method, the optimal

stimation can be chosen from a convex set to minimize a
onvex functional. Therefore, this method further reduces

e bias of the FCL filtering method for the estimation of
eismic events. Experiments on both synthetic and field
eismic data, including both qualitative and quantitative
nalyses, demonstrated that the new method is superior to
e conventional FCL method and achieve both better

random noise reduction and higher continuity and clarity
of the reflection events.
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