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sin Makhloufi c, Rémi Charton c,1, Françoise Bergerat e

PMC-Sorbonne Universités, 4, place Jussieu, 75252 Paris cedex 05, France
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 Introduction

Long-term storage of CO2 in deep geologic formations
s been proposed to face the rising of atmospheric CO2

concentrations due to fossils fuel consumption (Hitchon,
1996; Metz et al., 2005). In the Paris Basin potential target
formations for aquifer storage (Bloomfield et al., 2003;
Bonijoly et al., 2003) were porous, permeable, and
saturated with saline groundwater, brines, hydrocarbons
or a combination (Brosse et al., 2010; Vidal-Gilbert et al.,
2009). The storage capacity of the Bathonian Oolithe
Blanche Formation (saline aquifer/reservoir of the Paris
Basin), estimated from its geometry, porosity, and a
‘‘storage efficiency’’ factor for suitable strata, is ca. 4Gt
of CO2 (Brosse et al., 2010). The Oolithe Blanche Formation
is a deep saline aquifer with temperature between 55 and
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A B S T R A C T

The Oolithe Blanche Formation (Bathonian, Middle Jurassic) is one of the deep saline

aquifers of the Paris Basin in France. The spatial distribution of its reservoir properties

(porosity, permeability, tortuosity, etc.) is now better known with relatively homogeneous

properties, except for some levels in the central part of the basin, where permeability

exhibits higher values. This spatial distribution has been correlated with diagenetic events

(variability of cementation) and palaeo-fluid flow circulation phases leading to variable

cementation. In this paper, numerical simulations of reactive transport are performed.

They provide a preliminary quantitative analysis of the Oolithe Blanche Formation, the

type of fluids involved, the duration of fluid flow, and the time required to reduce the

primary porosity of the Bathonian sediments by 10% due to cementation. Our results from

the reactive transport simulations along a flow line, and a parameter sensitivity analysis

suggest that diagenesis processes driven by meteoric water recharge do not exclusively

cause the 10% decrease in porosity. Other geochemical and hydrogeologic processes must

be involved.

� 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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0 8C, confined above and below by two aquitards (very
w permeability formations). Because of warm tempera-
res and favourable hydraulic properties in the centre of
e basin, the Oolithe Blanche Formation also serves as an
eal reservoir for geothermal energy.

Carbonate reservoirs and deep reservoirs are ubiqui-
usly known to be more or less heterogeneous (e.g., Davis

t al., 2006; Dou et al., 2011; Lucia, 1999; Moore, 2001;
estphal et al., 2004). The degree of heterogeneity of

arbonate formations is largely explained by the intrinsic
omplexity of lateral facies variations inherited from
edimentation (Ehrenberg et al., 2006). Furthermore,
uring burial, the chemical and physical processes of
iagenesis of carbonate sediments (e.g., precipitation of
ements, dissolution processes, and fracturing) can have a
ajor impact on their geochemical, petrophysical and

ydraulic properties (Palciauskas and Domenico, 1976;
ong et al., 2012; Wilson and Evans, 2002).

Porosity and permeability have a fundamental control
n modern patterns and rates of fluid migration, and
xerted a major control on palaeo-flow fields throughout
eological time. Therefore, constraining the diagenetic
rocesses and fluid flow history of the Bathonian reservoir
rmations of the Paris Basin is fundamental to understand

oth modern geothermal resources and the impacts of
arbon sequestration. Several concepts have been pro-
osed for the cementation of the sediments in the Paris
asin, and one way to test these hypotheses is with
athematical models, through numerical codes. One other
ajor step is to check, with process modelling, the

obustness of the hypotheses, which differ from one
uthor to another (e.g., André, 2003; Brigaud et al., 2009a,
; Carpentier et al., 2014; Gonçalvès et al., 2003, 2004a,
010; Vincent et al., 2007; see Table 1 for synthesis). The
im of our approach is to explain the present-day
etrophysical setting and to provide first quantitative
lements of the diagenetic events involved within the
athonian carbonate formation. Therefore, we investigate

the impact on the evolution of petrophysical characteris-
tics of physical processes, fluid nature and origin meteoric
water recharge versus deep fluids, timing and duration of
groundwater flow, precipitation/dissolution processes (i.e.
at least a reduction of 10% of porosity as observed).

In this paper, we test one of the most classical
hypotheses, i.e. the cementation of the oolitic limestone
formation by deep lateral meteoric groundwater recharge.
To achieve this goal, we perform numerical simulations of
reactive transport, constrained by available data. These
simulations have been performed at the scales of both the
geological formation and the sedimentary basin.

2. Geological setting of the Paris Basin and Oolithe
Blanche Formation

2.1. The Paris Basin

The present-day Paris Basin is a sub-circular intracra-
tonic sag basin (Fig. 1) that covers a broad part of northern
France. The structural origin and evolution of the basin was
described in detail by Pomerol (1978), and more recently
by Guillocheau et al. (2000). Its dimensions are roughly of
500 � 600 km and in geological section it has a bowl shape
that reaches a depth of 3000 m. The Paris Basin is bounded
on its edges by several uplifted massifs: the Armorican
Massif to the west, the French Massif Central and Morvan
to the south, the Vosges Mountains to the east, and the
Ardennes to the northeast. The crystalline basement is
comprised of Variscan granites and Palaeozoic formations.
This basement structure and topology is strongly con-
trolled by faults (e.g., the Bray, Seine, Sennely, Saint-
Martin-de-Bossenay, and Vittel faults) that propagated
into the sedimentary cover throughout the Meso-Cenozoic
history of the basin. The Paris Basin was located on a
subsiding crust from Middle Triassic (Bourquin and
Guillocheau, 1993, 1996, Bourquin et al., 1997) to Late

able 1

onceptual models and hydrogeologic venues of the different phases of fluid circulation, compiled from the mentioned articles. The fluid flow circulation

hases do not necessarily match between the different studies because it is time relative.

Cretaceous fluid circulation Tertiary fluid circulation

Age 1st phase

origin

Recharge

zone

Age 2nd phase

origin

Recharge

zone

Age Origin Recharge

zone

Vincent (2001) Early to Late

Cretaceous

North

André (2003) Early

Cretaceous

Meteoric Cretaceous

chalk

erosion

Meteoric East and

Southeast

Gonçalvès

et al. (2003)

Hauterivian

(136 Myr)

Marine Southeast Aptian

(112 to 121 Myr)

Meteoric Northwest K/Pg (65 to

50 Myr)

Meteoric Northwest

Vincent

et al. (2007)

Berriasian

(LCU)

Meteoric North Aptian/Albian

boundary (LAU)

Meteoric North

Brigaud

et al. (2009b)

Berriasian

(LCU)

Mixed

fluids

North Aptian/Albian

boundary (LAU)

Mixed

fluids

North Oligocene

(33 to 23 Myr)

Vertical

migration of

meteoric fluids

No recharge

zone

Gonçalvès

et al. (2010)

Eocene (50 Myr) Mixing

(meteoric + deep

brine)

Carpentier

et al. (2014)

Berriasian

(LCU)

Mixed

fluids

Northwest Aptian/Albian

boundary (LAU)

Mixed

fluids

Northwest Late

Cretaceous to

Mixed fluids No recharge

zone
Early Oligocene
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rassic. The opening of the Tethys (Early Triassic; Dercourt
 al., 2000) and the early stage of the central Atlantic
ean (Aalenian) are well recorded in the sediments of
ose ages (Guillocheau et al., 2000). The Paris Basin
came fully developed as a passive margin during the
llovian (164.7–161.2 My � 4.0). The opening of the Bay of

scay (Early Cretaceous) is coeval with NE–SW compression
 the Paris Basin. The Late Cimmerian Unconformity (LCU)
d the Late Aptian Unconformities (LAU), which both
curred simultaneously with a major uplift of northern
assifs, marked the Lower Cretaceous. The Albian
12.0 My � 1.0) to Turonian (93.5 My � 0.8) interval was
aracterised by extension, while a NE–SW compression
sumed during the Late Cretaceous. During the Tertiary,
ncomitantly with the formation of the West European
aben, the Alpine orogeny event applied a north–south
mpression to the Paris Basin (Michon and Merle, 2000). The
rtiary is characterized by low subsidence and compression.
ally, the overall inversion of the basin occurred during the

eistocene (Guillocheau et al., 2000).
Most authors (see Table 1 for references and details) put

 evidence a strong correlation between the different
odynamic events and palaeo-fluids flows in the basin, in
rticular, periods of aquifer recharge with meteoric water
lated to uplift and emersion events.

2.2. The Oolithe Blanche Formation

The Oolithe Blanche Formation is a Bathonian
(167.7 My � 3.5–164.7 My � 4.0) carbonate formation that
extends across the entire Paris Basin, at depths of up to 2 km.
It crops out in the western, northwestern, Southeastern,
eastern, and northeastern rims. Its thickness varies from 50 to
100 m (50 m in the centre, 80 to 100 m at the eastern edge;
Casteleyn et al., 2010; Makhloufi, 2013; Makhloufi et al.,
2013). From Bajocian to Callovian times, the basin was
located in subtropical latitudes and was connected to the
Tethys and northern oceans (Thierry and Barrier, 2000). Thus
the Bathonian carbonate formation reviewed here was
deposited at palaeo-latitudes of 25 to 308N. The Bathonian
Oolithe Blanche Formation was deposited at palaeo-latitudes
of 25 to 308N and is comprised of the accumulation of ooids
(60 to 100% of the grains), peloids, and bioclasts. The main
texture is grainstone, very rarely packstone. It was deposited
in a shallow, warm and agitated marine environment in a
platform setting (Brigaud et al., 2009a, b; Purser, 1975), and
three facies are distinguished in the outcrops, showing subtle
differences related to the hydrodynamic processes of
deposition (see Makhloufi et al., 2013, for details). These
facies have been also recognized in the drilled cores
(Makhloufi, 2013).

. 1. Geological map of northern France (modified from the 1/100,000 geological map of France, BRGM), location of the Dogger and of the sites studied in

 works mentioned in the legend.
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The diagenetic chronology reconstitution reveals a
omplex history from the basin centre towards its borders.
s a result, this formation possesses heterogeneous
haracteristics in terms of physical and hydraulic proper-
es (porosity and permeability Makhloufi, 2013; Rojas
t al., 1990). The basin centre shows better reservoir
roperties (Makhloufi, 2013) with mean values of porosity
f 11% (min = 7% and max = 20%) and mean values
f permeability of 0.7 mD (min = 0.001 mD and
ax = 89 mD), with intercalated levels where the perme-

bility could be of several tens of millidarcys. This results
 better transmissivity in this part of the basin. Towards
e borders of the basin (to the east or to the southeast in

ur study case), the reservoir properties of the aquifer are
ss good, with higher mean values of porosity of 18%
in = 8% and max = 27%), but with poorer mean values of

ermeability of 0.1 mD (min = 0.001 mD and max = 9 mD).

. Method

Wood and Hewett (1982), Hewett (1986) and Phillips
991) have extensively analyzed the general problem of

-D reactive transport in a homogeneous and isotropic
rmation. Nevertheless, their analytical solution is cons-
ained by the precipitation/dissolution of quartz, with a
ery simple chemistry (only one degree of freedom). In the
alcite case, the chemistry is controlled by three degrees of
eedom (calcium, carbonate, and pH), and the mass action
w introduces a non-linearity in the system. The solution
ould necessarily be more complex than that described by
ood and Hewett, and this justifies the use of a numerical

pproach.
Based on a literature review and on our knowledge of

e spatial distribution of the reservoir properties of the
tudied aquifer, a data synthesis is proposed (Table 2) and

will serve as main constraint of the numerical simulations.
Modelling is performed with the software HYTEC – see van
der Lee (1998) and van der Lee et al. (2003) for details on
physical concepts and their numerical translation.

The simulation objective is to test the hypothesis that
calcite cementation of the Oolithe Blanche Formation
resulted from meteoric groundwater recharge of areas
near the basin margin. To construct the simulations, the
reactive transport model is based on a steady-state fluid
flow along a 1-D representative flow line, which depends
on the location in the basin (CPB: centre of the Paris Basin;
MPB: median part of the basin; SEPB: southeastern part of
the basin). Sensitivity tests are performed on several model
parameters, including the length of the flow path and the
duration of the diagenetic event.

3.1. Data constraints

To fully understand the palaeo-hydrodynamics and
geochemistry of fluid migrations, one needs to know the
spatial and temporal origin of the basinal fluids, the forces
driving their flow in the subsurface, and the sources and
nature of recharge and other boundary conditions. The
geochemistry of the fluids and the formation mineralogy
also need to be considered, as does the temperature field.

From our literature review, two end-members of fluids
are likely responsible for the porosity reduction of the
Oolithe Blanche Formation: 1) a seawater source (here
called F1) during the sedimentation period, in chemical
equilibrium with carbonates, slowly rising in temperature
without calcite precipitation until the Cretaceous, under
burial and compaction (i.e. burial scenario) and, 2) CO2 rich
meteoric water (here called F2) coming from the north
(Brigaud et al., 2009b; Vincent et al., 2007), or from the
northwest at the LCU (145–140 My), and then from the

able 2

ata and constraints for the reactive transport simulations. Parameter values serve as data; variable values serve as a constraint.

Sector 1 - CPB Sector 2 - MPB Sector 3 - SEPB

Distance from recharge

zone � 60 km

Distance from

recharge zone � 70 km

Distance from recharge

zone � 130 km

t3

Recent

f = 15%

Fluid [NaCl] = 27 g/l

Tf = 71.2 8C
Depth = 2000–2055 m

f = 17%

Fluid [NaCl] = 27 g/l

Tf = 46 8C
Depth = 1433–1553 m

f = 16%

Fluid [NaCl] = 27 g/l

Tf = 10 8C
Depth = 0 m

t2

112 Myr

Aptian Albian

boundary (LAU)

f = 20%

Fluids = Fluid F2 [NaCl] (t1)

+ flush F1 water CO2

concentration of the

past enriched water

with CaCO3

Tf = 55 8C
Depth = 1600 m

f = 20%

Fluids = Fluid F2 [NaCl]

(t1) + flush F1 water CO2

concentration of the past

enriched water with CaCO3

Tf = 42 8C
Depth = 1200 m

f = 20%

Fluids = Fluid F2 [NaCl]

(t1) + flush F1 water CO2

concentration of the past

enriched water with CaCO3

Tf = 38 8C
Depth = 950 m

Related cementation phase:

Blocky calcite 2 (Bc 2)

t1

145–140 Myr

Jurassic/Cretaceous

boundary (LCU)

f = 0%

Fluids = Fluid F2 [NaCl]

(t0) + flush F1 water CO2

concentration of the past

enriched water with CaCO3

Tf = 50 8C
Depth = 1300 m

f = 30%

Fluids = Fluid F2 [NaCl]

(t0) + flush F1 water CO2

concentration of the past

enriched water with CaCO3

Tf = 38 8C
Depth = 950 m

f = 30%

Fluids = Fluid F2 [NaCl]

(t0) + flush F1 water CO2

concentration of the past

enriched water with CaCO3

Tf = 30 8C
Depth = 750 m

Related cementation phase:

Blocky calcite 1 (Bc 1)

t0 f = 20% f = 20% f = 20%

162 Myr Fluid [NaCl] (t1) = 38 g/l Fluid [NaCl] (t1) = 38 g/l Fluid [NaCl] (t1) = 38 g/l

Tf = 22 8C Tf = 22 8C Tf = 22 8C

Depth = 10 m Depth = 10 m Depth = 10 m
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rth at the LAU (121–112 My) (Gonçalvès et al., 2003,
04a) (i.e. meteoric scenario). For the burial scenario, 3-D
sin modelling along the 248 My of the Paris Basin’s
ological history suggests that until the end of the Oolithe
anche deposition, the leaky brine flow coming from
iassic formations was limited to a compaction-driven-
w process (Gonçalvès et al., 2003, 2004a; Violette, 2014).
For the meteoric scenario, the simulation of meteoric

ater action on carbonates needs to take into account CO2

ncentrations in the atmosphere at the time of the
agenetic event. According to the literature, these CO2

ncentrations in the Early Cretaceous atmosphere were
ry high, ranging from 1200 (Bergman et al., 2004) to
00 ppm (Berner and Kothavala, 2001).
Present-day temperature, porosity, depth, and salinity

e available from borehole data (Table 2). Palaeo-
mperature of fluids at depth (Tf) and formation depths
me from Gonçalvès et al. (2003). T1 is the meteoric water
mperature at the surface. Te is the temperature of the
atrix at the exposure location (outcrops). The distance
wards the recharge areas has been estimated from the
odynamic scenario proposed by Guillocheau et al.
000). The proposed petrophysical values at times t0

62 My), t1 (145–140 My), and t.2 (112 My), are based on
in section analyses (Makhloufi, 2013; Makhloufi et al.,
13). As we consider only cementation phases relative to
and t2, the porosity values of times t0 and t3 (recent)
nnot be implemented directly as simulation constraints.

. Numerical tool & conceptual model

HYTEC, developed at MINES ParisTech (van der Lee
 al., 2003), is used for flow and reactive transport

ulations. In this coupled program, the hydrodynamic
rt (flow, heat transport, multicomponent transport) is
lved by a finite-volume approach on unstructured grids
sed on Voronoi polygons. Considering laminar and
thermal flows in saturated porous media, the velocity
ld U can be obtained from the permeability field k and
rcy’s law (Darcy, 1856):

v U
!� �
¼ 0 (1)

¼ � k

m
r g grad

!
h

� �
(2)

where k is the permeability tensor [L2], m is the fluid
scosity [ML�1T�1], r the density [ML–3], g the gravity
celeration [LT–2] and h the hydraulic head [L].
The advective dispersive heat equation is solved in
tionary state:

v lgrad
!

T�TU
!� �
¼ 0 (3)

where l is the thermal conductivity [ML�1T�38K�1] and
the temperature.

Solute transport in a saturated porous media by

following equation:

div DLgrad
!

C�CU
!� �
¼ f

@C

@t
(3.2.4)

where DL is the longitudinal dispersion coefficient [L2T�1],
f the porosity [-], and C the solute concentration [ML�3].

The chemistry of the reactive fluids is evaluated by
CHESS, also developed at MINES ParisTech (van der Lee,
1998). It determines aqueous speciation, ionic exchange,
surface complexation, mineral precipitation and dissolu-
tion, assuming either local equilibrium or a dynamic mixed
status of equilibrium/kinetics. Following the basis compo-
nent formalism, the reactive transport equation becomes:

div DLgrad
!

Ci�CiU
!� �
�f

@C̃i

@t
¼ f

@Ci

@t
(3.2.5)

where c̃ (resp. c) is the total fixed (resp. mobile)
concentration of the basis component i.

Porosity changes are calculated through the mineral
volume, and updated implicitly within the transport –
reaction sequential iterative loop (Lagneau and van der
Lee, 2010). The porosity – permeability model is irrelevant
in the scenarios simulated in this study, due to the choice
of boundary conditions. The model domain is considered as
a 1-D flow line in a homogeneous and isotropic carbonate
formation (Fig. 2). Its mineralogical description is here
limited to its calcite content. Initial water conditions in the
aquifer are at equilibrium with calcite. The boundary
conditions at the inlet represent the contact with the
atmosphere: imposed flow velocity (mean annual precipi-
tation), imposed temperature (mean annual temperature),
water equilibrated with the atmosphere (CO2(g) fugacity).
At the outlet, the temperature is prescribed to represent
the burial scenario; flow and transport conditions are free
outlet conditions. Stationary flow and heat are considered,
which result, for this scenario, in a uniform Darcy velocity
(independent of the permeability value) and a constant
gradient temperature. The reactive transport problem is
solved over the duration of the scenario. The simulation is
based on the hypothesis that calcite dissolution/precipita-
tion is at thermodynamic equilibrium along the flow line,
which is consistent with the time frame and water velocity.
The amount of calcite content of the fluid is calculated at
each node of the 500 m resolution grid over the duration of

Te Tf
grad (T)

0 km L 100 km

H = 50 m

x

F1, T1
U, Φ, F2, T2(x)

Fig. 2. Conceptual reactive transport model solved by HYTEC (van der Lee

et al., 2003). F1: Meteoric fluid which infiltrates from the recharge area,

[CaCO3] = 0, with temperature T1 and pCO2. F2: Calcite-rich host rock

fluid (Oolithe Blanche formation) with a connected porosity K and Darcy

velocity U (m�s�1). T2(x): Temperature of the interstitial fluid depending

of the distance to the recharge, Te: temperature of the Ootithe Blanche

formation at the input (Te = T1), Tf: maximal temperature, with
L) = Tf, L, length of the flow line.
vection, diffusion and dispersion is described by the T2(
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e simulation. Thus, the amount of dissolved or precipi-
ted matter is quantified for a total simulation duration of

 My (plausible duration of the outcrop exposure during
e LCU and LAU). Along the flow line, the reactive
ansport is constrained by the (temperature-dependent)
cal solubility of calcite and the composition of the

eactive fluids, initial aquifer water composition F1 (pCO2,
alinity and equilibrium with calcite [CaCO3]) and mete-
ric water composition F2 (pCO2 and salinity), and the
sted host rock (calcite mineral). The influence of the
arcy velocity (U), which is poorly constrained, will be
sted. Under hydrodynamic equilibrium conditions, we

ssume that the fluids are at the same temperature as the
ost rock.

. Results of reactive transport modelling

Simulation results show calcite dissolution at the inlet,
s the rainwater equilibrates with calcite. Farther down-
tream along the flow line as temperature increases, the
etrograde solubility of calcite allows for the precipitation
f excess calcium and bicarbonate along the flow line.
nder the equilibrium assumption, water–rock interaction
rocesses in the first cell of the grid equilibrate water,
dependently of the cell size. Different grid sizes will

dilute’’ or ‘‘concentrate’’ calcite dissolution in this cell,
ading to a faster decrease in the calcite concentration in
e first cell for a smaller grid size. However, the amount of

issolved calcium and of carbonate exported to the aquifer
emains the same, whatever the grid size is. As a result, in
ur simulations, the evolution of the calcite profile in the
quifer (excluding the first cell) is independent of the grid
esolution. This has been verified by comparing the
imulation results for Dx from 1000 m down to 50 m.

Nevertheless, the simulations of calcite dissolution/
recipitation processes show that the precipitated calcite
olume decreases when temperature increases because
e solubility coefficient is not linearly dependent on the
mperature increase (Fig. 3). Moreover, whatever the

constraints (Tfluids and pCO2), a positive porosity variation
occurs only in the first kilometre (i.e. recharge area) and a
porosity order of magnitude is of 10�3 to 10�4 (note that it
is an average value calculated over the first cell of the
simulated domain, i.e. 1 km), thus two orders of magnitude
lower than what we expected, namely 10�1 (Fig. 4). Along
the flow line (after the recharge area to the deeper and
warmer aquifer zone), the temperature increases and
calcite solubility decreases accordingly, thus precipitation
of calcite occurs. Nevertheless, the porosity decrease is–
10�3, two orders of magnitude less than that expected, i.e.–
10�1. The parameters of these simulations are U = 1 m/
y, Tf = 50 8C and pCO2 = 3300 ppm and are relatively weakly
constrained; therefore a sensitivity analysis of these
parameters (Darcy velocity, temperature gradient and
length of the flow line) is warranted.

Parameter sensitivity study

The porosity variation is proportional to the velocity at
any location (x) of the flow line (Fig. 5). Thus, if we consider
similar flow condition as those previously mentioned
(Tf = 50 8C, pCO2 = 3300 ppm, L = 100 km, t = 5 My), but a
Darcy velocity of 100 m/y instead of 1 m/y, then the
calculated porosity variation will be two orders of
magnitude higher than previously calculated, i.e. 1%. This
value remains lower than the expected one based on
petrologic data (Casteleyn et al., 2010). To reach the 10%
value, the Darcy velocity should be about 1000 m/y, yet
this high value seems unrealistic for a deep fluid flow.

Higher-temperature gradients dT/dL ([Tf–Te]/L) could
help explain the larger change in the observed porosity.
This relation is, however, not linear (Fig. 6). If the final
temperature is doubled (i.e. 100 8C instead of 50 8C), then
the porosity variation is multiplied by a factor 2.3. But the
calculated value remains too small (Df = –2.3 � 10�4).

Increasing the maximum length of the flow line
decreases the porosity variation (Fig. 7). Logically, the
reduction of the flow line length increases the temperature
gradient, if the temperature Tf is preserved. Thus for the
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me temperature variation, the volume of precipitated
lcite per litre of water, due to the retrograde of calcite
lubility, will be spread over a shorter distance. Locally,
e reduction of porosity will increase. If we consider the
timated flow line lengths of the sectors CPB (L = 60 km)
d MPB (L = 70 km), the porosity variation is multiplied by

factor of 1.69 and 1.44, respectively.
The porosity variation is also flow duration dependent.
ulations have been performed for a duration of 5 My.

t a maximum duration of the flow conditions could be
aintained during 33 My, which corresponds to the period

 time between the LCU and LAU (145–122 = 33 My, Table
. The calculated porosity variation for Tf = 50–55 8C and a
ration of 30 My, with a Darcy velocity of 1 m/y, is equal

 �0.001 (Fig. 8). Because the porosity variation is linearly

is 100 m/y, and the other parameters of the simulation are
unchanged (Tf = 50–55 8C, pCO2 = 3300 ppm), then for a
simulation duration of 30 My, the porosity reduction is of
the order of the observed value, i.e. 10%.

Parameter optimisation

As previously determined, porosity reduction by calcite
cementation:

� increases with the augmentation of pCO2 in the
atmospheric recharge;
� is proportional to fluid flow velocity, U, at any location;
� increases with the augmentation of temperature change,

DT;
� decreases with the total length of the flow line, L;
� increases with the augmentation of the flow duration, t.

For the site CPB, a 10% reduction of porosity is obtained,
when all the conditions are maximized: pCO2 (3300 ppm),
U = 100 m/y, DT = 50–55 8C and t = 30 My, except the flow
line distance (L = 60 km). As flow line distances are higher
for the locations MPB (L = 70 km) and SEPB (L = 130 km)
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an for the location CPB and temperature gradients are
maller, the Darcy velocity would need to be higher than
00 m/y for the same time duration (30 My). To obtain the
xpected 10% porosity reduction, Darcy velocities are
creased to 170 m/y and 672 m/y for MPB and SEPB,

espectively (Fig. 9). This range of high groundwater flow
ates is not plausible, based on earlier studies of the basin
alaeo-hydrogeology. According to basin modelling results
onçalvès, 2002), the maximum calculated Darcy velocity

 expected to be about 50 m/y in the most permeable
yers at the most suitable time of their geological history.
t the present day, the average Darcy velocity obtained by
ow simulation and constrained by tracers (NaCl or noble
as) on the Dogger Aquifer is about a few tens of
entimetres per year (Castro et al., 1998; Dewonck,
000; Gonçalvès, 2002; Wei et al., 1990).

Our results show that carbonate precipitation reactions
ssociated with the gradual heating of meteoric ground-
ater (recharged at the outcrop belt) cannot explain the

bserved 10% reduction in porosity. Other processes must
e at play, which are not represented by our simplified 1-D
odel.

. Discussion

Basin flow models (hydro-thermo-mechanical basin
odel, e.g., NEWBAS, Belmouhoub, 1996: Bruel et al.,

999) proposed a plausible renderings of heat flow,
ermal evolution, porosity, and fluid flow (Gonçalvès

t al., 2003, 2004a, 2004b, 2010). In computational models,
ndamental inputs are the geometry, lithology, facies and

eological history (scenario). In terms of hydrogeologic
ystems, two main models with different concepts or
cenarios have been proposed for the deep Bathonian
aline aquifer of the Paris Basin. The aim of such modelling
tudies is to understand the origin and the path of fluids

at allowed them to precipitate as cements. These fluids
re not yet completely constrained because this needs
ulti-proxies and multi-sites studies. And even so, Triassic

uid migration, clay barriers, fault activities, compaction,
ave to be taken into account in the modelling of the Paris
asin fluid palaeo-circulation. Two basic models are agreed
pon here, the first one being proposed by Vincent (2001),

Vincent et al. (2007) and Brigaud et al. (2009b), while the
second one is proposed by André (2003) and Gonçalvès
et al. (2003, 2004a). For both models, two stages are
recognized: one with lateral and downward circulation
through limestone aquifers directly connected to surface
water and the other one with vertical upward flow focused
within major fault zones water (Buschaert et al., 2004).
Table 1 reviews the venue assumptions of the proposed
fluid palaeo-circulation.

For the Cretaceous fluid palaeo-hydrogeologic circula-
tion model, meteoric water recharge for the grainstone
cement precipitation are associated with the geodynamic
history. Some cement may have precipitated from
Oxfordian infiltrated fluids. During the Late Tithonian,
the eastern Paris Basin was likely emerged. The meteoric
fluid recharge, from which most of the cements are
precipitated, would have formed at this period (Vincent,
2001). Between the Early and Late Cretaceous, the basin is
once again emerged, but this time in the northern part
(Ardennes). This emergent basin margin prevailed for the
LCU (Guillocheau et al., 2000; Berriasian, Early Cretaceous),
which corresponds to the uplift of the London–Brabant
massif. This unconformity is the first sub-aerial exposure,
and the result was soil development and karstification of
Jurassic carbonates that are present over a broad
geographical area on the northern Paris Basin margin.
This suggests a recharge zone location in the North of the
Paris Basin for the Oxfordian and Kimmeridgian carbo-
nates (Vincent et al., 2007). Brigaud et al. (2009b) used
carbon and oxygen stable isotopes to characterize the
nature of the palaeo-hydrological circulation and confirms
the palaeo-hydrogeologic conceptual model proposed by
Vincent et al. (2007), and it can be extended to the Dogger
Limestones. They proposed a second uplift event that
occurred in the Early Cretaceous (LAU) and affected the
same formation. The recharge zone is localised in the North
of the Paris Basin, as suggested by Vincent’s et al. (2007)
results.

For the Tertiary fluid palaeo-circulation model, the
study of André (2003) was partly based on d18O analyses in
crystallised gashes or hydrothermal veins. The assumption
of common parent fluid for both fracture mineralisation
and sediment cements is needed here. During or right after
the erosion of the Cretaceous chalk, meteoric recharge
occurred at the eastern and southeastern rims of the Paris
Basin. While the fluids are moving towards the west, their
isotopic composition is reequilibrated. Tectonic faults or
deformation could locally influence this palaeo-circula-
tion. The model of Gonçalvès et al. (2003, 2004a) takes into
account the modification of the fluid path in the Dogger
triggered by salt and heat transport (migration from
Keuper formations) and by the hydrodynamic role of the
Bray fault. The major diagenetic event (maximal burial)
likely occurred at the transition between the Late
Cretaceous and the Early Tertiary (Gonçalvès et al.,
2003), whereas it was previously suggested that it
occurred during the Early Cretaceous. Therefore the
subsequent erosion of the chalk occurred in the Tertiary.
The recharge of meteoric fluids, which was synchronous
with the Tertiary erosion (karstification), was located in
the northwest. The model obtained from fluid inclusion
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alyses suggests an age of 50 My (Early Eocene) for the
gger calcite cements (Gonçalvès et al., 2010).
Our results from 1-D reactive transport simulations
ng a flow line and parameter sensitivity analysis

ggest that diagenesis processes driven by meteoric
ater recharge cannot exclusively cause the 10% decrease

 porosity and that the models proposed in the literature
lated to the processes of cementation of the Oolithe
anche Formation and its reservoir properties cannot be
tained. Other processes might be involved, such as: (i)
filtration of meteoric water along the main active fault at
is time (e.g., Bray Fault, Saint-Martin de Bossenay Fault,
. 1); (ii) Upward migration of deeper and warm fluids
m Triassic formations along faults during the immersion
riod in between LCU and LAU; (iii) convergence of 3-D
w lines towards the centre of the basin and coming from
e basin perimeter outcrops; and (iv) diagenetic processes
iven by pressure-solution process (Elsworth and Yasu-
ra, 2010; Gillon et al., 2010).

 Conclusion

In the Paris Basin, the reservoir properties of the Oolithe
anche Formation and their distribution are now better
own and are related to diagenetic events (variability of
mentation) and palaeo-fluid flow circulation phases.
odelling the diagenetic processes and fluid flow history of
e Bathonian reservoir formations of the Paris Basin is now
ndamental to better understand the repartition and the
igin of the reservoir properties of this deep saline aquifer.
veral concepts have been proposed in the literature for
agenesis (cementation) of the studied formation, and our
ain objective was to test these hypotheses with
athematical models, as represented by numerical codes.
r results from 1-D reactive transport simulations along a
w line and our parameter sensitivity analysis suggest
at the hypothesis proposed in the literature and related to
e processes of cementation of the Oolithe Blanche
rmation could be reconsidered, and that other processes
ust be involved. Understanding the reaction kinetics of
lcite, in particular under the conditions of the recharge
ne, may be a future work avenue.
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mécanique d’un bassin sédimentaire au cours de son histoire géolo-
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Keuper (Ladinien à Rhétien) du Bassin de Paris: implications géody-
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