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The Sanandaj–Sirjan Zone (SSZ) is a part of the Zagros
genic Belt (ZOB), which is a member of the Alpine–
alayan Orogenic Belt. The Zagros Belt comprises

eral NW–SE-trending zones that were formed as a

consequence of the opening and closure of the Neo-Tethys
Ocean beneath the Iranian Plate (Agard et al., 2005; Alavi,
1980, 1994; Berberian and Berberian, 1981; Berberian and
King, 1981; Sengor, 1990). The ZOB of Iran consists of three
parallel tectonic subdivisions trending NW to SE (Alavi,
1994):

� the Zagros Simply Folded Belt;
� the Sanandaj–Sirjan Zone (SSZ);
� the Urumieh–Dokhtar Magmatic assemblage (UDMA)

(Fig. SM 1).
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A B S T R A C T

The Sirstan granitoid (SG), comprising diorite and granodiorite, is located in the Shalair

Valley area, in the northeastern part of Iraq within the Sanandaj–Sirjan Zone (SSZ) of the

Zagros Orogenic Belt. The U–Pb zircon dating of the SG rocks has revealed a concordia age

of 110 Ma, which is interpreted as the age of crystallization of this granitoid body during

the Middle Cretaceous. The whole-rock Rb–Sr isochron data shows an age of 52.4 � 9.4 Ma

(MSWD = 1.7), which implies the reactivation of the granitoid body in the Early Eocene due to

the collision between the Arabian and Iranian plates. These rocks show metaluminous affinity

with low values of Nb, Ta and Ti compared to chondrite, suggesting the generation of these

rocks over the subduction zone in an active continental margin regime. The SG rocks are

hornblende-bearing I-type granitoids with microgranular mafic enclaves. The positive values

of eNd (t = 110 Ma) (+0.1 to +2.7) and the low (87Sr/86Sr)i ratios (0.7044 to 0.7057) indicate that

the magma source of the SG granitoids is a depleted subcontinental mantle. The chemical and

isotope compositions show that the SG body originated from the metasomatic mantle without

a major role for continental contamination. Our findings show that the granitoid bodies

distributed in the SSZ were derived from the continuous Neo-Tethys subduction beneath the

SSZ in Mesozoic times and that the SSZ was an active margin in the Middle Cretaceous.
�C 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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The reported ages for the granitoid plutons in the SSZ
range from Neoproterozoic (Hassanzadeh et al., 2008) to
Tertiary (Mahmoudi et al., 2011; Sepahi et al., 2014). The
Paleozoic granitoid rocks are less distributed in the Iranian
Plate and are related to the extensional intracontinental
regime that accompanied the rifting of the Arabian Plate
and the opening of the Neo-Tethys (e.g., Abdulzahra et al.,
2016; Alirezaei and Hassanzadeh, 2012; Bea et al., 2011;
Shafaii Mogadam et al., 2015; Shakerardakani et al., 2015).
The majority of the granitoid rocks belong to the Middle to
Late Jurassic and are linked to the subduction of the Neo-
Tethys Ocean beneath the Iranian Plate (e.g., Ahmadi
Khalaji et al., 2007; Azizi et al., 2011, 2015; Chiu et al.,
2013; Esna-Ashari et al., 2012; Fazlnia et al., 2009;
Hassanzadeh and Wernicke, 2016; Mahmoudi et al.,
2011; Omrani et al., 2008; Shahbazi et al., 2010). However,
little is known about the Cretaceous granitoid rocks in the
SSZ as compared with the Jurassic granitoids. Zircon U–Pb
age of the Hasan Salary I-type granites is 108.8 � 0.3 Ma
(Mahmoudi et al., 2011) and linked to the subduction-related
magmatism of the Neo-Tethys Ocean beneath the Iranian
Plate. Mazhari et al. (2011) dated the Naqadeh complex and
reported a crystallization age of 96 � 2.3 Ma. Cretaceous K–Ar
and Rb–Sr ages were reported in the SSZ (e.g., Baharifar et al.,
2004; Masoudi et al., 2002). These K–Ar and Rb–Sr isotope
data show resetting of variable degrees by secondary
processes (Mahmoudi et al., 2011) and are useful to estimate
the tectonic and metamorphic events (Allègre, 2008;
Asmerom et al., 1991; Evans, 1995) that occurred in the
SSZ rather than those of crystallization.

In this study, a new radiometric age as well as chemical
and Sr–Nd isotopic data are reported from the Sirstan
granitoid rocks (SG) in the Shalair Valley within the SSZ in
northeastern Iraq (the details of the analytical techniques
are supplied as supplementary material). The present
study throws light on the existence of a Cretaceous igneous
activity that was previously considered to be a magmatic
gap in the SSZ, as reported by Chiu et al. (2013).

2. Geological setting and sampling

The Sirstan granitoid body is located in the Shalair
Valley area within the so-called Iraqi Suture Zone in
northeastern Iraq near the Iraqi–Iranian border. This zone
is considered as part of the Zagros Orogenic Belt (ZOB) that
extends ca. 2000 km from Southeast Turkey through
northeastern Iraq–northwestern Iran to northern Oman
(Fig. SM 1; Alavi, 1994). This zone is linked to the Neo-
Tethys Ocean and thrusted over the Arabian Plate in the
Late Cretaceous obduction followed by collision during
Miocene–Pliocene times (Jassim and Goff, 2006). The
Zagros Suture Zone in northeastern Iraq is divided into
three units that trend parallel to the main trend of the
Zagros Belt, including the Qulqula–Khwakurk, Penjween–
Walash and Shalair units (Buday and Jassim, 1987; Jassim
and Goff, 2006) (Fig. 1a). The Shalair unit is located within
the Shalair Valley area and is considered as part of the
Sanandaj–Sirjan Zone. Structurally, the Shalair Valley is an
eroded east–west-trending asymmetrical anticline whose
axis gently plunges toward the east (Smirnov and Nelidov,
1962). It extends approximately over 30 km with a width

of more than 20 km. The value of the dip ranges from 308 to
708 for the southern limb and from 208 to 408 for the
northern limb (Smirnov and Nelidov, 1962). The core of the
Shalair anticline is composed of metasedimentary sequen-
ces (Qandile Rock Series), whereas the limbs comprise the
Katar Rash Volcanic Unit (also known as the Walash
‘‘Volcanic’’ Rock Series; Al-Shible and Kettaneh, 1972;
Smirnov and Nelidov, 1962; Fig. 1b) that ranges in
composition from basic to acidic igneous rocks (Al-Shible
and Kettaneh, 1972; Buday and Jassim, 1987; Jassim and
Goff, 2006). The Qandile Rock Series covered the majority
of the Shalair Valley area and comprise 2000 m (Smirnov
and Nelidov, 1962) of phyllite, schist, slate and greywacke
with minor felsic volcanic and some lenticular limestone
(Buday and Jassim, 1987; Jassim and Goff, 2006; Smirnov
and Nelidov, 1962). The contact with the overlying Katar
Rash Series is unclear, maybe gradational contact or low-
angle unconformity (Jassim and Goff, 2006). Based on
microfacies analyses, the estimated age of the Qandile
Rock Series is Aptian–Cenomanian. However, a geochro-
nological study is required to confirm this age. The Qandile
Rock Series are reported to be formed in a fore-arc basin in
front of the subduction zone (Jassim and Goff, 2006). The
Katar Rash Series (also known as the Walash ‘‘Volcanic’’
Rock Series; Al-Shible and Kettaneh, 1972; Smirnov and
Nelidov, 1962) are exposed along the limbs of the Shalair
anticline and comprise 1000 m of calc-alkaline series of
basaltic andesite, andesite, dacite and rhyolite (Jassim and
Goff, 2006). This unit has been dated using U–Pb zircon age
and yielded a crystallization age of ca. 108 � 2.9 Ma (Ali
et al., 2016).

Several granitoid bodies with variable dimensions crop
out within the Shalair anticline; these are: Aulan, Sirstan,
Laladar and Mishao which are exposed at the limbs within
the Katar Rash Volcanic Unit and one body, the Damamna
is exposed in the core within Qandile Rock Series
(Abdulzahra et al., 2016; Al-Hafdh and Qasim, 1992; Al-
Rubaie, 1976; Al-Shible and Kettaneh, 1972; De Villiers,
1957; Smirnov and Nelidov, 1962).

Various ages have been reported concerning the
igneous activities in the Shalair Valley. Al-Shible and
Kettaneh (1972) and Smirnov and Nelidov (1962) sugges-
ted that the igneous activity was during the Tertiary. Buday
and Jassim (1987) and Jassim and Goff (2006) estimated
that the Shalair Valley igneous activity was in the Late
Cretaceous. Al-Hafdh and Qasim (1992) proposed Late
Cretaceous to late Miocene. However, these estimated ages
are based on field observation and correlation with the
Upper Cretaceous igneous activities in the SSZ. For more
details on the geology of the Shalair Valley area (see Jassim
and Goff, 2006).

Cretaceous magmatic activities are well developed in
the northwestern part of the SSZ compared with the
southeastern part (Azizi and Moinevaziri, 2009; Mohajjel
et al., 2003). In the northwestern part of the SSZ, the
country rocks are composed mainly of shale, sandstone
and calcareous rocks, which are intercalated, by basalt,
andesitic basalt and andesite. These rocks show calc-
alkaline magmatic affinity and are linked with a continen-
tal arc setting during the subduction of the Neo-Tethys
Ocean beneath SSZ (Azizi and Jahanjiri, 2008; Azizi and



Fig. 1. a: tectonic zones of the Iraqi Zagros Suture Zone (Jassim and Goff, 2006), showing the distribution of igneous and metamorphic rocks; b: geological

map of the Shalair Valley area from Al-Shible and Kettaneh (1972), modified.
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Moinevaziri, 2009). Azizi and Moinevaziri (2009) sugges-
ted that the metasomatized mantle was responsible for
introducing calc-alkaline magmatism during the subduc-
tion of Neo-Tethys Ocean. These magmatic activities were
developed to form the magmatic arc system in the
northwestern part of the SSZ.

In this study, we focus on the Sirstan granitoid (SG). The
present new geochemical and geochronological data on
the Sirstan rocks add new information on events in
continuation with the events that occurred in the
Sanandaj–Sirjan Zone and cover the missing age (Middle
Cretaceous). Therefore, we employed the geochemical data
and age relationship of the Siristan rocks, which seem to be
important in the study of magmatic and tectonic history in
Zagros Belt. The SG body is located to the north of the
Sirstan village close to the Iranian border (Fig. SM 2). It is
the largest intrusive body in the Valley and extends for
about 5 km. This body is characterized by a very steep
slope with rugged topography and is surrounded by
volcanic rocks of Katar Rash from the north and phyllite
rocks of Qandil Rock Series from the south (Fig. SM 2,
SM3a). The contact relation between the SG and the
surrounding rocks is not so clear (Al-Shible and Kettaneh,
1972; De Villiers, 1957; Smirnov and Nelidov, 1962).
Generally, the rocks are gray to greenish gray in color,
massive, coarse grained, fractured (Fig. SM 3a, b) and are
cut by numerous quartz and epidote veins. Numerous
mafic enclaves were noted within the coarse granitoid
rocks throughout the Sirstan granitoid body. These
enclaves show variable shapes and some are spherical,
elliptical with sharp contact with the hosted granitoids.
Their lengths are from a few centimeters to more than
15 cm; they are apparently finer grained than the
surrounding or enclosing rocks (Fig. SM 3c, d).

3. Results

3.1. Petrography

The rock samples of the Sirstan pluton are composed
mainly of plagioclase (45%), quartz (38%) and hornblende
with minor amount of pyroxene (9%). Zircon, sphene and
magnetite are the accessory minerals identified making
approximately 7%, with sericite, epidote and chlorite as
alteration products. The SG samples show an equigranular
texture. According to the extinction angle measurement,
the average plagioclase composition is from albite to
oligoclase. They are subhedral and show variable size (0.3–
3.0 mm) with an average of approximately 1.4 mm. Some
of the plagioclase grains display deformation twins and
fracturing (Fig. 2a). The quartz grains are anhedral with an
average size of approximately 1.2 mm and a few of them
show undulose extinction (Fig. 2b). The mafic minerals are
dominated by hornblende, with minor pyroxene (augite),
which are observed in all the studied samples, and make
about 5 to 25 percent by volume. The grains are generally
fresh and have well developed cleavage (Fig. 2c). They are
subhedral to anhedral, greenish brown to faint brown in
color and are peleocroic. In some thin sections, hornblende
contains inclusions of plagioclase, quartz and opaque
minerals (Fig. 2d, e). Some grains are altered due to an

urilitization process along the grain boundaries and cracks.
Opaque minerals are mostly magnetite, which occurs as
single euhedral grains or as disseminated very fine-grained
aggregates associated with highly deformed and altered
regions. The enclave samples exhibit more or less similar
mineralogical and textural features to the enclosing host
granitoids, but are finer grained than the host and
constitute more mafic minerals that are mainly horn-
blende along with minor amounts of biotite. These mafic
minerals are surrounded by quartz and plagioclase
forming a microgranular texture (Fig. 2f).

3.2. Whole-rock geochemistry

The analytical results of the major oxides in weight
percent and the trace elements including REEs in ppm are
listed in Table SM 1. The Sirstan granitoid and the enclave
sample have moderate contents of SiO2 (57.0–61.4 wt.%),
high Al2O3 (15.3–16.7 wt.%) and (Na2O + K2O) (3.85–5.47
wt%). These rocks contain 0.62–0.74 wt.% TiO2, 6.6–
8.8 wt.% Fe2O3, 2.5–4.0 wt.% MgO and 2.7–7.1 wt.% CaO
contents. The enclave sample (XeS) shows relatively less
CaO, and high Fe2O3 and Na2O contents than the enclosing
host SG granitoids.

The SG rock samples show a good fractionation trend of
major and trace elements with SiO2 when plotted on the
variation diagrams (Fig. SM 4).

In the alkali versus silica diagram (Middlemost, 1985),
all samples of the SG and the enclave sample (XeS) are
plotted in the diorite field with few SG samples along the
border between diorite and granodiorite fields (Fig. SM 5a)
and are calc-alkaline on the AFM diagram (Fig. SM 5b:
Irvine and Baragar, 1971). On Al2O3/(CaO + Na2O + K2O)
versus Al2O3/(Na2O + K2O) of Shand (1943) (Fig. SM 5c), the
SG samples are defined as metaluminous with ASI values
less than one, whereas the enclave sample has peralumi-
nous affinity.

The chondrite-normalized REE patterns (normalization
after Sun and McDonough, 1989) for the SG rocks are
homogeneous (Fig. 3a) with fractionation REE (10 to
40 times chondrite) and slight LREE enrichment (La/
Yb)N = 1.9–2.5 (Table SM 1). The patterns show negative Eu
anomalies (Eu/Eu* = 0.83–0.97) that indicate plagioclase
fractionation during the melting and crystallization stages.
The REE pattern for the enclave sample more or less runs
parallel to the host rock patterns, but shows relative
enrichment with respect to the host granitoids with lower
(La/Yb)N (= 1.3) and more pronounced negative Eu
anomaly (Eu/Eu* = 0.54). On the primitive mantle–nor-
malized multi-component element diagram (normaliza-
tion after Sun and McDonough, 1989) (Fig. 3b), the SG
samples show a good consistency in the distribution of the
elements with high amounts of K, Rb, and Pb, which are
probably due to alteration, and distinct Nb, Ta and Ti
depletions, which are characteristic geochemical indica-
tors of subduction-related calc-alkaline magma (Pearce
et al., 1984). The enclave sample exhibits a geochemical
similarity with the host rocks, but is more depleted in Nb,
Ta, and Ti, and slightly more enriched in HREE.

On the 10,000 � Ga/Al-versus-Nb diagram (Fig. SM 6a),
the SG samples and enclave samples are plotted in the
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-I-type fields. The average values of 10,000 � Ga/Al
os for the studied rocks of the SG and enclave (Table SM
are similar to the average values of I-type granitoids
posed by Whalen et al. (1987).

 U–Pb zircon geochronology

Two samples (SG1 and SG2) were selected for zircon U–
age determination. The zircon grains are elongated,
h lengths up to 250 mm. CL images (Fig. SM 7a, b) show
t some zircon grains have zoning. And the zircon grains
e microfractures that have affected grain size and
pe. This could be due to deformation processes or to
shing of the rock sample during preparation.

The U–Pb analytical results of the selected zircon grains
are listed in Table SM 2. According to the estimates from
204Pb intensity measured by LA–ICP–MS analysis, these
zircon grains have low common lead contents (about 2%
for SG1 and SG2).

The values of the Th/U ratio of the zircon grains for SG1
and SG2 are 0.75 and 0.59, respectively, from which a
magmatic origin can be inferred (Chen et al., 2007;
Hartmann and Santos, 2004; Hoskin and Schaltegger,
2003; Rubatto, 2002). Both rims and cores for the zircon
grains have the same age (Table SM 2). The U–Pb ages of
the SG samples are calculated using ISOPLOT v. 4.15 soft-
ware (Ludwig, 2012) and are 109.3 � 1.3 Ma, with a mean
square weighted deviate (MSWD) value of 1.4 for sample SG1

2. Photomicrographs of the SG. a: deformation twins lamellae in plagioclase; b: undulose extinction in quartz; c: fresh hornblende with altered

ioclase; d, e: plagioclase imbedded in pyroxene; f: mineralogy of enclave samples, showing similar mineral composition with the host SG rocks.

bols: Pl = plagiocalase; Qtz = quartz; Mag = magnetite; Hb = hornblende and Px = pyroxene.
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and 114.9 � 4.9 Ma (MSWD = 9.5) for sample SG2 (Fig. 4a, b).
Because of approximately similar results of the two-
concordia ages, a weighted average age of 109.7 � 1.3 Ma
is taken as the crystallization age of the SG, which is in
correspondence with the Middle Cretaceous period (i.e.
Albian).

3.4. Rb–Sr whole-rock isochron

Eight out of nine samples were used to calculate Rb–Sr
isochron. The excluded sample (S17) is slightly altered and
it falls slightly off the isochron. The whole-rock Rb–Sr
isochron system for the SG rocks shows a regular linear
distribution of points (Fig. 5) and gives an age of
52.4 � 9.4 Ma with a MSWD of 1.7, which is younger than
the zircon U–Pb age (110 Ma). This is probably attributed to
an incomplete reset of the whole-rock Rb–Sr isotope system
during alteration and/or metamorphism processes (Allègre,
2008; Asmerom et al., 1991; Evans, 1995). This Rb–Sr data
can be used to discuss the tectonic and metamorphic events
that occurred in the area within Northeast Iraq and
Northwest Iran during Paleogene period (i.e. the Eocene). It

is possibly related to evidence of final closure of the Neo-
Tethys (Ghasemi and Talbot, 2006; Jassim and Goff, 2006;
Kazmin, 1991; Mazhari et al., 2009; Sharland et al., 2001;
Vergès et al., 2011).

3.5. Sr and Nd isotope ratios

The results of our isotope analyses for Rb–Sr and Sm-Nd
are listed in Table SM 3.

The initial values of both Sr and Nd isotope ratios
(87Sr/86Sr, 143Nd/144Nd) for the SG and the enclave rocks
were calculated based on the U–Pb zircon age of 110 Ma.
The values of 143Nd/144Nd (i) vary between 0.51250 and
0.51263, with positive eNd (110 Ma) values ranging from
+0.1 to +2.7, indicating mantle origin for both SG and
enclave rocks. The initial 87Sr/86Sr values range from
0.7044 to 0.7057 for SG rocks which is the characteristics of
I-type granites (Chappell and White, 1974, 1992). Arms-
trong et al. (1977) and Chappell and White (1974)
suggested a critical boundary of 0.7060 for 87Sr/86Sr
value with I-type granites having initial 87Sr/86Sr ratios
between 0.7040 and 0.7060. Pitcher (1979) suggested

Fig. 3. a and b: REE patterns in the SG samples normalized by chondrite and primitive mantle, respectively (normalization after Sun and McDonough, 1989).

See text for details. Data for the Suffi abad pluton from Azizi et al. (2011) and the Hasan Salary pluton from Mahmoudi et al. (2011) are shown for

comparison. The star symbol indicates an enclave sample.
Fig. 4. U–Pb concordia ages for the SG. a: SG1 and b: SG2. Data-point error ellipses are 2s.



the
tha

4. D

4.1.

(SG
typ
che
zon
app
et a
gra
Abd
roc
(AC
affi
(Fig
sam
add
frac

isot
+2.
arra
ind
enc
val
1) l
gen
und
the
the
wit
(Fig
all 

Fig. 

52.4

I.K. Abdulzahra et al. / C. R. Geoscience 349 (2017) 53–62 59
 characteristic of initial 87Sr/86Sr values less or more
n 0.7060 for the I- and S-type granites, respectively.

iscussion

 Magma source and fractional crystallization

As previously stated, the rocks of the Sirstan granitoids
) and the enclosing enclave have the characteristics of I-
e granite. In the classification scheme, they have
mical signature of calc-alkaline magma in subduction
e environment. These rocks are part of magmatic arc as
eared in tectonic discrimination diagram of Pearce
l. (1984) (Fig. SM 6b), and are classified as orogenic

nite as appeared in K/Rb vs. Rb/Sr diagram (Fig. SM 8a;
el-Rahman and El-Kibbi, 2001). The vast majority of SG

ks are plotted within the active continental margin
M) field, whereas the enclave sample shows oceanic arc
nity in the Ta/Yb–Th/Yb and Yb–Th/Ta diagrams
. SM 8c, d: Gorton and Schandl, 2000). The enclave
ple has Th/Ta ratio values reaching up to 27.4. In
ition, the SG rock samples follow the assigned
tional crystallization trend (Fig. SM 8c).

The whole-rock geochemical characteristics, Sr–Nd
opic data with positive eNd (110 Ma) values (+0.1 to

7), and their clumped distribution within the mantle
y in 87Sr/86Sr–eNd (110 Ma) diagram (Fig. SM 8b)

icate that the magma source for the SG rocks and the
lave lies in the mantle origin. Furthermore, the low
ues of Rb/Sr coupled with high Sm/Nd ratios (Table SM
et us infer that the parental magma of these rocks was
erated by partial melting of a depleted mantle that
erwent fractional crystallization when ascended into

 continental crust. The geochemical aspects, including
 relatively linear trend of the major and trace elements
h SiO2 (Fig. SM 4); the similarity of the REE patterns
. 3) and the incompatible elements ratios (Fig. SM 8c)

support the role of the fractional crystallization in the

evolution of the source magma of the SG rocks. Further-
more, the relationship of various trace elements and their
ratios also support the effect of fractional crystallization in
the evolution of the studied rocks. For example, the plots of
Rb/Ba vs. Ti/Y ratios (Fig. SM 8e) show a random
distribution and scattering of the plotted points. If the
parental magma was contaminated or mixed with
continental crustal components, then the trend of these
rocks should be more or less linear and show increasing, i.e.
these should be some sort of increase in the values of Rb/Ba
and Ti/Y ratios. Also, on the plot giving the initial
143Nd/144Nd ratios vs. SiO2 (Fig. SM 8f), the 143Nd/144Nd
trend, which is almost a straight line, shows no consider-
able increase when SiO2 increases. All these aspects in
addition to the initial 87Sr/86Sr and eNd (110 Ma) values
indicate that neither contamination nor mixing with
crustal components had any influence in the evolution
of the magma, and that these rocks were most probably
derived from the mantle and evolved through fractional
crystallization processes.

Many propositions have been put to explain the genesis
of the enclaves that occur with the granitoid rocks
including enclaves of wall rock fragments magma min-
gling, restite and chilled margins (Barbarin, 1988; Barbarin
and Didier, 1992; Chappell et al., 1987; Chen et al., 1990;
Elburg, 1996; Kocak, 2006; Silva et al., 2000).

As previously noted, the enclave in the study area
shows more or less similarities in their chemical compo-
sitions with the SG rocks in terms of the major and trace
elements as well as the Sr–Nd isotopic ratios, which all
indicate the cogenetic origin for both. However, the
enclave sample is more mafic, containing higher contents
of hornblende and biotite, with lesser alkalis; it is finer
grained than the hosted SG rocks. It is peraluminous and
shows oceanic arc affinity (Fig. SM 8c, d) and is relatively
enriched in REE relative to the hosted granitoids. These
lines of evidences more likely indicate that the enclave
represents the earlier stage of evolution of the source
magma than the SG rocks. In other words, the less evolved
portion of the magma underwent the processes of the
replenishment plus fractional crystallization (RFC) during
the partial melting that had extracted the incompatible
elements. The processes of RFC could be responsible for the
observed trends of the REE and multi-elements (Fig. 3a, b)
(e.g., Smith and Gray, 2011). However, more detailed
studies are needed concerning the age of the enclaves in
these rocks in order to provide reliable insights into their
petrogenesis.

4.2. Middle Cretaceous igneous activity within the Zagros Belt

As previously discussed, the zircon U–Pb age of the SG
rocks is 110 Ma, which indicates the existence of the
igneous activity in SSZ during the Middle Cretaceous (i.e.
Albian). The whole-rock Rb–Sr isochron for the SG rock
samples yield rough estimated age of 52.4 � 9.4 Ma, which
is younger than the zircon U–Pb age. Although the estimated
Rb–Sr isochron age (52.4 Ma) is not used here for magmatic
geochronology, but probably gives reliable information about
the timing of the tectonic and metamorphic events that
occurred during the Paleogene period (i.e. Eocene) in

5. Rb–Sr whole-rock isochron for 8 SG samples, shows an age of

 � 9.4 Ma. Data-point error ellipses are 2s.
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northeastern Iraq and northwestern Iran within the Zagros
Belt.

Chiu et al. (2013) reported a summary of the U–Pb
zircon ages to constrain the magmatic evolution related to
the Neo-Tethys subduction and the Zagros Orogeny during
Mesozoic and Cenozoic times. They concluded that the
highest magmatic activities in the SSZ had occurred during
the Jurassic period (176–144 Ma). However, little is known
about the magmatic activities during Early and Middle
Cretaceous times (Fig. 6). Agard et al. (2011) concluded
that the Middle to Late Cretaceous period (115–85 Ma)
represents a specific time of perturbation of subduction
marked by blueschist exhumation along the northern part
of the Neo-Tethys subduction zone and the obduction
processes in the southern part of the Neo-Tethys. Further-
more, this time is marked by rifting in the back-arc setting
followed by closure during Late Cretaceous times with the
development a supra subduction zone ophiolite (e.g., Agard
et al., 2011; Ali, 2012; Ali et al., 2012; Shafaii Mogadam et al.,
2009, 2014). Agard et al. (2005) suggested that the Middle to
Late Cretaceous time recorded a change in the rates of
convergence and speed of the Neo-Tethys subduction
beneath SSZ. It is likely that the SG rocks were formed
during the time of the perturbation of the subduction
processes during the Middle Cretaceous time.

The geochemical and isotopic characteristics of the SG
rocks indicate that these rocks came from partial melting
of depleted mantle-derived materials above the subduc-
tion zone without significant contamination by continen-
tal crust. Furthermore, these features imply magmatic arc
intrusion related to an active continental margin as the
origin of the SG rocks. Based on our study, the zircon U–Pb
age (110 Ma), which corresponds to the Middle Cretaceous
adds new information about the magmatic activity that
occurred in the Middle Cretaceous in the northern Arabian
peninsula (northeastern Iraq) and northwestern Iran
within the Zagros Belt.

5. Conclusions

The Sirstan granitoid body crops out in the northern
Sanandaj–Sirjan Zone in northeastern Iraq. Zircon U–Pb
dating shows that these rocks crystallized at 110 Ma.
Chemical compositions and initial isotope ratios show that
they are calc-alkaline granitoids that were generated in an
active continental margin regime. Although the distribu-
tion of the Mesozoic granitoid bodies in the SSZ has shown

period from 140 to 160 Ma, the SG granitoid with typical
calc-alkaline magma in the active margin confirms the
extending of granitoid bodies from the Middle Jurassic to
the Middle Cretaceous in the northern SSZ. This clarifies a
long period of Neo-Tethys subduction beneath the Iran. The
whole-rock Rb–Sr isochron from fresh samples with 52 Ma
probably suggests the heating of these rocks due to the
collision of the Arabian and Iranian plates in the Cenozoic.
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