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 Introduction

The series of spherical harmonics is the commonly used
ethod for global gravity field modeling; however,
herical Radial Basis Functions (SRBFs) can locally

represent the gravity field of the Earth. The Stokes
coefficients of spherical harmonics are sensitive to local
signal changes, although SRBFs are often used to model the
higher frequencies of the field and can be used as an
alternative method for regional modeling of the Earth’s
gravity field and the corresponding quasigeoid models. The
Earth’s gravity field can be expressed by a linear
combination of the SRBFs (Barthelmes and Dietrich,
1991). The kernels of SRBFs are mostly of the inverse-

R T I C L E I N F O

icle history:

ceived 6 February 2017

cepted after revision 4 March 2017

ailable online 10 May 2017

ndled by Philippe Cardin

ywords:

dial Basis Functions

cal gravity field

netic algorithm

njugate gradient

st squares

A B S T R A C T

Spherical Radial Basis Functions (SRBFs) can express the local gravity field model of the

Earth if they are parameterized optimally on or below the Bjerhammar sphere. This

parameterization is generally defined as the shape of the base functions, their number,

center locations, bandwidths, and scale coefficients. The number/location and bandwidths

of the base functions are the most important parameters for accurately representing the

gravity field; once they are determined, the scale coefficients can then be computed

accordingly. In this study, the point-mass kernel, as the simplest shape of SRBFs, is chosen

to evaluate the synthesized free-air gravity anomalies over the rough area in Auvergne and

GNSS/Leveling points (synthetic height anomalies) are used to validate the results. A two-

step automatic approach is proposed to determine the optimum distribution of the base

functions. First, the location of the base functions and their bandwidths are found using the

genetic algorithm; second, the conjugate gradient least squares method is employed to

estimate the scale coefficients. The proposed methodology shows promising results. On the

one hand, when using the genetic algorithm, the base functions do not need to be set to a

regular grid and they can move according to the roughness of topography. In this way, the

models meet the desired accuracy with a low number of base functions. On the other hand,

the conjugate gradient method removes the bias between derived quasigeoid heights from

the model and from the GNSS/leveling points; this means there is no need for a corrector

surface. The numerical test on the area of interest revealed an RMS of 0.48 mGal for the

differences between predicted and observed gravity anomalies, and a corresponding 9 cm

for the differences in GNSS/leveling points.
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istance type, which can be defined in different ways;
r instance, the point-mass kernel (Barthelmes, 1988;

arthelmes and Dietrich, 1991; Blaha et al., 1986; Lin et al.,
014; Shahbazi et al., 2015; Sünkel, 1981; Weightman,
965). Later the higher order of point-mass, radial multi-
oles, were introduced by Marchenko (1998) and used by
oroughi and Tenzer (2014). Poisson wavelets, were
erived by Holschneider et al. (2003) and later used by
hambodut et al. (2005); Klees and Wittwer (2007); Klees
t al. (2008); Panet et al. (2006); Safari et al. (2014); and
enzer et al. (2012). The band-limited Blakman base
nctions were first used by Schmidt et al. (2004, 2005).

enzer and Klees (2008) showed that there is no significant
ifference between different types of kernels when they
re parameterized properly.

The parameterization of the gravity field using SRBFs
onsists in defining the type of kernel, the number of
ernels, the location of the center of the kernels, and kernel
andwidths that all have a considerable effect on the
redicted model. Using many kernels leads to overpara-
eterization, while applying a low number of them can

nly represent the low-frequency part of the model. The
RBF kernel is defined on or within the sphere which is
ompletely located inside the Earth’s topography and is
nown as the Bjerhammar sphere (Moritz, 1980). SRBF
ernels are typically defined as inverse distances between
tegration points in the target area and computation

oints in the data coverage. An inverse relation exists
etween the kernel’s bandwidth and the kernel’s depth
to the Bjerhammar sphere. Some studies (Klees et al.,

008; Tenzer et al., 2012) consider the depth of the kernels
s separate unknown parameters rather than their 2D
cation. However, the unknown parameters can be
erged into 3D positions of the kernels on the Bjerhammar

phere and be found in one step (Shahbazi et al., 2016).
Finding the number of base functions (kernels) and the

cation of their centers is the first step of SRBF
arameterization. Different methods have been proposed

 find the optimum number with respect to the location of
e observation points and the depth of kernels into the

jerhammar sphere. Marchenko (1998) used radial multi-
ole kernels below the observation points and then
ptimized the solution using a sequential multi-pole
lgorithm. The depth and order of the radial multi-pole
ernels were then determined by the covariance function
f the signal around the observation points. Klees and
ittwer (2007) and Klees et al. (2008) proposed a
ethodology that was fully based on the distribution of
e data. They used an initial regular grid of the SRBFs to

arry out the first adjustment; then they added local base
nctions to the areas where the residuals between

bservation and predicted anomalies were larger than a
redefined tolerance. The generalized cross-validation
ethod was also applied to approximate the optimal

epth. Their method was only applicable in areas with
ense gravity data coverage and smooth topography.
enzer et al. (2012) analyzed the least squares approxi-
ation of the gravity field via Poisson wavelets of order

 on various spherical equiangular grids, and they used the
ethod of minimization of the RMS differences between

redicted and observed gravity disturbances to find the

optimal depth of the kernels. They reduced the number of
the required base functions by applying topographical
corrections. Foroughi and Tenzer (2014) introduced the
Levenberg–Marquardt algorithm to minimize the number
of base functions and find their depth based on Least
Square (LS) adjustment; they suggested the use of a two-
step process to find the optimal number of base functions.
In the first step, the optimum number of base functions
was defined based on the fitting between observed and
predicted gravity anomalies and in the second step the
optimum number was chosen according to best fitting
between observed and predicted quasigeoidal heights. The
common optimum number between the two steps was
then selected as the number of kernels. The two-step
method did not require adding extra local kernels
manually, but it was computationally expensive and
needed independent control points with two types of
observations: gravity anomalies and normal heights. Later
Shahbazi et al. (2016) modified this method so that the
number of base functions could be chosen in one step.
Their method allows one to find the optimum number
based on estimated errors in the observation data as well
as their distribution.

The proposed methods of parameterization of SRBFs in
previous studies are limited to the initial choice of the
location and depth of the kernels and some are not able to
choose the number of kernels automatically. These
methods might represent the ‘‘local minimum’’ of the
parameterized solution because their final solution does
not differ significantly from their initial values. They
mostly use corrector surfaces to fit the final gravity model
to local GNSS/Leveling data points, which simply hides the
discrepancies between the predicted and the observed
model. The intention of the current study is to employ the
Genetic Algorithm’’ (GA) and let the parameters of the
kernel of SRBFs be chosen based on the information
provided in the observation data. The proposed method in
this study can search among all the possible solutions of
parameterized SRBFs and find the ‘‘global minimum’’ of the
target function that is set to be minimized in the process.
Once the parameters of SRBFs are found using GA, the
system of linear equation, in the LS sense, is solved based
on the Conjugate-Gradient (CG) technique, which leads to
an un-biased solution, unlike the previously used approa-
ches.

The theory of SRBFs in gravity field modeling is
described in Section 2. General information on GA is
provided in Section 3.1. The iterative approach of CG is
presented in Section 3.2. The methodology of problem
solving is explained in Section 4. The numerical results and
discussion are touched on in Section 5 and Section 6,
respectively. At the end, Section 7 summarizes the remarks
of this contribution.

2. Theory of regional gravity field modeling using SRBFs

According to the Runge–Krarup theorem, a harmonic
function can be regarded as an expansion of the non-
orthogonal base functions. The disturbing potential of the
Earth’s gravity field is considered harmonic above the
geoid (Moritz, 1980), therefore, we can represent it as a
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ear combination of the set of non-orthogonal base
nctions (Marchenko, 1998):

x Þ ¼
Xn

i¼1

Cifi x; yið Þ (1)

here T stands for the disturbing potential and fi is the
BF’s kernel, which is a function of the inverse spherical
stance between observation point x and the location of
e kernel, denoted by yi. Each x,y consists of the three
rtesian coordinate elements. Ci are the scale coefficients

 the expansion, which will be determined by solving the
stem of linear equations once the parameters of SRBF’s
rnel are defined. The fundamental equation of physical
odesy reads (Moritz, 1980, Eq. 2-148):

g xð Þ ¼ �@T xð Þ
@ xj j �

2

xj j T xð Þ (2)

here Dg is the gravity anomaly at the surface of the Earth
lluroid). By substituting Eq. (1) into Eq. (2), we can get:

g xð Þ ¼
Xn

i¼1

Cici x; yið Þ (3)

here c(x,y) is the kernel for gravity anomalies, which is
lculated by the radial derivate of the kernel fi with
spect to ( xj j) as follows:

ci x; yið Þ ¼ �@fi x; yið Þ
@ xj j � 2

xj jfi x; yið Þ (4)

Eq. (3) can be parameterized with the system of linear
uations where the gravity anomalies are observations
d the unknown parameters consist of the location of the
rnel’s center, the kernel’s depths, and scale coefficients.

 Optimization of the SRBFs via genetic algorithm

. Genetic algorithm

The Genetic Algorithm (GA) technique was first
troduced by Holland (1975) who established a method
 find the optimal solution of an optimization problem
sed on artificial intelligence. In this problem, a ‘‘target

nction’’ (or fitness function) is defined by the user to be
inimized or maximized, depending on its definition,
ring the process. ‘‘Genes’’ are considered the unknown
rameters and each set of genes is placed in one
hromosome’’. Hence, each chromosome has the length

 the number of unknown parameters. Based on the initial
its of chromosomes, the GA produces an initial

pulation of the solutions which are called ‘‘offspring’’.
e offspring will be produced to optimize the target
nction and the ones which move towards the optimal
lution will be selected as new chromosomes (‘‘parents’’)

 participate in reproduction. Thus, the evolution process
ill continue until the point that the chromosomes can no
nger produce ‘‘better’’ offspring, i.e. the value of the
ness function is smaller than a specified tolerance (noise

 input data). These sets of chromosomes will be
nsidered to be the global optimal solution to the
oblem (cf. Haupt and Haupt, 2004). To stop the algorithm

according to the physical constraints of the problem, a
criterion of producing a certain number of generations can
be considered. However, the number of iterations can be
different according to the choice of initial values which are
introduced by the user.

In every iteration, each set of chromosomes will be
regarded as one population. Each chromosome has a
fitness score that is the inverse of its target function’s
value. The chromosomes with a higher fitness score will be
more involved in the crossover process to produce new
generations. During the reproduction, ‘‘mutation’’ will
make small changes in the chromosomes (normally
between 0.001 and 0.5), to avoid getting the solution
trapped in local minimums. The ‘‘migration’’ between
populations is in the forward direction, i.e. the chromo-
somes of population of the nth iteration migrate to the
(n + 1)th iteration. To apply the GA, the Matlab original GA
toolbox scripts were used and its functions were modified
to fit our desired numerical problem (Chipperfield et al.,
1994).

3.2. Conjugate gradient least squares method

Conjugate Gradients (CG) is an iterative method to
estimate the best solution of an overdetermined badly
conditioned Least Square (LS) problem, which we will here
call CG–LS. CG–LS simply looks for the unknown param-
eters (x) where they best satisfy the equation Ax = b (Björck
et al., 1988):

xk ¼ argminkb�Axk (5)

where b is the set of known (observation) values and xk is
the set of unknown parameters in the kth iteration. For the
Nth iteration, the algorithm works as follows:

r0 ¼ b�Ax0

s0 ¼ ATr0

P0 ¼ s0

for i ¼ 0; 1; . . .N do

ai ¼
PT

i P

PT
i ATAPi

xiþ1 ¼ xi þ aiPi

riþ1 ¼ ri�aiAPi

siþ1 ¼ si�aiA
TAPi ¼ ATriþ1

bi ¼
sT

iþ1siþ1

sT
i si

Piþ1 ¼ siþ1 þ biPi

end for

(6)

where x0 is the initial solution (which can be zero), r is the
vector of residuals at each iteration. a and b are the
regularization parameters, and P is the parameter that
reflects the influence of one iteration on the next. In
principal the CG–LS algorithm is seeking to minimize the
following expression (Kloek, 2012):

min’ xk�1 þ apk�1ð Þ (7)
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here w reads:

 xð Þ ¼ 1

2
xTATAx�xTATb (8)

The unknown parameters in this algorithm are the scale
oefficients (Ci in Eq. (1)).

. Methodology

The location of base functions on or below the
jerhammar sphere, as well as their depth, should be
efined optimally to predict the local gravity field model;
is is a non-linear optimization problem. The scale

oefficients are the unknown parameters of a linear
roblem once the base functions are parameterized (the
alues of fi is known per Eq. (1)). In this study, GA as a non-
near optimization method is combined with CG–LS as a
near regularization method to locally predict the gravity
eld model. The following flowchart summarizes the
ombination of these two methods:

In this method, GA is expected to find only the optimal
cation and depth of kernels and not their numbers. Thus,
e length of the chromosomes is fixed in GA and is three

mes the number of kernels (longitude, latitude, and depth
re unknowns). Instead of fix-length chromosomes, vari-
ble-length chromosomes can be used. The number of
ernels can be considered as an integer unknown
arameter along with other unknowns. However, the
cation of kernels is a function of this number and so the

lgorithm needs longer time to converge and also the limit
hich GA is searching to optimize the fitness function is
uch larger than fix-length chromosome mode. So, to get a
ster solution, the number of kernels was set to a fix value.

 range of different numbers of base functions should be
ied in the algorithm, and the predicted solution in terms
f gravity and height anomaly will be compared with
bservations to find the best number (cf. Foroughi and
enzer, 2014). Once the number of SRBFs is specified, GA
an establish a population of chromosomes with the length
f unknown parameters of kernels and their limits. The
mit of both longitude and latitude is the data coverage
rea, and depth is limited between zero (on the Bjerham-
ar sphere) and 100 km (Klees et al., 2008). The maximum

epth of the kernels can be different depending on their
pe. Choosing a larger limit of depth elongates the

rocess; in our experience the depth typically is not more
an 100 km.
The initial location of kernels is a regular grid on the

jerhammar sphere (where depth is zero) and the grid
pacing is defined as follows:

’ ¼ ’max�’min

round
ffiffiffi
n
p� �

l ¼ lmax�lmin

round
ffiffiffi
n
p� �

(9)

here dw and dl are the latitude and longitude grid
pacing and n is the number of kernels. The maximum and
inimum of (w,l) is defined based on the data coverage

mit. Once the initial location of kernels is defined, the CG–
S is employed to estimate the scale coefficients; these

in Fig. 1. The target function in GA is the difference
between predicted and observed gravity anomalies at
control points:

F xð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

m

Xm

i¼1

Dgobserved
i �Dgpredicted

i

� �2

vuut (10)

where m is the number of chosen control points. New
chromosomes and more evolved populations are produced
by crossover, mutation, and migration operations. CG–LS
computes the scale coefficients in order to calculate the
value of the target function. Eventually, the most qualified
chromosome of the last population is considered to be the
optimum solution of the GA. The new location of kernels is
no longer (normally) on the regular grid, specifically in
areas of rough topography.

The algorithm stops when the value of the fitness
function (Eq. (10)) is smaller than the specified tolerance.

5. Numerical study

To evaluate the proposed method, the point-mass
kernel was used to locally predict the gravity field of the
Auvergne area, which is limited by longitudes of 2.5 to
3.5 degrees and latitudes of 45 to 46 degrees. The
topographic heights of the study area are calculated from
the DTM2006 model and they vary within the range of

Fig. 1. The flowchart of the combination of GA and CG–LS for local gravity

field modeling using SRBFs.
69.8 to 1649.2 m, as shown in Fig. 2. The input data are
cales will be used throughout the process of GA, as shown 2
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nthetic surface free-air gravity anomalies and height
omalies (simulated to represent the GNSS/leveling
ints) which are computed up to the degree and order

 2160 using the EGM2008 model on a 1 � 1 arc-min grid
avlis et al., 2012).

The low-frequency part of gravity anomalies (synthetic
omalies up to the degree and order of 360) were
moved from the input gravity anomalies. The residual
avity anomalies were used for gravity field modeling
ing SRBFs. A white Gaussian noise of 0.5 mGal was also
ded to input data to get the process closer to reality
ig. 3).

Although using a large number of SRBFs better predicts
e gravity anomaly, it increases the instability of the
oblem and it might result in a biased solution in height
omalies. It is also computationally more time consum-
g, even though it does not give a better solution in terms
 height anomalies. Pursuant to the two-step method
troduced by Foroughi and Tenzer (2014), a limited
mber of kernels were used in modeling. In this study, a

nge of 100 mass-point kernels up to 500 with a step of
 kernels were used for each stage, then the RMS of the

fferences between predicted and observed gravity and
ight anomalies were computed (Table 1). To show how
e statistics of the residual between predicted and
served gravity and height anomalies react to the number

of kernels, the test was done for a maximum of
2000 kernels, and the results are shown in Fig. 4.

Fig. 4a shows that RMS of differences between
predicted and observed gravity anomalies decrease with
the number of kernels; however, the trend is different with
regard to height anomalies (Fig. 4 b). The large RMS value
in residuals of height anomaly leads to a biased solution
when the number of kernels is set to an unnecessarily large
number. Considering this, 300 kernels is the optimal choice
and more leads to an overparameterized problem.

The proposed method in Section 4 was used to find the
optimal location of kernels. Two hundred and eighty-nine
kernels were located on a regular grid in the data coverage
area, i.e. there were 17 kernels along both the latitude and
longitude sides (cf. Eq. (9)). Five percent of the input data
were removed as independent control points, and 0.5 mGal
of RMS of differences between predicted gravity anomalies
and height anomalies on these points were used to stop the
iterations. The iteration stopped after 1503 iterations, and
the optimal SRBF parameterization was used to predict the
residual gravity and height anomalies. The computation
time using a 64-bit operation system including 8.00 Gb of
RAM and 8 core of 3.7 GHz CPU was 3 h and 32 min. The
average estimation of the depth of each kernel was 17.3 km
below the Bjerhammar sphere, and the kernels were
mostly located in high topographical areas (Fig. 5).
The RMSs of 0.48 (mGal) and of 0.09 (m) were achieved

ble 1

estigation of the RMS of the differences between predicted and observed gravity and height anomalies using different numbers of base functions.

o of SRBFs 100 150 200 250 300 350 400 450 500

MS of differences between predicted and observed

gravity anomalies at observation points (mGal)

2.62 1.54 1.33 0.89 0.59 0.38 0.35 0.23 0.2

MS of differences between predicted and observed

height anomalies at GNSS/leveling points (m)

0.12 0.13 0.12 0.12 0.11 0.13 0.12 0.13 0.13

Fig. 2. The topography over study area.
Fig. 3. Free-air gravity anomalies over study area.
e minimum RMS of differences in height anomalies (bold column) defines the optimal number of base functions.
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r predicted gravity anomalies and height anomalies,
espectively. The residuals have a random distribution and
o not show any bias (Fig. 6).

. Discussion

The GA along with the CG–LS method was used to find
e optimal location of SRBF’s kernels and scale coefficients

 the parameterization of local gravity field modeling.
oint-mass type of kernels was used to predict the
ynthetic gravity anomalies on a 1 � 1 arc-min grid in a
ough topographical area of Auvergne. The number of
ernels, and their longitude, latitude, and depth inside the

Bjerhammar sphere were limited based on physical
constraints of the gravity model in GA. The RMS of the
predicted height anomaly on control points manages the
number of kernels to prevent overparameterization. The
fitness function for the evaluation of the chromosomes was
defined such that predicted gravity anomalies shows the
best conformity with the observation points in the RMS
sense. The CG–LS method was applied to find preliminary
scale coefficients before the evaluation of the chromoso-
mes and was updated for each population in GA. The
number of iterations of this technique was set to reduce
the value of the target function to less than the specified
tolerance. The convergence of the fitness function with

ig. 5. The movement of the location of kernels during the GA process. a: the initial location of kernels on regular grid; b: the optimal location of kernels

fter optimization.

ig. 4. Comparison of RMS of differences between predicted and observed height anomalies to find the optimal number of base functions. a: RMS of the

ifferences between predicted and observed gravity anomalies (mGal) as a function of the number of SRBFs; b: RMS of the differences between predicted

nd observed height anomalies (m).
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spect to the number of iteration is shown in Fig. 7. Two
ndred and eighty-nine kernels were used in the GA
orithm and around 1500 iterations were needed to

hieve the desired accuracy.

 Conclusion

The Genetic Algorithm was applied to regional gravity
ld modeling using Spherical Radial Basis Functions.
avity anomaly and quasigeoid models can be computed
ing predicted models in the area of interest. The ability to
timize the positions of the base functions efficiently was
e main advantage of using GA. Results showed that
rnel centers and their depth do not necessarily need to
 fixed. The depth or bandwidth of each kernel can be
fferent and is computed by combining with the 3D

location of the kernel. Results also revealed that with a
small number of kernels the gravity model can be
regionally predicted bias-free. The determination of the
appropriate parameters for the crossover, mutation, and
migration processes is an important point that should be
considered for better application of this method. The
proposed method can build the most adapted model with
data for any arbitrary number of kernels; however, large
numbers of kernels might need longer processing times
and can produce large biases in predicting the height
anomalies.
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