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 Introduction

The northern part of the North-South Tectonic Zone in
ina (NNSTZ), located along 1028–1068 east longitude,

cludes the Alashan block, Yinshan block, Qilian block,
dos block, Qaidam block, Songpan-Ganzi block, South
ina block, and Qinling orogenic belt (Fig. 1) (He et al.,
14; Li et al., 2006; Zhang and Wang, 2009; Zhang et al.,
13). This zone divides China into an eastern segment

ith a crustal thickness of 30–44 km and a western

segment with a thickness of 54–70 km (He et al., 2014; Li
et al., 2006) with a strong lateral gradient in crustal
thickness and north–south-trending gravity anomaly (He
et al., 2014; Li et al., 2006; Zhang et al., 2013).

The NNSTZ preserves a complex tectonic history. In its
eastern side, the Ordos and Yinshan blocks amalgamated at
ca. 1.95 Ga (Dan et al., 2012; Zhao et al., 2010). The collision
zone between the two blocks is popularly known as the
Khondalite Belt or the Inner Mongolia Suture Zone
(Santosh, 2010; Santosh et al., 2007, 2013; Zhao et al.,
2005). The Ordos basin (within the Ordos block) in central
China is a large intracratonic compressional basin (Li,
1996; Wang et al., 2005), and its tectonic evolution was
affected by both the Triassic collision between North and
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A B S T R A C T

The North–South Tectonic Zone (NSTZ) running across the Chinese continent is an

important earthquake-prone zone. Around one third of the strong earthquakes (> 7.0) of

China in the past occurred in this region. Receiver function study has imaged vertical

convection in the mantle beneath the northern part of the NSTZ (NNSTZ), which might be

related to stress accumulation and release as well as related earthquakes. Here we perform

a P-wave teleseismic tomographic analysis of this region. Our results reveal prominent

low-velocity and high-velocity perturbations in the upper mantle beneath this region,

which we correlate with mantle upwelling, possibly resulting from lower crustal and (or)

lithospheric delamination. Our results also reveal significant contrast in the velocity

perturbation of the lithosphere along the two sides of this tectonic zone, suggesting

possible material exchange between the eastern and western domains and lithosphere-

scale control on the generation of earthquakes.
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outh China Blocks (Ames et al., 1996; Ratschbacher et al.,
000) and the subduction of the Pacific plate since the
esozoic (Yin and Nie, 1996). In the western part of
NSTZ, the Qilian orogenic belt along the northern margin
f the Tibetan Plateau of Caledonian age was formed by the
onvergence and collision of the Alxa, Qilian and Qaidam
locks during Late Ordovician to Devonian (Xu et al., 2006,
010). Among these blocks, the Qilian-Qaidam blocks are
onsidered to represent a composite fragment of the
eoproterozoic Rodinia supercontinent and shows affinity
ith the Yangtze craton in South China (Song et al., 2010).

he Kunlun and Qilian orogenic belts represent a suture
one marking the closure of the Proto-Tethyan Ocean (Bian
t al., 2004; Tseng et al., 2009; Tung et al., 2007; Xiao et al.,
015).

The critical tectonic feature and cause of frequent
arthquakes along the NNSTZ (Deng et al., 2003; Zhang
t al., 2003) has been the topic of a series of geophysical
tudies along this zone in the last decades, such as deep
eismic sounding (e.g., Gao et al., 2006; Li et al., 2002),
mography, receiver function and shear-wave splitting
.g., Ding et al., 1999; He et al., 2014; Liu et al., 1989; Wang

t al., 2008), etc. These investigations revealed the crustal
nd lithospheric structure as well as the upper mantle
tructure. However, the possible link between the earth-
uake-prone region and deep continental dynamics has
ot been well elucidated.

In this study, we employed P-wave teleseismic
mography to evaluate the velocity structure of the

thosphere and upper mantle. Based on tomographic
esults, in conjunction with those from our previous study

e et al., 2014), we attempt to evaluate the geodynamic
rocesses beneath the NNSTZ in order to gain insights on

the relationship between the deep dynamic process and
earthquake initiation.

2. Data and method

In the modeling space, a 3-D grid is set up and Vp (P-
wave velocity) perturbations at the grid nodes are taken as
unknown parameters. The Vp perturbation at any point in
the model is calculated by linearly interpolating the Vp
perturbations at the eight grid nodes surrounding that
point. In our optimal Vp model, the lateral grid interval is
18, and grid meshes are set at depths of 70, 100, 200, 300,
400, 500, 600, 700, and 800 km. An efficient 3-D ray-tracing
technique (Zhao et al., 1992) is used to calculate theoretical
travel times and ray paths. A conjugate-gradient inversion
algorithm (Paige and Saunders, 1982) with damping and
smoothing regularizations is adopted to solve the large and
sparse system of observation equations (Zhao et al., 1992,
1994, 2002). The iasp91 1-D Earth model (Kennett and
Engdahl, 1991) is taken as the starting model for the 3-D
tomographic inversion (e.g., Lei and Zhao, 2007; Yang et al.,
2014; Zhao et al., 1992).The first P-wave arrival times are
picked from the origin seismograms of teleseismic events
(Fig. 2). Travel-time residuals (tij) are determined by
subtracting theoretical travel times and origin times from
the observed arrival times. It can be expressed as:

tij ¼ TOBS
ij �TCAL

ij (1)

From the j-th event to the i-th station, where TOBS
ij and TCAL

ij

are the observed and calculated travel times, respective-
ly.Following this, the relative travel-time residuals (rij) are
obtained by subtracting the mean travel-time residual of

ig. 1. Tectonic framework in the NNSTZ and near-by area showing profiles for the velocity perturbation (a–f profiles). Black triangle: seismic station. Insert

gure (upper left corner): the study area within the East Asian region (marked by box). SLB (Songliao Basin), WBL (Western Block), EBL (Eastern Block),

NCO (Tans North China Orogen), Q-DOB (Qinling–Dabie Orogen Belt), YZB (Yangtze Block or South China Block), CSB (Cathaysia Block), JGB (Junggar Basin),

SFS (Tianshan Fold System), TRB (Tarim Basin), QDB (Qaidam Block), SPGB (Songpan–Ganzi Block), QLB (Qilian Block), QTB (Qiangtang Block), ALS (Alashan

lock).
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ch teleseismic event from the raw residuals. The relative
siduals are inverted for a 3-D Vp model beneath the

dy region, thus the effects of hypocentral mislocations
 the teleseismic events and structural heterogeneities
tside the modeling space can be greatly reduced (Zhao

 al., 1994). The rij are expressed as:

¼ tij�tm
j (2)

here tm
j ¼ 1

nj

Pnj

i¼1tij is the average residual, and nj is the
mber of observations for the j-th event.
In this study, we collected data recorded by China

which comprise 203 seismic stations and the 325 events
that were selected with epicentral distance ranging from
308–85 8correspond to an earthquake magnitude > 6.0
(Fig. 2). P arrivals were correlated on the vertical
component after bandpass filtering between 0.3 and
3 Hz. Our assembled data set contains 40330 P-wave
arrivals from these events. The data of great than �2 s and
less than 2 s were selected to use tomographic inversion
(Fig. S1).

In teleseismic tomography, rays do not crisscross well
in the crust and the uppermost mantle beneath the study
region. Therefore, the effect of crustal heterogeneity

. 2. Earthquake events (red circle) that were used for tomographic inversion, recorded between July 2007 and March 2014 with epicenter distance

ging from 308 to 858 for each station-event pair.
ould be removed through correcting the relative
ismic network between July 2007 and March 2014, sh
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avel-time residuals, which is called crustal correction
iang et al., 2009, 2015). We calculated the crustal
orrection for the upper 70 km of the earth, which is the
pper depth limit of tomography. In this work, the
RUST1.0 model (Laske et al., 2012) is used to apply the
rustal correction to the relative travel-time residuals
llowing the scheme of Jiang et al. (2009, 2015).

In order to obtain a balance between the reduction of
avel time residuals and the smoothness of the 3-D
elocity structure (Eberhart-Phillips, 1986; Huang et al.,
015; Lei and Zhao, 2007), we carried out a series of
version tests with different values of damping, and

ventually selected the optimal value of damping param-
ter as 15 (Fig. S2).

In the checkerboard resolution test, we also designed
e grid spacing as 18 � 18 and the vertical grid spacing as

0, 100, 200, 300, 400, 500, 600, 700, and 800 km,
espectively. Positive and negative velocity perturbations
f 5% were assigned to all the 3-D grid nodes and synthetic
avel times were calculated by tracing the rays for the

heckerboard so that we can evaluate the adequacy of ray
overage and reliability of the main features of the
mographic images (e.g., Wang and Zhao, 2013; Zhao

t al., 1992). Following this method, the synthesized data
ere inverted to evaluate whether the assigned checker-

oard pattern could be recovered or not. The results show
at the resolution is generally high in most parts of the

tudy area such as 100, 200, 300, 400, 500 and 600 km
epth sections (Fig. S3) except for the western part,
hereas in the 70, 700 and 800 km depth sections, the

resolution is low. We also launched the checkerboard
resolution test for four east–west profiles and two north–
south profiles, and the results show high resolution along
most part of the east–west profile sections, except for the
western part and the marginal domain (Fig. S4), and high
resolution along most parts of north–south profiles, except
for the marginal domain (Fig. S5).

3. Results

The tomography results show a large-scale low-velocity
perturbation (Lv1) beneath the western side of the NNSTZ
at 70, 100, 200, 300 km depth sections, whereas a large-
scale high-velocity perturbation (Hv1) is seen at 70,
100 and 200 km depth sections in the eastern side of the
NNSTZ (Fig. 3). A previous shear-wave tomographic study
also identified a low-velocity structure beneath the
western side of the NNSTZ, whereas the eastern side is
characterized by high-velocity structure at 100 km depth
(Pandey et al., 2014). Other P-wave teleseismic tomo-
graphic studies also demonstrate low-velocity perturba-
tion along the western side and high-velocity perturbation
to the eastern side of the NNSTZ at 70, 120, 140, 160,
200 and 300 km depth (Li et al., 2006; Tian et al., 2009;
Wang et al., 2015). In the 300 km depth section, there is a
high-velocity perturbation (Hv2) at south part of the
NNSTZ and a large-scale low-velocity perturbation at the
eastern side of the NNSTZ (Lv2) (Fig. 3). In the 400- and
500-km depth sections, there is discontinuous high-
velocity perturbation (Hv3) (Fig. 3). In the 500- and

ig. 3. P-wave velocity perturbations at 70, 100, 200, 300, 400, 500, 600, 700 and 800 km detpth sections relative to iasp91 1D velocity model (Kennett and
ngdahl, 1991). We hide portions of the model where the recovery of the starting model in the CRT was below 10% (Fig. S3).
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0-km depth sections, there is a large-scale high-velocity
rturbation (Hv4) at the eastern side of the NNSTZ (Fig. 3).
e velocity structure at depth sections of 700 and 800 km
pth sections are mostly inferred due to lower resolution,
d we exclude these from further discussion on the depth
ctions.
In order to further check the above results, we

rformed four east–west profiles (see Fig. 1 for profile
cation, and Fig. 4) and two north–south profiles (see
. 1 for profile location, and Fig. 5). The results show a
ge-scale low-velocity perturbation (Lv1) in the upper

antle beneath the western side of the NNSTZ (Fig. 4a–d),
hereas in the eastern side, there is a large-scale high-
locity perturbation (Hv1) (Fig. 4b–d). At the same time,
e high-velocity perturbation (Hv3 and Hv4) can be
arly seen at all profile in the mantle transition zone

ig. 4). The Hv2 is beneath the NNSTZ and at about

300–400 km in depth (Fig. 4d). The north–south profiles
show a high-velocity perturbation (Hv3) in the mantle
transition zone and another high-velocity perturbation
(Hv2) at 300–400 km beneath the southern part of the
NNSTZ (Fig. 5), and a low-velocity perturbation (Lv2) at
300–400 km in depth beneath the NNSTZ (Fig. 5f).

4. Discussion

The plate boundaries are the major regions of magma-
tism, metamorphism, deformation and tectonics including
major earthquakes associated with oceanic plate subduc-
tion or continental collision. However, recent studies
reveal that micro-continental boundaries, palaeosuture
zones, mobile belts and ancient deformation zones play a
critical role intra-plate tectonics (e.g., Aitken et al., 2013;
Gorczyk and Vogt, 2015). Especially, the compressed

. 4. Velocity perturbation along the west–east profiles. We hide the portions of the model where the recovery of the starting model in the CRT was below

% (Fig. S4). NNSTZ: North part of North-South Tectonic Zone. Tomographic results reveal high-velocity perturbation in the eastern side of the NNSTZ and

-velocity perturbation in the western side of the NNSTZ at the lithospheric scale. The discontinuous high-velocity perturbation (Hv3 and Hv4) in the

per mantle and mantle transition zone may be associated with the crustal and lithospheric delamination, which resulted in mantle upwelling or large-

le low-velocity perturbation (Lv2) in the upper mantle.
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thosphere can develop a wide range of lateral heteroge-
eities in such settings, leading to magmatism, deforma-
on, metallogeny, topographic evolution, tectonics, and
arthquakes (e.g., He et al., 2014).

The continental lower crust is considered as the bridge
etween the mostly felsic upper crust and the ultramafic
pper mantle (Christensen and Mooney, 1995; Rudnick
nd Fountain, 1995; Wang et al., 2012). The high density or
e ultramafic/mafic composition of the lower crust might
ad to instability, resulting in the lower crustal and (or)
thospheric delamination induced by the compressed
rust and (or) lithosphere (He et al., 2013, 2014, 2015; Jull
nd Kelemen, 2001; Kay and Kay, 1993; Kay and
ahlburg-Kay, 1991; Rudnick, 1995; Rudnick and Foun-
in, 1995; Seber et al., 1996; Willbold and Stracke, 2010).

he process of delamination is also important in the cycle
f mantle convection, and the heterogeneous lower crustal
omposition contributes to the variation in mantle velocity
tructure (Hart, 1988; Hofmann, 1997; Wang et al., 2013).

Geological investigations have suggested large-scale
elamination of the crust and lithosphere following the
onvergence between the Yangtze, North China Cratons
nd the North Tibetan continental blocks in the Triassic
hang et al., 2008), with the delaminated lower crust and

thosphere gradually sinking into the mantle transition
one. The large-scale high-velocity perturbation at the
antle transition zone (Hv3) (Fig. 3, 4a–c, and 5) beneath
e NNSTZ might be linked with the crustal and

thospheric delamination in the Triassic, which resulted
 a cold domain there, as suggested by the shallowing of

oth the 410- and 660-km discontinuities (Fig. 6) (He et al.,
014). The crustal and lithospheric components undergo

melting in this region, which trigger plume-like upwelling
due to buoyancy reflected as low-velocity structure
(Lustrino, 2005) (Lv2) (Fig. 3, Fig. 4c, Fig. 5f). On the other
hand, the westward subduction or compression of the
Pacific plate in the NNSTZ generated an obvious gradient in
crustal thickness (Fig. 7a) since the Mesozoic (He et al.,
2014), leading to continuing crustal and (or) lithospheric
delamination in this area. The high-velocity perturbation
at 300–400 km in depth (Hv2) (Fig. 3, Fig. 4d and Fig. 5) is
shallower than that of Hv3 (Fig. 3, Fig. 4a–c and Fig. 5),
which might indicate new delamination beneath this area.
The delamination also induces asthenosphere upwelling
into the void (He et al., 2014; Kay and Kay, 1993). Our
results suggest that the delamination, both past and
present, in the area generates vertical convective circula-
tion of the upper mantle (He et al., 2014). The delamination
of the lower crust and lithosphere also resulted in felsic
composition of the lower crust (or low Vp/Vs ratios) in the
NNSTZ (Fig. 7b) (He et al., 2014; Kay and Kay, 1993).

Previous seismic studies reveal that the lithosphere–
asthenosphere boundary lies at a depth of 125–135 km
beneath the northeastern Songpan–Ganzi terrane and the
western Qinling orogen, between 145 and 175 km beneath
the East Kunlun and Qilian orogens, between 175 and
190 km beneath the Qaidam Basin, about 170 km beneath
the Ordos Basin and about 200 km beneath the Alxa
platform (Zhang et al., 2012; Zheng et al., 2013),
respectively. These results suggest the existence of a
lithospheric root in the western side of the NNSTZ.
However, our results show a large-scale low-velocity
perturbation (Lv1) in this region (Fig. 3, Fig. 4a–d), which
might suggest that the lithospheric root is weak or absent

ig. 5. North–south profiles for the velocity perturbation (see Fig. 1 for profile location); a and b are 1038 and 1058 profiles, respectively (see Fig. 1 for profile

cation). We hide portions of the model where the recovery of the starting model in the CRT was below 10% (Fig. S5). The prominent high-velocity

erturbation in the upper mantle and mantle transition zone (Hv2 and Hv3) and low-velocity perturbation at 300–400 km in depth (Lv2). SZ block:

ongpan-Ganzi block, QT block: Qaidam block, QL block: Qilian block, AL block: Alashan block, SC block: south China block.
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d also mark the eastward flow from Tibetan plateau. At
e eastern side of the NNSTZ, the high-velocity perturba-
n (Hv1) (Fig. 3, Fig. 4b–d) correlates with the

hospheric root of the Ordos basin and/or that of the
ngtze block (Sichuan basin), which might block the
stward flow from the Tibet Plateau and resulted in stress
cumulation at the NNSTZ. At same time, the marked
fference in the velocity structure of the lithosphere
tween the two sides of the NNSTZ implies that there
ight be not only stress accumulation but also material
change between the two sides of the NNSTZ, leading to
e generation of earthquakes in the NNSTZ.

 Conclusions

The tomographic results presented in this study

study that the delamination of the crust and (or)
lithosphere resulted in the mantle upwelling and vertical
convective circulation beneath the NNSTZ.

Our results also reveal low-velocity perturbation in the
western side of the NNSTZ and high-velocity perturbation
in the eastern side on a lithospheric scale, suggesting
material exchange and stress accumulation leading to
earthquakes beneath this region.

Based on the above results, we suggest that the vertical
convective circulation and the velocity perturbation
difference in the lithospheric scale between the two
flanks of the NNSTZ resulted in stress accumulation and
release along this zone, marking the region as earth-
quake-prone.

The NNSTZ appears to represent a typical case where
deformation and the associated tectonic processes trigger

. 6. Topography of the 410 and 660 km discontinuities. A prominent shallowing of both 410 (a) and 660 km (b) topography along the NNSTZ can be seen,

ssibly correlated with crustal and (or) lithospheric delamination into the mantle transition zone and the resulting cold domain (He et al., 2014).
ge earthquakes, which are associated with mantle
nfirm the deductions from a previous receiver function lar
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ynamics within intra-continental setting related to far-
eld tectonics.
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