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Rutile occurs in metamorphic, igneous rocks, mantle
oliths, lunar rocks, meteorites, and crystallizes, in a
e range of temperature and pressure, mostly in high-

de metamorphic rocks (Miller et al., 2007; Zack et al.,
2), some granulites and gneisses (Stendal et al., 2006).
ile is commonly exploited in clastic sediments as
table heavy mineral that constitutes an important
rce of Ti (Meinhold, 2010; Tonje et al., 2014). The
h mechanical and chemical stability of rutile during
athering, transportation, and diagenesis (Morton and

Hallsworth, 1999) makes rutile an important tool for
source-rock characterization in provenance studies (Zack
et al., 2004). The composition of the sediments depends
mostly on that of their source rocks and on the intensity of
chemical weathering (Ahmad et al., 2014; Silva et al.,
2016). Some parameters such as transport, deposition, and
diagenesis can also modify the sediments during the
sedimentation cycle (Morton and Hallsworth, 1999).

Alluvial sediments are commonly composed of quartz,
feldspars and mica as major constituents, and of minor
amounts of heavy minerals such as zircon, rutile, tourma-
line, garnet, epidote, and chrome spinel (Meinhold et al.,
2008). Alluvium can contain valuable ores such as gold
(Moufti, 2014; Muhammad and Mansoor, 2015), platinum
(Cook and Fletcher, 1993; Duran et al., 2015; Traoré et al.,
2006), and a wide variety of gemstones (Le Goff et al., 2010;
Simonet et al., 2008). Major, trace, and rare earth element
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A B S T R A C T

This paper is focused on the morphological, mineralogical, and geochemical features of

alluvial sediments from the Neoproterozoic Pan-African belt to explore rutile. The fine-

grained sediments, which contain a large proportion of rutile, are made up of quartz, rutile,

zircon, brookite, tourmaline, andalusite, and kyanite. The high SiO2 and TiO2 contents

highlight the predominance of silica minerals in the alluvia from the humid tropical zone.

La/Sc, La/Co, Th/Sc and Zr/Cr ratios reflect the contribution of felsic and mafic sources. The

highest Ti contents, which occur at the outlet of the Lobo watershed, indicate the

resistance of rutile. The REE distribution could be linked to the heavy mineral sorting. The

low (La/Yb)N ratios and high Zr contents are attributed to the high proportion of zircon.

Chondrite-normalized REE patterns indicate high felsic sources, which are the regional

rocks. Ultimately, the Yaoundé Group constitutes a favorable potential target for further

rutile exploration.
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geochemistry and their elemental ratios are useful to
provide information about the sediments’ origin as well as
the weathering conditions of the source areas. The major
element geochemistry of sediments tends to reflect the
source rock composition (Armstrong-Altrin et al., 2012)
and weathering intensity (Shao and Yang, 2012; Šmuc
et al., 2015). Trace elements such as REE, Y, Th, Zr, Hf, Nb
and Sc are suited to investigate the sediments’ provenance
(Martins et al., 2012; Prego et al., 2012), because of their
relatively low mobility during the sedimentary processes
(Ahmad et al., 2014; Asadi et al., 2013). Due to their
coherent geochemical behavior and low solubility, the rare
earth elements (REE) are considered good tracers to
identify the sources of terrestrial materials (Song and
Choi, 2009). The source rock composition is the primary
control on REE composition, with weathering processes
playing only a minor role (Armstrong-Altrin et al., 2012).

The occurrence of rutile in the Yaoundé Group from the
Neoproterozoic Pan-African Belt is known in alluvial and
residual deposits since the last century (Maurizot et al.,
1986; Owona et al., 2011). Its origin is still uncertain in the
whole area (Stendal et al., 2006; Zack et al., 2002), and
according to Silva et al. (2016), there is generally
enrichment by trace elements in the fine-grained sedi-
ments. Thus, given the important role that rutile plays in
both economic and fundamental geology, we report in this
paper the morphological, mineralogical, and geochemical
features of the fine-grained sediments (0.5 to 0.8 mm)
from the Lobo watershed to estimate its metallogenic
importance and discuss the provenance of rutile-bearing
sediments.

2. Geographical and geological setting

The Lobo watershed is situated northeast of Yaoundé
(Fig. 1). It is characterized by a humid tropical climate with
four seasons. The study site corresponds to a transitional
zone between rainforest and savanna (Letouzey, 1985).
The area belongs to the Yaoundé Group and its morphology
is dominated by smooth-rocky hills with large convex
slopes and swampy valleys. The Yaoundé Group is an
allochthonous unit emplaced onto the Congo craton, which
constitutes a part of the Central African Mobile Zone
(CAMZ) and is Late Neoproterozoic based on its Th–U–Pb
age determined on monazite (613 � 33 Ma) (Owona et al.,
2011; Penaye et al., 1993; Toteu et al., 2001). The micaschists,
quartzites and gneisses are intensively folded. These
characteristics favor weathering, which leads to thick
ferrallitic soils and swampy hydromorphic soils around the
valleys. The whole swamp is overlain by a grey clayey sandy
material and essentially composed of kaolinite, smectite and
residual quartz, feldspars, rutile, and zircon (Braun et al.,
2005).

The assumed ‘‘rutile zone’’ covers the entire South
Cameroon plateau. It is a gently undulating surface with
altitude varying between 600 and 800 m dominated by a
succession of convex or tabular hills. This vast plateau is
prolonged to the south towards Gabon and to the east
towards the Central African Republic (Champetier de Ribes
and Aubague, 1956; Stendal et al., 2006). Two great
geological formations underlie South Cameroon; the

formations within the mobile zone in the North and those
of the Ntem complex in the South (Champetier de Ribes
and Aubague, 1956; Stendal et al., 2006). The basement is
constituted of metamorphic rocks (gneisses, quartzites and
schists). The Yaoundé Group is made up of two series: the
Mbalmayo–Bengbis–Ayos and the Yaoundé series (Mau-
rizot et al., 1986). Paragneisses and orthogneisses are
predominant in the Yaoundé series. Rutile occurrences are
known in low- and medium-grade schists, where crystals
are up to a centimeter in size. In the high-grade gneisses, it
is less represented and appears as fine-grained inclusions
within garnet or as euhedral xenocrysts (Maurizot et al.,
1986; Nzenti et al., 1988).

3. Sampling and analytical techniques

The sampling and analytical techniques including
Figs. SM1 and SM2 and Tables SM1 to SM5 are presented
in the supplementary data.

4. Results

4.1. Petrography and major element distribution of rocks

4.1.1. Petrography

Gneisses and micaschists are metamorphic rocks
encountered within the Lobo watershed.

Gneisses outcrop as blocks and as paved surfaces. The
rock is interstratified, dark grey, with variable grain sizes.
Under the microscope, the rock shows compositional
banding and heterogranular granoblastic microstructures.
The light bands are quartzo-feldspathic, while the dark
bands are comprised of biotite, garnet, and opaque
minerals. Quartz, which constitutes 25–40% of the rock,
shows xenomorphic crystals preferentially oriented as
polycrystalline ribbons and granule inclusions in garnet
porphyroblasts. Plagioclase (10–35%) shows massive
crystals with different sizes that vary between
0.22 � 0.10 mm and 0.66 � 0.42 mm. Biotite crystals
(< 10%) are preferentially oriented flakes or lensoids.
Biotite flakes have variable dimensions of 0.48 � 0.24 and
1.36 � 0.32 mm with other crystals found as inclusions in
garnet. Garnet (< 10%) shows either dispersed globular
forms within the rock or as porphyroblasts containing
quartz, biotite, and opaque mineral inclusions. Garnet
crystals have variable diameters between 0.40 and 1.6 mm
and often show corroded rims of biotite and quartz. Some
garnet porphyroblasts show quartz and biotite rims.
Opaque minerals (about 5%) occur as subautomorphic
crystals or as inclusions in garnet.

Micaschists outcrop as paved surfaces, blocks, or
domes. Micaschists, compared to gneisses, are massive,
fine to medium-grained and dark grey in color. Under the
microscope, the rocks are characterized by heterogranular
granoblastic microstructures. Quartz crystals represent
about 45%, occurring as xenomorphs and define light
polycrystalline banding. Plagioclase (10–45%) is abundant,
and shows plates 0.36 mm in length and 0.24 mm in width.
The crystals are massive and associated with those of
quartz. Garnet (< 10%) is dispersed in the rock as



por
min

4.1.

bet
mic
bet
3 a
and
by 

ign
4 w
are
cor
no 

and

4.2.

4.2.

tha
pro
con
the
ext
as q

zirc
(Fig
zon

Fig. 

Aub

J.M. Nyobe et al. / C. R. Geoscience 350 (2018) 119–129 121
phyroblasts containing quartz, biotite, and opaque
erals as inclusions.

2. Distribution of major elements

SiO2 contents in the rocks from the Lobo watershed vary
ween 62 and 69 wt.% with the lowest content in the
a-schist sample (Table SM1). Al2O3 contents range
ween 13 and 17 wt.% and those of Fe2O3 range between
nd 8 wt.% (Table SM1). The MgO, CaO, Na2O, K2O, MnO

 P2O5 contents are low. Micaschists are characterized
the highest content in TiO2 (1.53 wt.%). The loss on
ition values are significant, ranging between 1 and
t.% (Table SM1). Correlations of TiO2 with SiO2 and K2O

 negative (Fig. 2a and b). However, TiO2 has positive
relation with MgO, Fe2O3, P2O5 and MnO (Fig. 2c–f), and
significant correlation with Al2O3 and CaO (Fig. 2g
 h).

 Mineralogy and geochemistry of alluvial sediments

1. Mineralogical characterization

Sample separation and heavy mineral extraction show
t the fine fraction (0.5 to 0.8 mm) contains a large
portion of rutile. Macroscopic observations of the
centrates, i.e. the fine-grained sediments, reveal that
y are mostly composed of quartz, rutile and, to a lesser
ent, of opaque minerals (Fig. SM2a and b). Rutile as well
uartz contours are often very irregular.

The heavy mineral assemblage is made up of rutile,
on, brookite, tourmaline, andalusite, and kyanite
. SM2c and d). They appear mostly in the downstream

or slightly elongated. The tabular grains are angular,
whereas elongated and rounded grains are sub-blunt to
prismatic.

The mineral assemblage of the fine fractions obtained
by XRD analysis is made up of quartz, rutile, zircon,
muscovite, and ilmenite (Table SM2).

4.2.2. Geochemical characterization of alluvial sediments

4.2.2.1. Distribution of major elements. TiO2 and SiO2 are
the major elements with the highest contents in the
Lobo watershed sediments. TiO2 contents vary from 9 to
57 wt.% and those of SiO2 are between 21 and 81 wt.%
(Table SM3). The SiO2 contents decrease from the
upstream to the downstream zone, while TiO2 contents
have an opposite trend. The concentrations in Al2O3 (1–
21 wt.%) and Fe2O3 (3–20 wt.%) are variable (Table SM3).
Several samples have CaO contents higher than 1 wt.%.
Other oxides (MnO, MgO, Na2O, K2O, and P2O3) have low
contents (Table SM3). TiO2 shows high negative correla-
tions with SiO2, and K2O (Fig. 3a and b). The negative
correlations with Al2O3 are observed in the upstream zone
(Fig. 3c). Conversely, TiO2 possesses no significant
correlations with Fe2O3 and very slight positive ones
with MnO (Fig. 3d and e). The behavior of MgO compared
to TiO2 depends on the zone; both oxides have positive
correlations in the upstream zone and negative correla-
tions in the central zone (Fig. 3f).

The highest TiO2 concentrations are in the downstream
zones of the Lobo watershed, except for the DjA sample,
with a TiO2 content of 18.2 wt.%. The distribution map of

1. a: Regional geological map of southern Cameroon (Stendal et al., 2006); b: location and geological map of Lobo watershed (Champetier de Ribes and

ague, 1956).
 Ti concentrations of the fine-grained sediments in the
e, where kyanite is absent. They are tabular, rounded, the
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Lobo watershed shows that the TiO2 contents increase
from the upstream to the downstream zones (Fig. 4).

The Chemical Index of Alteration (CIA) is an indicator of
the degree of the weathering (McLennan, 1993; Nesbitt
and Young, 1984). It is defined as CIA = Al2O3/
(Al2O3 + CaO* + Na2O + K2O) � 100 (molar contents, with
CaO* being the CaO content in the silicate fraction of the
sample). If the CaO molar content is greater than that of
Na2O, CaO* is assumed to be equivalent to Na2O, whereas if
the CaO molar content is less than that of Na2O, the
measured CaO content can be used for CaO* (Shao et al.,
2012; Šmuc et al., 2015). An unweathered rock has the
lowest CIA (about 50% or less). During weathering, cations
are lost from the material and CIA increases to reach
100. CIA values vary between 75 and 98% in the fine-
grained sediments from the Lobo watershed, and they
increase from the upstream zone of the basin towards the
central and the downstream zones (Table SM3).

4.2.2.2. Distribution of trace elements. Amongst the trace
elements suite, Zr has the highest contents (from 662 to
more than 1450 ppm) (Table SM4). The Cr contents vary
between 117 and 1056 ppm; concentrations in V (more
than 370 ppm) and Nb (more than 277 ppm) are very
high compared to those of the other trace elements (Table
SM4). Many trace elements like Cu (up to 59 ppm), Ba

(8–88 ppm), Y (7–110 ppm), Pb (4–27 ppm), Th (5 to more
than 109 ppm), Ta (11–103 ppm) and W (7–71 ppm) have
significant and variable concentrations (Table SM4). In
addition, Sn (higher than 14 ppm) and Hf (from 15 to more
than 29 ppm) possess high values. The contents in Ni
(4–16 ppm), Co (3–17 ppm), Sc (5–63 ppm), Sr (5–23 ppm),
and Ga (2–21 ppm) are moderate. The concentrations in
Zn and Li come up to 1286 and 71 ppm, respectively, in the
downstream zone. The uranium content reaches 66 ppm in
the upstream zone. Other trace elements (Li, Rb, Mo, U, Ta,
Be, Cd, Cs, Sb and Sn) have low concentrations, but higher
than the detection limits (Table SM4). Otherwise, TiO2 is
positively correlated with Cr, Ta, W and Sc (Fig. 5a–d), and
negatively with Ba and Y (Fig. 5e and f).

La/Co and Zr/Cr ratios are high in the whole watershed
(Table SM4). La/Sc and Th/Sc ratios have a contrasting
behavior. Their values are high in the upstream zone,
while, in the central and downstream zones, there are
some samples with La/Sc and Th/Sc ratios lower than 1
(Table SM4). This reveals the Sc high contents in the central
and downstream zones.

4.2.2.3. Distribution of rare-earth elements. The total REE
content varies between 28 and 1752 ppm (Table SM5).
Globally, the highest values are obtained in the upstream
zone. The highly concentrated REE include La, Ce, Pr, Nd,

Fig. 2. Binary diagrams of TiO2 versus some major elements for the Lobo rocks: a: TiO2 vs. SiO2; b: TiO2 vs. Al2O3; c: TiO2 vs. K2O; d: TiO2 vs. Fe2O3; e: TiO2 vs.

MgO; f: TiO2 vs. MnO; g: TiO2 vs. P2O5; h: TiO2 vs. CaO.
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 Sm (Table SM5). The LREE/HREE ratio values are both
h and variable (1.85–30.30; Table SM5). The highest
ues are obtained in the upstream zone, while the lowest

 in the central part of the Lobo watershed. Most of the
ples exhibit negative Eu anomalies (Table SM5). The
tream zone shows the highest (La/Yb)N ratios and

 lowest TiO2/((La/Yb)N) and TiO2/(LREE/HREE) ratios
ble SM5).

PAAS-normalized (McLennan, 1989) REE patterns
exhibit: (i) LREE enrichment with negative Eu anomalies
for upstream zone (Fig. 6a); (ii) and the central and
downstream zones show contrasting REE behavior; some
samples are characterized by LREE enrichment and
negative Eu anomalies, while others are enriched in HREE
with no Eu anomalies (Fig. 6c and e). Conversely, the
chondrite-normalized (McDonough and Sun, 1995) REE

3. Binary diagrams of TiO2 versus some major elements for the Lobo fine-grained sediments: a: TiO2 vs. SiO2; b: TiO2 vs. Al2O3; c: TiO2 vs. Fe2O3; d: TiO2

gO; e: TiO2 vs. MnO; f: TiO2 vs. K2O.

Fig. 4. Distribution map of the Ti-concentrations in the Lobo fine-grained sediments (M1, M2, LO, G1 and Li are rock samples).
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patterns portray a similar trend in each zone. According to
chondrite-normalization, LREE enrichment and negative
Eu anomalies decrease from the upstream to the down-
stream zones (Fig. 6b, d and f).

The LREE behavior in the Lobo watershed reveals a
similar trend according to the PAAS-normalized spectra
(McLennan, 1989) (Fig. 7a) as well as the chondrite-
normalized spectra (McDonough and Sun, 1995) (Fig. 7b).
The HREE patterns show a contrasting behavior for both
normalizations (Fig. 7a and b). These normalizations
confirm the high LREE/HREE and (La/Yb)N ratios in the
upstream zone compared to the central and downstream
ones.

5. Discussion

5.1. Petrography and geochemistry of rocks

Gneisses and micaschists from the Lobo area have
almost the same mineralogical composition mainly made
up by quartz, feldspars, biotite, garnet, and opaque
minerals. The differences in the mineralogical and textural
features could be linked to varying degrees of metamor-
phism (Maurizot et al., 1986). These rocks have high SiO2

and low MgO contents, and they could result from the
metamorphism of a felsic protolith (Bouyo et al., 2015). The
relative high Fe2O3 contents and loss on ignition could be
due to the slightly weathered state of the rocks (Schwert-
mann, 1971). The significant TiO2 contents must be
attributed to the presence of rutile, which occurs as
fine-grained inclusions in the rocks of the Yaoundé Group

correlations between TiO2 and Fe2O3, MgO, MnO, and P2O5

(Fig. 2c–f) reveal that Ti, Fe, Mg, Mn and P might
accumulate in the same minerals. The negative correla-
tions between TiO2 and SiO2 (Fig. 2a) are probably due to
the high SiO2 concentrations. In fact, the TiO2 content is
supported by rutile and brookite, and the high SiO2 is
linked to the proportion of quartz.

5.2. Mineralogy and geochemistry of alluvial sediments

5.2.1. Mineralogical characterization

The mineral assemblage is dominated by quartz, rutile,
and zircon. This mineral assemblage is characteristic of
hydromechanical transport. The high proportion of rutile
in the alluvia is relative to the stability of rutile during the
weathering process as well as in the alluvial environment
(Morton and Hallsworth, 1999). Contrary to Tonje et al.
(2014), it is the fine-sized sand, which was called sterile
that contains an important amount of rutile. The fine grains
may represent broken fragments from fracturing of larger
grains during a long transportation, or a primary conserved
feature. Some of the fine grains have retained their original
shape (short prisms), and it implies that they were not
deposited very far from their source area.

The grain size of hard, weathering resistant displaced
and deposited minerals such as rutile, quartz, tourmaline,
and zircon highly depends on the textural features of
their source rocks (Bassis et al., 2016; Roux and Rojax,
2007). The heavy minerals, including rutile, are angular
and, to a lesser extent, sub blunt to prismatic in features.
The angular nature is a conserved primary relic fea-

Fig. 5. Binary diagrams of TiO2 versus trace elements for the Lobo fine-grained sediments: a: TiO2 vs. Cr; b: TiO2 vs. Ta; c: TiO2 vs. W; d: TiO2 vs. Sc; e: TiO2 vs.

Ba; f: TiO2 vs. Y.
tures during transportation. These angular grains may
(Maurizot et al., 1986; Nzenti et al., 1988). The positive
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bably be a product of local sedimentation. The blunt
ure of some rutile grains may be due to long
romechanical transportation (Kanouo et al., 2012).

 provenance of the rutile in the Lobo watershed seems
trasted.

2. Geochemical characterization

The Chemical Index of Alteration (CIA) is frequently
d as parameters of the weathering characteristics and
rce composition of sedimentary rocks (Bhat and Ghosh,
1; Fedo et al., 1995; Long et al., 2012). The CIA values
–98%) from the sediments of the Lobo watershed
icate that the source rocks were strongly weathered in
allitic soils, which were intensively eroded (Liu et al.,
6). The high CIA values could also be linked to the
ndant compositionally mature alumina-rich minerals
he source (Fedo et al., 1995; Nesbitt and Young, 1982).
re is a spatial variation in the CIA values, with the
est values in the samples from the upstream zone and

 highest CIA values in the samples from the down-
am zone. These differences between the CIA values

y be due to the effect of sediments weathering during
r transport. The variation in the CIA values in the same

river due to hydrodynamic sorting was also reported by
Shao and Yang (2012).

The alluvial sediments from the Lobo watershed exhibit
high SiO2 and TiO2 contents. This is highlighted by the
predominance of silica-minerals such as quartz, zircon,
tourmaline and andalusite in the source rock. In fact, the
high SiO2 and TiO2 contents characterize the intensity of
pre- and post-depositional chemical weathering (Nesbitt
and Young, 1984). The high TiO2 contents in the fine-
grained sediments attest to the predominance of residual
bearing Ti-minerals such as rutile and brookite. Otherwise,
the highest TiO2 contents observed at the downstream
zone highlight the abundance of rutile as a resistant
mineral during sedimentary processes. The erosion pro-
cesses and the morphology of the watershed favor Ti-
accumulation in the downstream zone. The low Ti content
in sample DjA from the downstream zone of the watershed
is linked to the low rutile mineral amount and that could
be due to local features. The low K2O contents are due to
the lack of micas, which are concentrators of K2O (Silva
et al., 2016). The SiO2 and Fe2O3 contents compared to
those of TiO2 show an opposite trend in the whole
watershed. This is due to the CIA values that increase from

6. PAAS- and chondrite-normalized REE patterns for Lobo fine-grained sediments: a and b: upstream zone; c and d: central zone; e and f: downstream

. The LREE contents in some samples higher than the maximum value that the techniques determine are not reported: La (> 1380 ppm), Pr

40 ppm), Nd (> 760 ppm) and Sm (> 128 ppm). These values are obtained in the upstream zone of the Lobo watershed.
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the upstream to the downstream zone as well as the source
rocks and confirms the resistance of rutile in an agitated
aqueous milieu. The variable Al contents may be linked to
the distribution of andalusite. The complex correlations
between TiO2 and other major elements can be linked to
the CIA variation and sorting process. However, the slight
positive correlations between TiO2 and Fe2O3, MgO, and
MnO (Fig. 3) suggest that rutile might contain little
amounts of Fe, Mg, and Mn due to the presence of minerals
as inclusions (Kanouo et al., 2012; Meinhold, 2010). The
relative abundance of trace elements such as Cr, V, Zr and
Nb might be attributed to mineral sorting (Kasanzu et al.,
2008). The high contents in Fe2O3, TiO2, V, and Cr could also
be due to the presence of ilmenite (Silva et al., 2016). The
low contents of most trace elements reflect the high
content of quartz, which causes a dilution effect. The lack
of minerals such as micas and feldspars is responsible for
the low contents in several elements like Rb, Ba, and Sr.
These trace elements (e.g., Rb and Ba) substitute K in the
micas. K-feldspar concentrates Rb, Ba and plagioclase
concentrates Sr (White, 2013). The high Zr contents might
be related to the high zircon proportion in the heavy

mineral concentrates. Rutile is the most abundant mineral
in the samples apart from quartz, and Ti is positively
correlated with some trace elements (Cr, Ta, W and Sc;
Fig. 5a, d and f). This confirms the facts that, rutile can
possess a wide range of trace elements (Meyer et al., 2011;
Zack et al., 2002). In fact, the formula of rutile is TiO2, with
possible substitutions for Ti4+ by Nb5+, Ta5+, Zr4+, Hf4+, Cr3+,
and Fe3+ (Cherniak et al., 2007; Tanis et al., 2016).
Otherwise, Cr-rich rutile is a powerful tool for diamond
exploration (Malkovets et al., 2016).

The high REE contents may be explained by the
presence of REE-enriched heavy minerals (Wang et al.,
2014). Chondrite-normalized (McDonough and Sun, 1995)
REE patterns exhibit pronounced negative Eu anomalies
and relatively flat heavy rare earth patterns, which is
similar to those of upper crust (Silva et al., 2016). Most of
the upstream sediments have similar and uniform REE
patterns with LREE-abundance relative to chondrite
(McDonough and Sun, 1995) and PAAS (McLennan,
1989). Similarities in the REE contents, REE fractionation,
and europium anomalies indicate that the source of REE in
the sediments is the same and that their source is the

Fig. 7. REE patterns for the Lobo fine-grained sediments: a: PAAS-normalization (McLennan, 1989); b: Chondrite-normalization (McDonough and Sun,

1995). As in Fig. 6, the LREE contents in some samples higher than the maximum value that the techniques determine are not reported: La (> 1380 ppm), Pr

(> 240 ppm), Nd (> 760 ppm), and Sm (> 128 ppm).
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ional rocks (Silva et al., 2014). Compared to the PAAS,
 sediments from the central and downstream zones
ibit a contrasting behavior. Some samples show LREE
ichment and negative Eu anomalies, while others
sess HREE-enrichment values with no Eu anomalies
. 6a, c and e). The LREE- or HREE-enrichment could be
ibuted to the zircon distribution. High LREE/HREE and

 (La/Yb)N ratios is linked to the proportion of zircon and
 nature of REE mineral-bearers. In fact, zircon incorpo-
s HREE preferentially over LREE, leading to HREE
ndance and low (La/Yb)N (Li et al., 2005). The (La/Yb)N

os show that REE are more fractionated in the upstream
e. The observed LREE/HREE and (La/Yb)N ratios
iations may suggest an effect of heavy minerals sorting
h a significant enrichment of dense and resistant
erals in central and downstream zones of the basin, as
wn in Table SM2. This has been also highlighted by the

2 contents compared to the LREE/HREE and (La/Yb)N

os in the different zones of the basin (Table SM5). Many
hors also reported an HREE preferential enrichment in
 Fe oxyhydroxides (e.g., Borrego et al., 2005; Merten
l., 2005).

The negative Eu anomalies (Fig. 7) result generally from
 weathering of feldspars (Saleh, 2007) and the reduction
ditions (Eu3+! Eu2+) (Neal and Taylor, 1989). The
ative Eu anomalies could result also from the depletion
uropium mineral bearers, especially accessory mine-

 such as monazite and apatite (Saleh, 2007). In addition,
 sample preparation, which eliminates the very fine-
ined part (feldspars, clays. . .) from sediment samples by
shing, might contribute to the depletion of europium
eral-bearers.

 Sediment provenance

According to the heavy minerals (rutile, zircon,
okite, tourmaline, andalusite and kyanite) morphology,

 sediments may have two origins: (i) the grains which
ined their original shape militate for a local sedimen-
on; and (ii) the blunt grains support the fact that the
iments are deposited very far from their source area.
The trace element geochemistry of sediments has been
d by several authors to infer their provenance (e.g.,
strong-Altrin et al., 2004, 2015; Zaid and Gahtani,

5). Elevated values of Cr (> 150 ppm) and Ni
00 ppm) are suggestive of ultramafic sources (Garver
l., 1996). In this study, the sediments have high Cr and

 Ni contents, indicating that likely sediments do not
e an ultramafic origin. The REE patterns and the Eu
maly values can help to understand the source of the
igenous sediments (Ali et al., 2014; Etemad-Saeed
l., 2011; Nagarajan et al., 2011). Mafic igneous rocks
tain little or lack of negative Eu anomalies, whereas
ic igneous rocks generally show negative Eu anomalies
llers et al., 1987). The high LREE/HREE ratios and
ative Eu anomalies in the Lobo sediments indicate high
ic upper crustal sources (Bassis et al., 2016; Silva et al.,
6). As a result, the sediments in the Lobo watershed
e mostly from felsic regional rocks. The differences

ween the CIA values in the same river may also be due

Elemental ratios like La/Sc, La/Co, Th/Sc, and Zr/Cr are
useful as good discriminators between mafic and felsic
source rocks; La, Th and Zr are concentrated more in felsic
igneous rocks, while Co, Sc and Cr have higher concen-
trations in mafic rocks (Ronov et al., 1974; Wronkiewicz
and Condie, 1990). The high Sc contents in the central and
downstream zones militate for a contribution of mafic
source at least in these zones.

Rutile originated from mafic rocks is rich in Cr and poor
in Nb (Zack et al., 2004). However, the fine-grained
sediments, which are mostly composed of rutile in the
Lobo watershed, have high Cr and Nb contents. This
suggests the contribution of many different rocks such as
gneisses, micaschists, quartzites, and pegmatites found in
the Yaoundé Group.

6. Conclusions

Based on the morphological and geochemical features
of the fine-grained alluvial sediments of the Lobo water-
shed in the Yaoundé Group, the following conclusions are
supported:

� the Lobo fine-grained sediments are hydromechanically
transported and derived from felsic source with a
contribution of mafic source towards the downstream
zones;
� there are two types of rutile in the Yaoundé Group: fine-

and coarse-sized rutile. The fine-grains of rutile and
other heavy minerals present primary conserved featu-
res that support a local sedimentation interpretation;
� the high SiO2 and TiO2 contents recall the predominance

of silica-minerals in the alluvia from the humid tropical
zone and the high resistance of rutile during supergene
processes (weathering, erosion and transportation). The
geochemical data of fine-grained sediments reflect their
mineralogy and the regional rocks;
� the LREE/HREE and (La/Yb)N ratios are particularly high

in the upstream zone. The REE behavior can be attributed
to the heavy mineral sorting. The chondrite-normalized
REE patterns are characterized by pronounced negative
Eu anomalies and flat HREE patterns as noticed in the
upper crust;
� the distribution of major and trace elements corrobo-

rates the variation of CIA values. Moreover, these data
suggest that the potential of the fine-grained sediments
from the Lobo watershed as rutile deposits is interesting.
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