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 Introduction

Low permeable gas sandstone reservoirs, also called
ht reservoirs, are generally considered as stress-sensitive

servoirs (Shanley et al., 2004). Numerous lab tests have
own that the absolute permeability of these reservoir
cks decreases strongly with confinement. For single phase
w, this dependence to confinement is related to the
istence of joints and interfaces in tight rocks, which will
se when loading is increased (Fu et al., 2015; Ghabezloo,
15; Holditch, 2006; Schmitt et al., 2015; Shanley et al.,
04; Walsh and Brace, 1984). For two-phase flows in
rous media, not only the absolute permeability, but also
e relative permeabilities can a priori be modified under
ading. Recent experimental results demonstrate that, for

tight sandstones, relative permeability curves will change
with confinement (Wang, 2016).

The purpose of this paper is to use micromechanics in
order to provide support to these experiments and to explain
– at least qualitatively – why the behaviour of relative
permeabilities under loading can be different between low
permeable rocks and permeable rocks. The idea is to compare
different morphological models representative either of
permeable reservoir rocks or of tight rocks.

This note is organised as follows. Section 2 presents a
specific model describing tight rocks behaviour under
loading. The proposed modelling is shown to be in fair
agreement with measured data. Contrarily, considering a
permeable medium in Section 3, we show for some
simplified microstructures that the relative permeabilities
should not depend on the loading.

2. Tight sandstones relative permeabilities under
loading

Recent experimental results on low permeable sands-
tones (Wang, 2016) highlight a dependence of the gas
relative permeability on the confinement (Fig. 1).
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A B S T R A C T

This note deals with the study of stress-sensitive relative permeability experimentally

observed in low permeable sandstones. These sandstones are made up of quartz grains

surrounded by permeable interfaces between grains and pores. A micromechanical model

of relative permeability behaviour under loading highlights the role of the closure of

interfaces. Morphological models adapted to permeable sandstones show conversely that

the relative permeabilities do not depend on the loading.
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The tight sandstone studied by Wang (2016) is made up
f quartz grains and pores (Fig. 2); the contact zone
etween grains, partially cemented or not, forms joints
ith very thin openings e (i.e. smaller than a few
icrometers) as compared to the grain radius R, which

 around 100 mm (i.e. e � R). From a fluid flow point of
iew, pores and interfaces define the pore network.

2.1. Grain with interfaces: the hydraulic model in the dry case

The morphological model chosen to represent sandstones
is in agreement with the SEM observation concerning
microstructure (Fig. 2): tight sandstones are considered as
an assemblage of spherical grains surrounded by permeable
interfaces and of pores. The spherical shape is used to
translate the fact that the considered phase does not manifest
any anisotropy (Dormieux et al., 2011; Kröner, 1978).

We define the microscopic scale as the one of the
heterogeneity of the microstructure (that is the scale of the
grains with interfaces and of the pores). At the macroscopic
scale, the representative elementary volume (rev) denoted
V is regarded as a homogenised medium. The pore space
occupies the domain Vp in the rev. For tight sandstones,
the porosity f = |Vp|/|V| is usually low (below 10%).

Let z denote the position vector at the microscopic scale
in the rev. If a(z) is a field defined on V at the microscopic
scale, its volume average is denoted by
a ¼ 1

jVj
R

V aðzÞ dV . We also introduce the intrinsic averages
aa ¼ 1

jVa j
R

Va
aðzÞ dV over each phase a in Va, with a = p for

pores or g for grains. Following their definitions, a as well
aa are macroscopic quantities.

In order to derive an estimate of the macroscopic
absolute permeability khom and gas krg and water krw

relative permeabilities, we will use a self-consistent
homogenisation scheme to relate microscopic fluid flow
properties (i.e. at the pore scale) to the fluid flow behaviour
of the rev at the macroscopic scale (see Appendix A).

As proposed for grains with permeable interfaces in
Dormieux et al. (2011), a two-dimensional mathematical
representation of the interfaces will be adopted. Note that
we consider a viscosity equal to 1 in the following. At the
microscopic scale, the core of a grain Gi is assumed
impermeable, while the surface velocity vector q is
assumed to be proportional to the fluid pressure gradient
in the interface:

z 2 @Gi :
qðzÞ ¼ �h gradjs p
divjs q þ ½v��n ¼ 0

(1)

Following its definition, q lies within the tangent plane of
@Gi. The physical dimension of q (respectively h) is

ig. 1. Gas relative permeability measurements for 2 low permeable

ndstone samples – loading of 3 MPa (blue curve) – 40 MPa (red curve).
Fig. 2. SEM image of a tight sandstone.
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locity times length (respectively permeability times
ngth).

Based on Poiseuille’s law, the conductivity of the half-
terface associated with one given grain is given by
ormieux et al., 2011):

¼ 1

2

e3

12
(2)

here e is the opening of the interface.
In order to estimate the homogenised permeability

om, two auxiliary problems are considered: one related to
e flow in the pores and the other one to the flow in the
terfaces, around grains.

The first auxiliary problem is a classical Eshelby
oblem featuring a spherical pore embedded in an infinite
mogeneous medium of permeability khom (which is an
known at this stage). At infinity, the boundary
nditions on the fluid pressure write p(z) = r P0 � z, where

 P0 is an auxiliary macroscopic pressure gradient, which
ill be related later to the actual macroscopic pressure
adient r P. Since the characteristic size of the pores is
ge compared to the width of the interfaces, the pore
ace is regarded as a phase with infinite permeability. The
erage of the pressure gradient and the velocity in the
re phase p are deduced from Eqs. (A.1) and (A.2):

pp ¼ 0; vp ¼ �3khom$P0 (3)

In view of estimating the flow in the interfaces around
e grains, we next consider a second auxiliary problem of
spherical grain G of radius R surrounded by its half-
terface, embedded in an infinite homogeneous medium
 permeability equal to the homogenised permeability
om, with the same boundary conditions as previously.
e resolution of this auxiliary problems leads to the

llowing estimates of the pressure gradient and velocity
erages over grains surrounded by an interface of
ickness e:

pgðeÞ ¼ 3=2
khom

khom þ hðeÞ=R
$P0

ðeÞ ¼ �3
khomh=R

khom þ hðeÞ=R
$P0

(4)

ing vgðeÞ ¼ 3
4pR3

R
@Gq dS. Note that this result can be

trieved from Eqs. (A.1) and (A.2) for a classical Eshelby
oblem by replacing the composite inclusion
rain þ interface) by a uniform equivalent inclusion of
rmeability:

qðeÞ ¼ 2hðeÞ
R
¼ e3

12R
(5)

Since all the interfaces in the material do not have the
me thickness, we further assume a continuous distribu-
n of interfaces by means of p.d.f. a; a(e) de represents

e proportion of impermeable grains that have an
terface with a thickness e in the range [e ; e + de]. a is
rmalised such that:

1

From (4), (5) and the distribution a, the pressure gradient
and velocity averages over all grains surrounded by
interfaces are:

$pg ¼
R1

e¼03
khom

2khom þ keqðeÞ
aðeÞ de $P0

vg ¼
R1

e¼0�3
khomkeqðeÞ

2khom þ keqðeÞ
aðeÞ de $P0

(7)

We now come back to the definition of the homoge-
nised permeability khom as the tensor relating the average
over the rev of the pressure gradient $p to the average
over the rev of the velocity v by v ¼ �khom�$p. The
elimination of r P0 in the estimates of $p and v via (3) and
(7) yields the following estimate of the homogenised
permeability (Dormieux et al., 2011):

khom ¼
3fkhom þ ð1�fÞ

R1
e¼03 khomkeqðeÞ

2khomþkeqðeÞ
aðeÞ de

ð1�fÞ
R1

e¼03 khom

2khomþkeqðeÞ
aðeÞ de

(8)

In the case of a log-uniform distribution of interfaces alog-

uni.(e) = 1/e ln(emax/emin), if e 2 [emin, emax], denoting emed ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
emax emin
p

and r = emax/emin = 1 + e, where e characterises
the relative width of the distribution of the opening of
grain joints, the solution to (8) is given by (Bignonnet et al.,
2016):

khom
log-uni: ¼ keqðemedÞ

r
3
2�r

1�3f
1�f
�3

2

2ðr
1�3f
1�f�1Þ

(9)

If all interfaces have nearly the same width (e � 1),
khom

log-uni: ¼
keqðemedÞ

1�3f 1 þ 1þ3f
8ð1�fÞ e

2
� �

þ oðe2Þ.

2.2. Relative permeability model

Let us now evaluate the relative permeabilities in a
simplified way. We denote the water saturation Sw. To
evaluate the gas relative permeability krg(Sw), the previous
hydraulic model is modified by assuming that interfaces
and pores are now saturated either by water or by gas. The
gas flow is assumed to take place only in pores and
interfaces filled with gas, so that pores and interfaces
saturated with water are impermeable with respect to the
gas flow.

In this system, the water phase constitutes the wetting
fluid. We define e$ as the largest opening of the interfaces
invaded by water: for a given saturation Sw, each inclusion
with interface opening e between 0 and e$(Sw) is supposed
to be filled up by water.

To sum up, the considered rev is made up of four
different components:

– pores saturated with gas, with an infinite gas permea-
bility, of volume fraction f (1 � Sw),

– pores saturated with water, impermeable to gas, of
volume fraction fSw,

– grains with an interface saturated with gas, of volume
fraction ð1�fÞ

R e¼1
e¼e$aðeÞ de,

– grains with an interface saturated with water, imper-

meable to gas, of volume fraction ð1�fÞ

R e¼e$

e¼0 aðeÞ de.
e¼0
aðeÞ de ¼ 1 (6)
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The homogenised permeability is estimated as previ-
usly using the self-consistent scheme. By direct use of
.6), the estimate of the homogenised gas permeability is
e positive root to:

�f Sw
1

2|fflfflfflfflffl{zfflfflfflfflffl}
ores w: water

�ð1�fÞ
Z e$

e¼0

1

2
aðeÞ de|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

grains w: water interfaces

þ f ð1�SwÞ|fflfflfflfflfflffl{zfflfflfflfflfflffl}
pores w: gas

þ ð1�fÞ
Z 1

e¼e$

keqðeÞ � khomðSwÞ
2khomðSwÞ þ keqðeÞ

aðeÞ de|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
grains w: gas interfaces

¼ 0

(10)

hen it exists, or zero. The transition between these two
ases is obtained for the critical water saturation Sw,c

efined such that khom(Sw,c) = 0 in (10), hence verifying:

1�fÞ
Z 1

e¼e$ðSw;cÞ
aðeÞ de þ f ð1�Sw;cÞ ¼ 1

3
(11)

he relative permeability of the water phase krw could be
valuated in a similar way. The end points of relative
ermeability curves take place in a natural way as the
ercolation threshold of the self-consistent scheme, which
ay be not as accurate as dedicated percolation models as

iscussed later.
Unfortunately, we are not able to evaluate a in a

traightforward way. The distribution b(e) of pores
upplied by interfaces of largest thickness in the range

 ; e + de] can be related to the capillary pressure curve.1

he usual interpretation of capillary curve assumes that
e filling of a pore is determined by a single interface
ickness; in drainage, the pore associated with the largest
terface gets filled by the non-wetting fluid at first and, at
creasing capillary pressures, pores fed with increasingly

maller interfaces become invaded by the non-wetting
uid. A simplified hypothesis consists in assuming that
(e) is proportional to b(e). Both distribution being
ormalised to the unity, we hence assume:

 ¼ b (12)

 connection to capillary pressure interpretation, e$ can
e interpreted as a threshold of opening, below which all
terfaces and connected pores are saturated in water. The

alue of e$ is linked to the capillary pressure by Laplace’s
w (Dullien, 1992). Under the assumption Eq. (12),

e$

e¼0 aðeÞ de ¼ Sw and the relative gas permeability is
on-zero only for Sw< 2/3 from Eq. (11). Similarly, the
elative water permeability is non-zero only for Sw> 1/3.
as and water phases may flow simultaneously for Sw in
/3 ;2/3]. Note that the end points will be different for

 6¼ b or for a different morphological model.
Under the assumption (12) and in the case of a log-

niform distribution of interfaces, the solution to (10) and
e definition khom(Sw) = krg khom(0) lead to the following

as relative permeability estimate (Bignonnet et al., 2016):

rg;log-uni: ¼
r

3
2�r

1�3fð1�Sw Þ
1�f þ3

2ð2Sw�1Þ

r
1�3fð1�SwÞ

1�f �1

r
1�3f
1�f�1

r
3
2�r

1�3f
1�f�

3
2

(13)

2.3. Loading effect

The purpose of this section is to present a porome-
chanical model of a low permeable sandstone consistent
with the morphology of the previous section, in order to
explain the relative permeability evolution under loading
that has been observed experimentally. This constitutes an
extension to relative permeabilities of a previous work in
the dry case (Dormieux et al., 2011).

We hence turn to the micro-poromechanical model
proposed by He et al. (2012). The solid grains are assumed
to be rigid and surrounded by elastic interfaces. The
constitutive law of the interface is characterised by a
normal stiffness Kn and a tangential stiffness Kt, supposed
to be the same for all interfaces. More precisely, for a
macroscopic stress increment DS, let us denote DT the
stress vector increment acting on the interface and [Du]
the displacement jump increment across the interface. The
constitutive law of the interface reads:

DT�n ¼ Kn½Du�n�
DTt ¼ Kt½Dut�

�
(14)

where n denotes the normal vector to the interface,
DTt = DT � (DT � n)n and Dut = Du � (Du � n)n.

We assume that water and gas pressures do not vary
significantly compared to the imposed confinement
increment at the microscopic scale. Let us consider an
isotropic stress increment DS = DSm1. Using the strain
concentration rules established in the micro-poromecha-
nical model of He et al. (2012), the variation of the opening
of each interface is proved to be independent of its initial
opening e and given by:

De ¼ KnR

l
jDSmj (15)

where l is a morphological parameter that depends on
porosity.

From a hydraulic point of view, a confining stress
increment has thus a significant consequence, as each
interface with an initial opening lower than De is closed
and a part of the pore network is no more accessible to the
fluid flow. Since by definition b(e) de is the fraction of pores
supplied by an interface of largest thickness in the range
[e ; e + de], the porosity Df (�0) trapped due to a load
increment verifies2:

Df ¼ f
Z De

e¼0
bðeÞ de (16)

To sum up, under the load increment, the accessible
porosity is f � Df, and the fraction of trapped pores
Df. Under assumption (12), the volume fraction of grains
with open interfaces is then (1 � f)(1 � Df/f), and the
volume fraction of grains with closed interfaces is
(1 � f) Df/f.

The homogenised permeability is then estimated as
previously using the self-consistent scheme. Due to
loading, trapped pores or grains surrounded by closed

2 Changes of volume fraction of pores and grains related to loading are

1 Which is measured without confinement of the rock sample. here neglected.
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terfaces are taken into account as being impermeable to
y fluid flow. Let us denote by e$ (�De) the opening of
terface (before loading) that separates water-filled
terfaces from gas-filled interfaces (after loading). By
rect use of (A.6), the estimate of the homogenised gas
rmeability is the positive root to:

1

2
Df|{z}

trapped pores

þ ðf�DfÞ Sw|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
pores w: water

þ ð1�fÞ
Z De

e¼0
aðeÞ de|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

grains w: closed interfaces

0
BBB@

þ ð1�fÞ
Z e$

e¼De
aðeÞ de|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

grains w: open; water-filled interfaces

1
CCCAþ ðf�DfÞð1�SwÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

open pores w: gas

þ ð1�fÞ
Z 1

e¼e$

keqðe�DeÞ�khomðSwÞ
2khomðSwÞ þ keqðe�DeÞ

aðeÞ de|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
grains w: open; gas filled interfaces

¼ 0

(17)

hen it exists, or zero.
To go forth, our model requires a key information: for a

ven water saturation Sw, what is the proportion of water-
led interfaces among interfaces still open after loading?
t us denote by f(Sw) this fraction which reads, by
finition of e$:

e$

e¼De
aðeÞ de ¼ f ðSwÞ

Z 1
e¼De

aðeÞ de (18)

e function f(Sw) can be interpreted as a law of
stribution of water in interfaces. Clearly, the function f

s to increase from f(0) = 0 to f(1) = 1. In what follows, we
ill work under the simplifying assumption that the
oportion of open, water-filled interfaces among open
terfaces is proportional to the water saturation, that is:

SwÞ ¼ Sw (19)

t us first analyse the effect of loading on the relative
rmeability end points. Under the assumptions (12) and
9), the generalisation of (11) in order to account for
sed interfaces and trapped pores based on (17) indicates

at relative gas permeability vanishes for the critical
ater saturation:

;c ¼
Df� 2

3 f

Df�f
(20)

nce, the end point of gas relative permeability under
ading arises for lower water saturation than for the
loaded case. As loading increases, the connectivity of the
rous media decreases, and the critical water saturation

r which gas relative permeability vanishes decreases. If
e load closes more than two thirds of the interfaces, the
rmeability vanishes even in the dry case. In the vicinity

 the critical saturation (20), the proposed model allows
 to retrieve the experimental observation that the gas
lative permeability curve under loading is below that in
e unloaded case.
Further, under the assumptions (12) and (19) and in the

homogenised permeability of the partially saturated
medium under a load that traps a porosity Df verifies:

khomðSwÞ ¼ keqðemedÞ
r3=2�r3=2�2hþz

2 ðrhþz�1Þ (21)

where

h ¼ 1�Df
f

� �
ð1�f ðSwÞÞ

z ¼
Df þ ðf�DfÞSw þ ð1�fÞDf

f
ð1�fÞ

þ
ð1�fÞ 1�Df

f

� �
f ðSwÞ�2ðf�DfÞð1�SwÞ

ð1�fÞ

(22)

under the approximation keq (e � De) � keq(e) in the last
integral of (17) (which turns out to be a good approximation).

To study the influence of the shape of the p.d.f. a that
governs the grain interface openings, a log-normal dis-
tribution of the opening with a mean of log(e) =�7 and a
standard deviation of 1 has also been considered. The
solution to Eq. (17) is no longer analytical and has been
computed numerically. The outputs of the model are
presented in Fig. 3 for both the log-normal and log-uniform
distributions with a standard deviation of 1, in the case of an
initial porosity of 0.1 and a trapped porosity Df of 0.03. It is
observed that our simple model does account for the stress
sensitivity of relative permeability curves for tight sands-
tones. At equivalent mean and standard deviation, the
influence of the shape – log-uniform or log-normal – of the
p.d.f. a of the size distribution of interface openings is of
second order on the relative permeabilities.

2.4. Limitations of the model

The main interest of the present model lies in the use of
the same morphological model for the fluid flow and
mechanical problems. This allows us to explain qualita-
tively the effect of loading on relative permeabilities, at
least close to the critical water saturation. However, let us
stress out that self-consistent estimates do not have the
accuracy of percolation models (Guéguen et al., 1997),

Fig. 3. Estimates of gas relative permeabilities without loading (line) and
th loading (dashes) for f = 0.1 and Df = 0.03.
se of a log-uniform distribution of interfaces, the wi
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ealised, for example, on a 3D image of the pore network. In
articular, the percolation threshold values arising from
e self-consistent scheme may not be accurate.
The present model further relies on a number of

implifying hypotheses, which allow us to reach an almost
omplete analytical treatment of the loaded problem.
amely, this simplified model does not account for

omplex multi-phase flow mechanisms such as snap-off
r flow by film (Dullien, 1992). Moreover, Eq. (12)
onstitutes a strong assumption on the connectivity of

e porous network. A closer comparison of our simplified
odel to the experimental results presented in Fig. 1

hows some discrepancies for water saturation values that
re not close to the critical water saturation (particularly in
e case of log-uniform p.d.f. a): the model predicts that
e relative gas permeability is higher in the unloaded case
an in the loaded one, whereas experiments show the

pposite behaviour.

.5. Effect of the interface bulk porosity distribution laws

The purpose of this section is to study the influence of
ssumption (12) on the connectivity of the porous
etwork. A relationship between a and b more general
an (12) is now assumed:

e0

e¼0
aðeÞ de ¼ g

Z e0

e¼0
bðeÞ de

  !
(23)

here g is a function increasing from g(0) = 0 to g(1) = 1,
ince both distribution are normalised to unity. The
ssumption (12) constitutes the particular case
(x) = x. Under the new assumption (23), the variation
e of interface opening due to loading is linked to the

ariation Df of porosity by:

De

e¼0
aðeÞ de ¼ g

Df
f

� �
(24)

ecalling that for a given water saturation value Sw, f(Sw)
enotes the proportion of water-filled interfaces among
terfaces still open after loading (see (18)), the critical
terface opening e$ that separates gas filled from water-

lled interfaces now verifies:

e$

e¼De
aðeÞ de ¼ 1�g

Df
f

� �� �
f ðSwÞ (25)

In the case of a log-uniform distribution of interfaces,
e homogenised permeability of the partially saturated
edium under a load that traps a porosity Df under

ssumptions (18) and (23) is analogous to (21), up to the
inor modifications:

 ¼ 1�g
Df
f

� �� �
ð1�f ðSwÞÞ

 ¼
Df þ ðf�DfÞSw þ ð1�fÞg Df

f

� �
ð1�fÞ

ð1�fÞ 1�g
Df
f

� �� �
f ðSwÞ�2ðf�DfÞð1�SwÞ

(26)

The effect of the choice of the laws f and g are illustrated
in Fig. 4, where the former assumption f(x) = g(x) = x is
compared to another (arbitrary chosen) assumption
f ðxÞ ¼ gðxÞ ¼

ffiffiffi
x
p

. The latter choice, although arbitrary,
corresponds to a case where the interfaces are water
filled faster than bulk pores in imbibition. In that case,
the sharp decrease with Sw of the relative gas per-
meability observed for loaded tight sandstones is well
reproduced.

Thus, an appropriate choice of f and g should be
motivated in future works by experimental observations
or more sophisticated modelling approaches such as
pore network models (Bakke and Øren, 1997; Blunt et al.,
2002). Nevertheless, at this stage, the model makes it
possible to understand the influence of the closure of
joints on the relative permeability in the case of tight
sandstones.

3. Model of the relative permeabilities of permeable
sandstones

Is is also interesting to use the previous approach with
porous medium models adapted to conventional, per-
meable (i.e. non-tight) sandstones. We assume pores
modelled as spherical pores or tubes and show that in
these cases relative permeabilities are at first order
independent of loading. For such permeable sandstones,
the conventional approximation used in reservoir engi-
neering and hydrogeology, which consists in considering
the influence of loading on the absolute permeability only
and not on the relative permeabilities, thus seems
reasonable.

3.1. Porous network made up of spherical pores

Unloaded case. We adopt the same approach as in
Section 2 and consider a porous medium made up of
spherical pores and an impermeable solid phase. Following

Fig. 4. Estimates of gas relative permeabilities: effect of the laws f and g,

for a log-uniform p.d.f. a with a standard deviation of 1, f = 0.1 and

Df = 0.03.
arkov et al. (2010), a spherical pore of radius R embedded

þ ð1�fÞ M
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 a porous medium is equivalent to a spherical permeable
clusion of equivalent permeability3:

oreðRÞ ¼ R2

6
(27)

Let us consider now as previously a statistical
stribution of pore radius characterised by a probability
R) that a pore has its radius in the range [R ; R + dR]. From
. (A.6), the homogenised absolute permeability verifies
e following implicit equation:

1�f
2
þ f

Z 1
R¼0

kporeðRÞ�khom

2khom þ kporeðRÞ
aðRÞ dR ¼ 0 (28)

here khom is non-zero only if f � 1
3. This low percolation

reshold is related to our choice of morphological model.
te that this feature could be avoided by choosing an
uivalent cell permeability instead of spherical pores
outin, 2000; Bignonnet, 2014), in which the pore volume
distributed around each grain.
Let us now turn to the estimation of the relative gas

rmeability. All pores whose radius is smaller than a critical
e R$ governed by the saturation degree are assumed filled

 water and impermeable to gas (Sw ¼
R R$

R¼0 aðRÞ dR).
ing the self-consistent scheme (A.6), the homogenised
s permeability khom(Sw) = khom(0) 	 krg(Sw) verifies the
llowing relationship:

Z 1
R¼R$

kporeðRÞ�khomðSwÞ
2khomðSwÞ þ kporeðRÞ

aðRÞ dR

�1�f þ fSw

2
¼ 0

(29)

r this morphological model, the porosity f must be
eater than 1/3 and the critical water saturation for which
e relative gas permeability vanishes is Sw;c ¼ 1� 1

3f.
Loaded case. The variation of the pore radius DR related

 an isotropic mechanical loading increment DSm can be
adily estimated from micro-poromechanics on the same
orphological model (see Dormieux et al., 2006 for more
tails). The resolution of the micro-poromechanical
oblem leads to:

¼ 1

3kscð1�ascÞ
DSm (30)

here ksc and asc are functions of the solid phase elastic
operties and of the porosity (Dormieux et al., 2006). It is
rther assumed that the pores do not close nor collapse
e to loading, since obviously spherical pores are more

fficult to close than to joints between grains. From (27)
d (28), the variation of the gas permeability in the dry
se is:

homð0Þ
homð0Þ

¼ 2
DR

R
¼ Dkpore

kpore (31)

However, Eqs. (29) and (31) indicate that the relative
permeability does not depend on the loading at first order,
i.e. when changes of volume fraction of pores and grains
related to loading are neglected.

3.2. Porous network made up of tubes

Unloaded case. Our second morphological model of
conventional, permeable sandstones consists in a porous
medium with an isotropic distribution of pores that are
tubes (circular cylinders of radius r). Let n be the unit
vector along the axis of a tube. The permeability kn of a
tube of radius r in its axial direction is given by Poiseuille’s
law:

knðrÞ ¼ g r2 with g ¼ 1=8; (32)

while the permeability kt in directions normal to n is
chosen equal to khom (Barthélémy, 2009). The permeability
tensor of such a tube is then the transverse isotropic tensor
knn 
 n + kt(1 � n 
 n). Using Eqs. (A.1) and (A.2), the
average of the pressure gradient and velocity in tubes of
radius r whose axis is along the direction n is estimated by:

$ppðn;rÞ ¼ 1�$P0

vpðn;rÞ ¼ �½knðrÞn
n þ ktð1�n
nÞ��$P0

(33)

Next, we consider an isotropic spatial distribution for
the tubes and a probability a(r) that a tube has its radius in
the range [r ; r + dr]. From (A.6), the following self-
consistent estimate for khom is finally obtained:

khom ¼ 2f
9�7f

Z 1
r¼0

knðrÞ aðrÞ dr 1 (34)

The partially water saturated case is dealt with
assuming that tubes with a radius r < r$(Sw) are saturated
with water and impermeable to gas. In that case, the gas
permeability verifies:

khomðSwÞ ¼ 2f
9�7f þ 8fSw

Z 1
r¼r$

knðrÞ aðrÞ dr 1 (35)

For this morphological model, the critical water saturation
for which the relative gas permeability vanishes is Sw,c = 1.

Loaded case. In order to deal with the effect of loading on
the relative gas permeability, the variation Dr of the radius
of the tubes under an isotropic loading increment DSm can
be assessed from micro-poromechanics on the same
morphological model than for the permeability. From
the hydraulic point of view, the relevant output of such a
poromechanical model is that Dr/r is proportional to the
load increment, i.e.:

Dr

r
¼ hDSm (36)

where h depends on the porosity as well as on the bulk and
shear moduli of the solid phase. Combining (35) and (36),
one concludes as for the previous model with spherical
pores that the relative permeability is not sensitive to
loading at first order.

Rigorously, (27) is valid only in the limiting case where kpore(R) is

ge compared to the permeability of the surrounding porous medium.
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. Conclusion

The application of homogenisation techniques to
implified – but representative – morphologies of either
ght, low-permeability sandstones or conventional, per-
eable sandstones allows one to qualitatively retrieve an

xperimentally observed behaviour: the relative gas
ermeabilities of tight sandstones are much more sensitive

 confinement than the ones of conventional sandstones.
he underlying phenomena at the microscopic scale is the
ccurrence of closure of the joints due to loading in tight
andstones, which defines new percolation pathways.
onversely, it is shown that the relative permeability is not
ery sensitive to loading for conventional sandstones
nder the assumption that the load only modifies the pore
adii, without modification of the connectivity of the pore
etwork.

It is emphasised that the tight sandstone model has
llowed us to identify that a required, key information is
e connectivity of the interfaces and the bulk pores,
rough the functions f and g. The appropriate choice of
ese functions has not been investigated in the present
ork. It should be motivated in future works by

xperimental observations or dedicated modelling, for
xample using pore network models. Future works should
lso take into account capillary effects in the micro-
oromechanical model. The difference in the pressure of
e gas filled and water filled pores may indeed play an
portant role on the variation of joint openings, and thus

ffect pore connectivity.

ppendix A. Self-consistent estimate of the
omogenised permeability

The homogenised permeability khom is defined as the

nsor relating the average over the rev of the pressure

radient $p to the average over the rev of the velocity v by

 ¼ �khom�$p for appropriate boundary conditions (e.g.,

(z) = r P � z on the boundary of the rev where $P ¼ $p is

e macroscopic pressure gradient).

The self-consistent homogenisation scheme used in this

ork relies on the estimate of the velocity and pressure

radient averages of each phase of the heterogeneous

v. These averages are estimated from the solution to

shelby’s problems (Suvorov and Dvorak, 2002), devised as

llows. For each phase, an inclusion I (or elementary particle

epresentative of the phase) is embedded in an infinite

edium whose permeability k0 is uniform. An auxiliary

niform pressure gradient r P0 is applied such that

(z) = r P0 � z at infinity. If the inclusion I is an ellipsoid

ith homogeneous permeability kI, the pressure gradient

nd the velocity solution to the Eshelby problem are constant

side the inclusion. In this case, the pressure gradient inside

e inclusion is given by:

pðzÞ ¼ ½1 þ PI
0�ðkI�k0Þ�

�1�$P0 ðz 2 IÞ; (A.1)

here PI
0 is the so-called Hill tensor of the inclusion I in the

isotropic (i.e. k0 = k01), the Hill tensors of a spherical and
circular cylindrical inclusions are given by:

Psph
0 ¼ 1

3ko
1

Pcyl
0 ¼

1

2ko
ð1�n
nÞ

(A.2)

where n is the unit vector collinear with the axis of the
cylinder. The velocity inside the inclusion is then simply
deduced from the combination of Darcy’s law with the
Eshelby localisation rule (A.1) as:

vðzÞ ¼ �kI�½1 þ PI
0�ðkI�k0Þ�

�1�$P0 ðz 2 IÞ; (A.3)

The average of the pressure gradient and of the velocity

over the rev are then estimated as:

$p ¼ 1 þ P0�ðk�k0Þ½ ��1�$P0

v ¼ �k�½1 þ P0�ðk�k0Þ��1�$P0

(A.4)

The self-consistent estimate consists in choosing the

permeability k0 of the embedding infinite medium for each

auxiliary Eshelby problem as the looked-for homogenised

permeability khom. The elimination of the auxiliary pressure

gradient in (A.4) then provides the self-consistent estimate of

the homogenised permeability as the solution to the

equation:

khom ¼ k� 1 þ Phom�ðk�khomÞ½ ��1

�½1 þ Phom�ðk�khomÞ��1
�1 (A.5)

where Phom(z) is the Hill tensor of the inclusion I

comprising z embedded in the infinite medium of
permeability khom. The implicit equation (A.5) simplifies
to:

dk�½1 þ Phom�dk��1 ¼ 0 (A.6)

where dk(z) = k(z) � khom.
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