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 Introduction

In initial stages of exploratory investigations, stream
diment geochemical data are used to determine target
eas for detailed exploration of mineral deposits (Afzal

 al., 2010a; Arias et al., 2011; Carranza, 2011; Carranza
d Hale, 1997, 2002; Daya, 2015; Parsa et al., 2016b,
17b, 2017c; Sadeghi et al., 2015; Wang et al., 2014;
lmaz, 2003, 2007; Yilmaz et al., 2015; Zuo, 2011a, 2011b;
o et al., 2009) and differentiation of geochemical
omalies from background concentrations plays a crucial
le in regional geochemical prospecting for mineral
ploration (Carranza, 2008). Identification of anomaly
tterns is influenced by both the frequency and spatial
riation of geochemical samples. The main disadvantage

 traditional statistical methods is that they take only the

frequency distribution of elemental concentrations into
consideration and hence neglect the spatial variation of
geochemical data and therefore, invaluable information
of a geochemical data set may be missed out (Afzal et al.,
2013; Parsa et al., 2016c). Common methods based on the
traditional statistics include determining thresholds by
means of average and standard deviation of data set
(Li et al., 2003), exploratory data analysis (Reimann et al.,
2005; Turkey, 1977), and probability plots (Sinclair,
1991). Cheng (2007) believes that there are complicated
anomaly patterns in stream sediment geochemical data,
which can be characterized by their spatial properties
(Carranza, 2008; Carranza et al., 1999). This means that
the determination of background and anomalous values
requires consideration of frequency distributions and
spatial variability of elemental concentration, simulta-
neously. Therefore, fractal/multifractal methods such as
concentration-area (C–A: Cheng et al., 1994), perimeter-
area (P–A: Cheng, 1995), concentration-distance (C–D: Li
et al., 2003), concentration-volume (C–V: Afzal et al.,
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A B S T R A C T

The delineation of populations of stream sediment geochemical data is a crucial task in

regional exploration surveys. In this contribution, uni-element stream sediment

geochemical data of Cu, Au, Mo, and Bi have been subjected to two reliable anomaly-

background separation methods, namely, the concentration-area (C–A) fractal and the U-

spatial statistics methods to separate geochemical anomalies related to porphyry-type Cu

mineralization in northwest Iran. The quantitative comparison of the delineated

geochemical populations using the modified success-rate curves revealed the superiority

of the U-spatial statistics method over the fractal model. Moreover, geochemical maps of

investigated elements revealed strongly positive correlations between strong anomalies

and Oligocene–Miocene intrusions in the study area. Therefore, follow-up exploration

programs should focus on these areas.
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011), spectrum-area (S–A: Cheng, 1999) and singularity
apping (SM) (Cheng, 2007) have been implemented to

elineate complicate anomaly patterns (Parsa et al.,
016d, 2017a).

The C–A fractal technique has been successfully applied
 delineate anomaly patterns due to the consideration

f both frequency distributions and spatial variations.
-spatial statistics as a moving average technique (Cheng,
999; Cheng et al., 1996) along with the fractal methods
an, therefore, be effectively used to separate the anomaly
opulations from background based on the defining window
round each station with different sizes and shapes.

In the present study, the results of the C–A fractal model
re compared qualitatively and quantitatively with the
esults of the U-spatial statistics method in determining
tream sediment Au, Bi, Cu and Mo uni-element geochem-
al signatures of porphyry Cu deposits in the Varzaghan
istrict, NW Iran. Firstly, logistically transformed values of
ni-elemental concentrations were interpolated using
rdinary Kriging (OK) method and afterwards, the U-

patial statistics method and the C–A fractal model were
sed to separate anomaly populations from background
alues of selected elements. Finally, success-rate curves
gterberg and Bonham-Carter, 2005) were prepared for

uantitative comparison and evaluation of discretized
eochemical populations of mineralization-related ele-
ents with respect to the locations of already known
ineral occurrences of the deposit-type sought.

. Methodology

.1. Concentration-area (C–A) fractal model

The concentration-area (C–A) fractal model was pro-
osed by Cheng et al. (1994) for the decomposition of
eochemical anomalies from background (e.g., Afzal et al.,
010b; Arias et al., 2012; Parsa et al., 2016a, 2016b).
quation (1) can summarize the C–A fractal model as
llows (Cheng et al., 1994):

ðr�yÞ 1 r�a1 ; Aðr > yÞ 1 r�a2 (1)

here A(r) refers to the occupied area with concentration
alues greater than contour values r, v represents the
reshold value, and a1 and a2 are fractal dimensions of

nomaly and background populations, respectively. Cheng
t al. (1994) used two approaches for deriving A(r): (a) the
easurement of the area enclosed by the contour value r

n a geochemical contour map and (b) the calculation of
(r) by counting the number of pixels greater than or equal

 v (the so-called box-counting method). In this regard,
e breaks between straight-line segments on log–log

lots and the assigned values of r have been used for the
elineation of geochemical anomalies and background.

.2. U-spatial statistics model

The U-spatial statistics model is a window-based
oving average technique with variable window radius
at may be used to decompose anomalies that are related

 mineralization of a given type from background (Cheng

et al., 1996). In this approach, the weight of each station is
calculated according to the distances of the stations around
the center of the appropriate window (Ghavami-Riabi
et al., 2010). The variation of isotropy or anisotropy of the
desired variables in diverse directions is influenced by the
configuration of the window (Cheng, 1999). Distance-
based weights are assigned to the center points of each
window. The favorable U-value for each station (Ui(r)) with
the radius of r (0 < r < rmax) can be calculated by the
following equation (Cheng, 1999):

UiðrÞ ¼

Xn1

j¼1

wjðrÞxj�m

s
þ

Xn2

k¼1

wkðrÞxk�m

s
¼ x

¯i
ðrÞ�m
s

(2)

where m and s are the average and standard deviation of all
data, respectively, xj is the measured values in the jth

station, xk is the measured values in the kth station inside
the circle, wj(r) is the weight of the jth station and wk(r) is
the weight of the kth station, and x

¯i
ðrÞ is the weighted

average of the ith station according to the surrounding
stations. According to the formula, different U-values could
be calculated based on the diverse r values. In this regard,
the average (U) and standard deviation (S�D) of U-values
(Cheng et al., 1996; Parsa et al., 2016a) corresponding to
each element were calculated to be used for discriminating
between anomalies and background. For this purpose, the
values of U, U + S�D, U + 2S�D and U + 3S�D were used as a
cut-off to classify U-values, and thus five different
geochemical populations could be obtained.

3. Geological setting

The study area is located within the Urumieh–Dokhtar
magmatic belt (UDMB) in northwestern Iran (Fig. 1a). The
UDMB, comprising NW–SE trending tectonic-volcanic
segments, formed as a result of the geodynamic evolution
of the Tethys belt between Arabian and Eurasia in the Late
Mesozoic (Alavi, 1994). The porphyry Cu deposits show a
strong tendency to form in island and continental-arc
settings (e.g., UDMB) (Billa et al., 2004; Cooke et al., 2005).
The previous exploration studies and known mineral
occurrences in the northern parts of UDMB, especially in
the Varzaghan district, indicate that this belt has great
potential for prospecting porphyry Cu deposits in Iran (e.g.,
Ayati et al., 2013; Richards et al., 2012). The UDMB is
divided into three important metallogenic sub-belts: (a)
the Arasbaran porphyry copper sub-belt (APCB) in the
northwest, (b) the Saveh–Yazd porphyry copper sub-belt
(SYPCB) in central UDMB, and (c) the Kerman porphyry
copper sub-belt (KPCB) in southeastern area, which host
major Cu porphyry deposits, such as Sungun, Kahang, and
Sarcheshmeh deposits, respectively. The magmatic activity
in the area, initiated in the Cretaceous and continued
intensively into the Quaternary, mostly consists of high-K
calcalkaline to shoshonitic affinities (Jamali et al., 2010).

The Varzaghan district is located in the northern part of
the APCB. The most common magmatic rocks in the APCB
are type-I granitoids and monzonites that started to form
as a result of intense magmatic activity in the Eocene and
continued in the Oligocene–Miocene by emplacement of
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ge intrusions causing extensive alteration and minerali-
tion. Granodioritic, tonalitic, and quartz-monzonitic
utons played an important role in the formation of the
rphyry, skarn and epithermal Cu, Mo, and Au. The

stribution of precious and base-metal mineralization
ithin the APCB can potentially provide economically
nificant mineralization (Maghsoudi et al., 2005).
The major lithological units outcropping in the study

ea include Cretaceous sedimentary and volcanic units,
hich appear in the northern parts of the Varzaghan
strict, Eocene–Oligocene volcanics, including trachyan-
site, andesitic basalt, and porphyritic andesite. These
cks are cut by Oligo-Miocene intrusions of granodiorites

 quartz-monzonites composition (Mehrpartou, 1993)
ig. 1b). Plio-Quaternary andesitic and basaltic rocks
erlie the older magmatic units, occurring predominantly

 the southern part of the area. Quaternary alluvial
posits consisting of gravel, sand, and silty clay are widely
stributed in river plains. Mineralization is believed to be
lated to intense hydrothermal alteration associated with
igo-Miocene intrusive rocks with calc-alkaline to alka-
e compositions (Jamali et al., 2010).

 Geochemical data

During the regional geochemical exploration program

sediment samples were collected from Varzaghan
1:100,000 quadrangle map with a density of one sample
per 2 km2, for regional exploration. Fig. 1c shows the location
of geochemical stream sediment samples over the relevant
drainages. The samples were sieved, and the < 80 mm pulps
were retained for inductively coupled plasma optical
emission spectrometry (ICP-OES) analysis for 44 elements,
except for Au, which was analyzed by fire assay method. The
detection limits of the selected elements are: 0.2 ppm for Cu,
0.1 ppm for Mo, 1 ppb for Au, and 0.1 ppm for Bi. In addition,
the method of Thompson and Howarth (1976) was
implemented for assessment of analytical precision using
duplicate samples. The precision was mainly better than 10%
for selected elements.

In the northern parts of Arasbaran, especially the
Varzaghan district, porphyry deposits produced geochem-
ical signatures (genetically, spatially, and temporally with
intrusive rocks) of Cu, Au, Mo and Bi (Jamali et al., 2010;
Maghsoudi et al., 2014), leading to the discovery of
prospective areas of porphyry-Cu mineralization targets.
From a geochemical point of view, Cu may have a close
association with Au, Mo, and Bi elements in Cu–Mo and
Cu–Au porphyry deposits in the study area and therefore,
geochemical signatures of these four elements may be
vectors towards porphyry copper deposits. Thus, in the
current study, Cu, Au, Mo, and Bi elements were applied to

. 1. a: location of the study area in the Urumieh–Dokhtar magmatic belt; b: simplified geological map of the study area (modified after Mehrpartou,

93); c: location of the stream sediment samples in the study area.
nerate the uni-element geochemical maps.
 the Geological Survey of Iran (GSI), 1067 stream ge
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The statistical analysis was carried out by SPSS
2 software. The simple substitution method was imple-
ented for creating an uncensored data set, e.g., replace-
ent by 3/4 of the lower detection limits. Raw data have
ean values of Cu, Mo, Bi and Au, which are 66, 2.2,

.31 ppm and 8 ppb, respectively (Table 1). The skewness
alues of the raw data of Cu, Mo, Bi and Au (8.08, 6.64,
.16 and 3.11, respectively) suggest that the original
atasets of selected elements are not normally distributed
nd show tendencies towards lognormal distributions.
ince most of the statistical methods comply with the
ormal distribution assumption, normalizing the original
eochemical data by an appropriate method such as ln
onversion function provides a suitable condition to
ecrease the difference between extreme high and low

values of geochemical data for better comparison. There-
fore, the individual raw geochemical data of Cu, Mo, Bi and
Au were normalized by conversion into their logarithms
(ln conversion). The Q–Q plots of the ln-transformed data
were also drawn (Fig. 2) and illustrate that there are some
outliers in data set, and consequently, the geochemical data
are not log-normally distributed. According to Reimann et al.
(2002), there are multiple populations in the data set, which
can be related to the influence of diversity of geological
processes (Zuo, 2011a; Zuo et al., 2009).

Besides, to specify the inter-relations between the
investigated elements as uni-variate analysis, Pearson’s
correlation coefficients were calculated among logarithmic
data (Au–Bi–Cu–Mo), and the results show a high positive
correlation between logarithmically transformed element

able 1

ummary of statistical values for the �80 mesh stream sediment geochemical data set of the Varzaghan area.

Element Mean Median Standard deviation Maximum Minimum Skewness Kurtosis

Au 8 3.2 14.29 95 1 3.11 10.03

Bi 0.3 0.2 0.37 4.9 0.02 6.16 50.66

Cu 66 44.05 107.18 1398 0.2 8.08 80.43

Mo 2.2 1.2 4.53 56 0.1 6.64 53.44
Fig. 2. Q–Q plots of the ln-transformed values of Au, Bi, Cu, and Mo.
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irs. Accordingly, Cu mineralization is genetically associ-
ed with Au, Bi, and Mo within the study area (Table 2).

In the current study, the central part of the Varzaghan
strict has been used to generate geochemical anomaly
aps. The central part of Varzaghan district was gridded

 73 � 73 m2 cells, which were calculated based on the
ometrical properties and number of collected samples of
e study area (Hengl, 2006). IDW and different Kriging
.g., ordinary, Gaussian, spherical and cokriging) surface
terpolation techniques are the most popular methods
at have their own advantages and disadvantages. Overall,
iging-based interpolation techniques can be used proper-

 to estimate elemental concentrations in unsampled areas
heng, 2000). Although all mentioned interpolation
ethods are extensively performed in geosciences, espe-
lly in stream sediment geochemical modeling, because of

e minimization of the variance of the estimation error, the
 could be considered as the best linear unbiased

terpolation method (Zhong et al., 2016). Uni-elemental
atial distribution models were performed by Arc GIS
.2 software generated by the OK interpolation method.
e omni-directional variograms and their fitted spherical
odels for selected elements were plotted by SGeMS
ftware based on the ln-transformed data (Fig. 3).
To better distinguish and evaluate anomalous from

ckground contribution, a logistic transformation is used

for the conversion of the values of uni-elemental
geochemical signatures to a positive domain ([0,1] range).
For this purpose, we used a logistic function based on s and
i parameters as slope and inflection point, respectively
(Parsa et al., 2016c; Yousefi et al., 2014). The logistically
transformed values of elements under investigation were
used as inputs to Arc GIS 10.2 software and the
interpolation maps of these elements, derived from the
OK method, were also generated using this software
(Fig. 4).

5. Results and discussion

5.1. C–A fractal model

Based on the interpolated maps of logistically trans-
formed values of Au, Bi, Cu, and Mo using the OK method
(Fig. 4), the C–A log–log plots, consisting of the logistically
transformed values of gridded uni-element geochemical
maps (r), versus the number of grid pixels with the values
of Au, Bi, Cu, and Mo greater than or equal to r, were
generated (Fig. 5). Breaks between straight-line segments
and the corresponding values of r were used as a cut-off to
classify pixel values in the OK interpolated maps. These
lines were optimally fitted based on the least-square
method, as the addition or reduction of any other straight
lines lowered the regression coefficient of these lines
(Cheng et al., 1996). Based on the log–log plots of the
selected elements, there were five different threshold
values and thus six different geochemical populations for
Au and Mo, four different threshold values and five
different geochemical populations for Cu and three
different threshold values and four different geochemical
populations for Bi (Fig. 5). The different threshold values
and corresponding classes of C–A fractal model are shown
in Table 3.

ble 2

arson correlation coefficient among ln-transformed data of Au, Bi, Cu,

d Mo.

Au Bi Cu Mo

u 1

i 0.506 1

u 0.568 0.576 1

o 0.523 0.606 0.724 1
Fig. 3. Omni-directional variograms and their corresponding fitted models for (a) Au, (b) Bi, (c) Cu, and (d) Mo.



Fig. 4. Spatial distribution maps of geochemical anomalies of the logistically transformed values of (a) Au, (b) Bi, (c) Cu, and (d) Mo.

Fig. 5. C–A log–log plots of the logistically transformed values of (a) Au, (b) Bi, (c) Cu, and (d) Mo.
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Due to C–A log–log plots of logistically transformed
values of Au and Mo (Fig. 5a, d), six different geochemical
populations are considered as low background, moderate
background, high background, weak anomaly, high anom-
aly, and extreme anomaly, respectively. The C–A log–log
plot of logistically transformed values of Cu (Fig. 5c), also
demonstrates five different geochemical populations
including low background, high background, weak anom-
aly, high anomaly, and extreme anomaly. Furthermore,
geochemical populations based on the C–A log–log plot of
logistically transformed values of Bi (Fig. 5b), show low
background, high background, weak anomaly, and extreme
anomaly classes. Visually, the weak anomaly, high
anomaly, and extreme anomaly classes of each uni-
element geochemical signature obtained with the C–A
fractal model, appear to be highly correlated to some of the
outcrops of Oligocene–Miocene intrusive rocks in the
study area, which are the main hosts of porphyry Cu
mineralization. Moreover, the majority of the already
known porphyry Cu occurrences of the Varzaghan district
demonstrate positive spatial association with the low
anomaly, high anomaly, and extreme anomaly populations
(Fig. 6).

5.2. U-spatial statistics model

To calculate the U-values of logistically transformed
values of Au, Bi, Cu, and Mo, a MATLAB-based program was

ble 3

resholds of C–A fractal and U-spatial statistics methods for different

ochemical populations of Au, Bi, Cu and Mo.

lements C–A fractal U-spatial statistics

Class Threshold

values

Class Threshold values

u 1 0.01–0.04 Umin–Ū –0.69–0.1

2 0.04–0.1 Ū–Ū + S�D 0.1–0.84

3 0.1–0.48 Ū + S�D–Ū + 2S�D 0.84–1.58

4 0.48–0.8 Ū + 2S�D–Ū + 3S�D 1.58–2.32

5 0.8–0.94 Ū + 3S�D–Umax 2.33–2.77

6 0.94–0.99 - -

i 1 0.01–0.44 Umin–Ū –5.24–0.09

2 0.44–0.79 Ū–Ū + S�D 0.09–0.85

3 0.79–0.92 Ū + S�D–Ū + 2S�D 0.85–1.61

4 0.92–0.99 Ū + 2S�D–Ū + 3S�D 1.61–2.37

- - Ū + 3S�D–Umax 2.37–3.36

u 1 0.01–0.24 Umin–Ū –2.59–0.15

2 0.24–0.38 Ū–Ū + S�D 0.15–0.88

3 0.38–0.74 Ū + S�D–Ū + 2S�D 0.88–1.61

4 0.74–0.96 Ū + 2S�D–Ū + 3S�D 1.61–2.34

5 0.96–0.99 Ū + 3S�D–Umax 2.34–3.21

o 1 0.01–0.14 Umin–Ū -1.56–0.14

2 0.14–0.21 Ū–Ū + S�D 0.14–0.92

3 0.21–0.52 Ū + S�D–Ū + 2S�D 0.92–1.7

4 0.52–0.72 Ū + 2S�D–Ū +3S�D 1.7–2.48

5 0.72–0.96 Ū + 3S�D–Umax 2.48–3.36

6 0.96–0.99 – –
Fig. 6. Spatial distribution maps of geochemical populations of (a) Au, (b) Bi, (c) Cu, and (d) Mo obtained by the C–A fractal model.
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plemented. For each station, the best window was
elected based on the maximum absolute U-values and

us, a 200-m radius was determined for calculating the U-
alues (Cheng, 1999). In the next step, the histograms of
e calculated U-values for selected elements were drawn
ig. 7). For separating geochemical anomalies based on
e U-spatial statistics method, the calculated U-values

were interpolated using the OK method and the cut-off
values of U, U + S�D, U + 2S�D and U + 3S�D were determined
for separating anomalous populations from background
values. Diverse enrichment steps derived by U-spatial
statistics method are shown in Fig. 8. Based on the U-
values histograms (Fig. 7) for Au, Bi, Cu and Mo, five
different geochemical populations are delineated. The

Fig. 7. Histograms of the U-values of the logistically transformed values of (a) Au, (b) Bi, (c) Cu, and (d) Mo.
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pulation below U and between U and U + S�D constituted
w background and high background (Table 3), respec-
ely. Whereas the populations higher than U + S�D

 + S�D < U(i) < U + 2S�D, U + 2S�D < U(i) < U+3S�D and
i) > 3S�D) are considered as weak anomaly, high
omaly, and extreme anomaly, respectively (Table 3).
The resulting populations of weak anomaly, high

omaly, and extreme anomaly obtained by the U-spatial
tistics method were correlated to the already known Cu
rphyry occurrences within the study area. Besides, the
ost outcrops of intrusions, hosting the porphyry Cu
ineralization in the study area (Hezarkhani, 2006), are
sely related to anomalous populations.

. Comparison of the results

For investigating the efficiency of discretized uni-
mental geochemical maps, which are resulted from
A fractal and U-spatial statistics modeling, the locations

 known mineral occurrences and occupied areas of
fferent geochemical populations were used. For this, a
edible approach, namely a success-rate curve (Agterberg
d Bonham-Carter, 2005), was adopted to compare and
aluate the effectiveness of the achieved models. A
ccess-rate curve is drawn by plotting the proportion of
ineral deposits, Pr, predicted correctly in vertical axis
rsus the proportion of the study area classified as
ospective, Oa, in horizontal axis. If the success rate of a
ochemical model appears above the success-rate curve

 another geochemical model, the former model has a
onger spatial association with the known mineral
currences (Parsa et al., 2016a, 2016b). On the other
nd, there are positive spatial associations between the

uni-elemental geochemical layers and the related miner-
alization in the study area, if the success-rate curve of each
evidence layer appears high above the diagonal line (the
so-called gauge line), and conversely.

In this paper, the obtained threshold values based on C–
A fractal and U-spatial statistics models (Table 3) have
been used to draw success-rate curves of four uni-element
geochemical signatures (Fig. 9). According to this figure,
the success-rate curves of all geochemical layers are placed
above the gauge line and it can be concluded that both
methods (C–A fractal and U-spatial statistics) are success-
ful in separating the anomaly populations from back-
ground values related to porphyry Cu mineralization.
However, the success-rate curves of the U-spatial statistics
models have appeared above those of the C–A fractal
models (Fig. 9), which shows that the U-spatial statistics is
the superior model in the visualization of the geochemical
data of the Varzaghan district.

Visually, the resulting anomalies derived by U-spatial
statistics as an example of window-based method and
fractal model were also compared and correlated to
tectonic and lithological settings. In most parts of the
study region, tectonic setting plays an important role in
controlling porphyry Cu mineralization, hydrothermal
alteration, and geochemical anomalies, especially where
faults and lineaments intersect the area. They act as
conduits structures for mineralization and favorable place
for prospecting purposes (Maghsoudi et al., 2014; Pirajno,
2010). Besides, the anomaly populations of two methods
are spatially associated with most of the outcrops of calc-
alkaline intrusions (monzonite/quartzmonzonite and dio-
rite/granodiorite rocks) (Hezarkhani, 2006) within the
study area. According to the anomaly maps, it can be

Fig. 8. Spatial distribution maps of geochemical populations of (a) Au, (b) Bi, (c) Cu, and (d) Mo obtained by the U-spatial statistics method.
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oncluded that most of the Au, Bi, Cu and Mo anomalies
cated in the central parts of the study area, and also in

he southeastern and western parts and high-intensity
nomalies coincide with the outcrops of Oligocene–
iocene intrusions. Consequently, these intrusive rocks

an be considered as an effective lithological criterion in
orphyry Cu mineralization. Similarly, as can be seen in
igs. 6 and 8, the existing anomaly populations (extreme
nomaly, high anomaly, and low anomaly classes) of
vestigated elements that, derived by U-spatial statis-

ics and the fractal method, are strongly correlated with
orphyry Cu occurrences in the study area. This reveals
hat the employed methods can make us distinguish
nomalies associated with mineralization from back-
round values.

. Conclusion

In this paper, a fractal-based method, namely the
oncentration-area (C–A) model and a window-based
ethod, the U-spatial statistics approach, were used to

haracterize various geochemical populations and to
etect anomalies associated with porphyry Cu mineraliza-
on in the Varzaghan district (NW Iran). Initially, the OK

method was performed to interpolate logistically trans-
formed values of the mineralization-related elements (Au,
Bi, Cu, and Mo) in the study area. Subsequently, C–A fractal
and the U-spatial statistics methods were applied to
categorize different classes of geochemical datasets in the
Varzaghan district. The obtained results were quantitatively
evaluated based on the locations of known porphyry-type
Cu occurrences using success-rate curves. The quantitative
comparison of implemented methods demonstrates the
superiority of the U-spatial statistics method over the C–A
fractal model. In addition, anomalies of both methods
represent a significant spatial association with the known
Cu occurrences, and also with the Oligocene–Miocene
intrusive bodies, as geological proxies of porphyry Cu
mineralization in the study area.
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Fig. 9. Success-rate curves for C–A fractal and U-spatial statistics models of (a) Au, (b) Bi, (c) Cu, and (d) Mo.
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