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 Introduction

Seismic prospecting is the most widely used method for
l–gas and mineral exploration. With the depletion of the
sy-explored resources, exploration must be carried out

 deep reservoirs and irregular layers, which presents
nificant challenges (Wu et al., 2016). High-quality

ismic records can help to achieve high-accuracy seismic
ospecting, especially in complex strata (Li et al., 2017).
ndom noise is the key factor that impacts the signal-to-
ise ratio (SNR) of seismic records; further, its irregular

terference complicates seismic data processing. Here,

random noise refers to the incoherent noise in seismic
records, which primarily originates from wind motion,
environmental noise, noise from recording instruments,
and geophones loosely coupled with the ground (Yilmaz,
2001). Understanding the properties of random noise is the
prerequisite for designing noise mitigation methods
(Xiong et al., 2014; Zhong et al., 2015; Zhuang et al.,
2015). Recently, the properties of the random seismic noise
have attracted increasing attention in geophysics, and
several important results have been obtained (Akhouayri
et al., 2011; Groos and Ritter, 2009; Groos et al., 2012).
However, most of these studies focused on the statistical
properties of the seismic noise, which can only provide a
qualitative judgment of the random noise, such as whether
seismic noise is stationary. Obtaining quantitative results
of the random noise by investigating the random noise
modeling problem is of more practical importance (Li and
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A B S T R A C T

Random noise has a negative impact on seismic-prospecting record processing. An

important step to improve the methods aimed at the attenuation of random noise is to

scientifically characterize the properties of the noise. Numerical modeling is useful to

understand the nature of the random noise. In this study, we present a Brownian-motion-

based parametric modeling algorithm for the simulation of seismic-prospecting random

noise in the desert. The optimal Hurst exponent required to implement the method can be

determined by comparing the spectral properties related to the noise data and the

simulated results. The data used to analyze the properties of the noise were acquired in the

Tarim Basin (Northwest of China). We verify the performance of the modeling algorithm

by comparing the results obtained after the simulation with the real noise data in both the

time domain and the spatio-temporal domain. The experimental results thus obtained

prove the accuracy and efficiency of the proposed modeling algorithm. This study can be

used as a basis to investigate the seismic-prospecting random noise characteristics and

thus contribute to its mitigation.
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i, 2015b; Zhong et al., 2016; Zhong et al., 2017). Hence, we
erein focus on the parametric modeling algorithm for
eismic-prospecting random noise.

Modeling research is useful to understand the nature
nd analyze seismic noise generation mechanisms.
ecently, the properties of seismic noise resources have
een extensively discussed, and the findings can be
sed as the theoretical foundation for the modeling
lgorithm. In noise modeling, the use of wave equation
heory to simulate seismic noise has yielded a significant
dvance in recent years (Li and Li, 2015a; Li et al., 2017).
ccording to the random noise characteristics, the
nctions of different noise sources, which propagate by

he wave equation, can be determined. Hence, random
oise can be viewed as a superimposed wave field excited
y several independent sources in a homogeneous
otropic half-space. Similarly, the modeling algorithm
r random seismic noise in a desert area is investigated (Li

nd Li, 2015a), and the influences of environmental
onditions, such as wind speed and surface roughness, are
lso discussed.

However, the wave-equation-based modeling algo-
ithm is complex and the findings cannot be directly
pplied to noise attenuation. Therefore, research on
tatistical parametric modeling algorithms for random
eismic noise, which aims at revealing the underlying
tochastic processes, appears to have more practical
ignificance. Specifically, if a known stochastic process
an be used to represent the seismic noise, the process
ndings can be introduced in seismic noise attenuation.
andom-noise modeling from a stochastic perspective is
rst proposed in seismic noise-field analysis. When
rocessing the seismic records collected at seismological
tations, Caserta et al. (2007) proposed that seismic noise
as a super-diffuse nature, which means that noise has a
ersistent Markovian character with a memory longer
an ordinary Brownian motion. Similarly, Mulargia
012) and Pilz and Parolai (2014) also proposed that
e seismic noise wave field is not diffuse. Owing to the

ifferences in the frequency bands concerned, these
ndings cannot be directly used to represent the seis-
ic-prospecting random noise. However, all these studies
dicate that random noise is related to fractional

rownian motion (FBM) (Mandelbrot and Ness, 1968).
ecently, some studies have shown that seismic noise is
imilar to FBM series in power spectral density (PSD),
hose energy are primarily concentrated in the low-
equency bands (Li and Li, 2015a; Mandjes, 2008; Zhong
t al., 2015). Based on these findings, it is feasible to
imulate the seismic-prospecting random noise using the
BM theory.

The rest of this paper is organized as follows: the
eoretical background of the proposed modeling algo-

ithm is introduced in Section 2, which includes the
escriptions for the FBM theory and the principle for the
odeling methodology; Section 3 mentions real noise data

nd acquisition conditions; Section 4 presents the numer-
al experiments performed to verify the efficiency of the
roposed methodology using both time-domain analysis
nd spatio-temporal analysis; finally, we present our
onclusions in Section 5.

2. Theory

In this section, we briefly describe the principle and
properties of the FBM theory, which is used as the basis of
the modeling algorithm. Then we explain in detail the
methodology developed.

2.1. Fractional Brownian motion

The FBM is one of the most commonly used stochastic
processes. According to probability theory, a generalized
Brownian motion can be viewed as a continuous Gaussian
process over time. Generally, the FBM is a moving average
in which the past increments are weighted by kernel
functions. Mandelbrot and Ness (1968) presented a precise
expression for the FBM, which is denoted as BH(t):

BH tð Þ�BH 0ð Þ ¼ 1

G H þ 1=2ð Þ
Z0

�1

t�sð ÞH�1=2� �sð ÞH�1=2
h i

dB sð Þ þ
Zt

0

t�sð ÞH�1=2 dB sð Þ

8<
:

9=
;
ð1Þ

where B(t), which is equal to B1/2(t), denotes an ordinary
Brownian motion; BH(0) is a known value; G(H + 1/2) is a
gamma function. The H parameter, called the Hurst
exponent, is used as a measure of the long-term memory
of a time series. This exponent varies from 0 to 1 and
describes the irregularity of the resultant motion; the
higher the value of H, the smoother the motion. Thus, the
FBM series with different properties can be obtained by
modifying the Hurst exponent.

The FBM has several important characteristics, namely:
(a) the increment BH(t)–BH(t–1) is stationary and

follows a Gaussian distribution,

BH t þ 1ð Þ�BH tð Þ � N 0; s2
� �

; (2)

(b) the FBM process is the only self-similar Gaussian
process,

BH atð Þ � jajHBH tð Þ (3)

E jBH t þ 1ð Þ�BH tð Þj2
h i

/ 1

jtj2H
E jBH t þ tð Þ�BH tð Þj2
h i

; (4)

(c) the mean square of the increment is directly
proportional to the changing time range,

E jBH t þ tð Þ�BH tð Þj2
h i

/ jtj2H: (5)

Several effective algorithms have been proposed for the
FBM series generation, such as the wavelet-based synthe-
sis algorithm (Abry and Sellan, 2008), successive random
additions methods (Mcgaughey and Aitken, 2000), and the
random midpoint displacement (RMD) algorithm (Norros
et al., 2000). The RMD algorithm has a relatively low
computation cost and can provide an accurate simulation
series. Therefore, in this study, we used the RMD algorithm
to generate the FBM series. The basic principle of the RMD
algorithm is based on bisections and interpolations. Owing
to the self-similarity of the FBM process, the midpoint and



en
se
Th
ob
fo

2.2

ca
th
se
no
fre
fie
ex
re
ha
m
th
re

a p
th
lim
in
fre
es

S ð

w
sp

us
af
th
ca
th

T. Zhong et al. / C. R. Geoscience 351 (2019) 10–1612
dpoint values for a given interval can be randomly
lected according to the corresponding distributions.
erefore, the realization of an FBM process could be
tained iteratively. More details about this process can be
und in Norros et al. (2000).

. Modeling algorithm

An FBM series always has a color spectrum, and the PSD
n be approximately denoted as f1–2H, where f represents
e frequency and H is the Hurst exponent. Similarly, the
ismic-prospecting random noise is also a type of ‘‘1/f

ise,’’ whose energy is primarily concentrated in the low-
quency band. Fig. 1 shows the comparison between a
ld noise series in desert and an FBM series with a Hurst
ponent of 0.9. As shown in this figure through the
spective PSD functions, the FBM series and the noise data
ve a similar energy distribution, especially in the
iddle-frequency range [50–400 Hz]. Therefore, using
e FBM to model the random seismic noise in desert is
asonable.

Here, the multitaper method (Thomson, 2005), which is
opular signal processing algorithm, is used to estimate

e PSD of the series. This method overcomes some of the
itations of the conventional Fourier analysis, especially

 terms of spectrum leakage, estimation error, and
quency resolution. In general, the result of the PSD

timation for a given series x(n) can be denoted as

f Þ ¼ 1

K

XK

k¼1

j
XN�1

n¼0

dk nð Þx nð Þexp �j2pfnð Þj
2

(6)

here dk(n), which is selected from the discrete prolate
heroidal sequences, denotes the window functions.
In practice, the amplitude response of the geophone

ed and the truncation effect of the recording instrument
fect the seismic record. To demonstrate the effects of
e geophones and recording instruments in detail, we
lculated the normalized PSD of a field noise series, and

attenuation effects for the components below 10 Hz or
above 400 Hz are conspicuous, so that these effects should
be considered as band-pass filtering in the modeling
process.

Therefore, in this study we follow FBM theory to
simulate background seismic noise and use a band-pass
filter to represent the effects of the recording systems.
Hence, the random noise modeling algorithm can be
generalized as

y nð Þ ¼
X1

l¼�1
BH lð Þh n�lð Þ (7)

where y(n) denotes the result of the noise simulation,
and BH(l) is an FBM series with a known Hurst exponent
(H). Moreover, h(n) represents a band-pass filter with
corner frequencies of 10 Hz and 400 Hz. In Eq. (7), the Hurst
exponent is used to amend the irregularity of the
simulation outputs. The optimal Hurst exponent value is
determined by comparing the simulation results to the real
noise data in terms of PSD. Generally, the optimal value of

Fig. 1. Waveform (up) and normalized PSD (down) of an FBM series (a). Waveform and normalized PSD of a noise series (b).

Fig. 2. Effects of the instrumentation on the normalized PSD of a noise

series. Left bottom corner: enlarged view of the beginning of the noise
nal bounded by a rectangle.
e results are shown in Fig. 2. As can be seen, the sig
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e parameter H is the solution of the following
ptimization problem:

minHE
1

K

XK

k¼1

XN�1

n¼0

dk nð Þx nð Þe�j2pfn

�����
�����
2

0
@
2
4

�1

K

XK

k¼1

XN�1

n¼0

dk nð Þ
X1

l¼�1
BH lð Þh n�1ð Þe�j2pfn

�����
�����
2
1
A
3
5

subjectto
XM�1

f ¼0

XK

k¼1

XN�1

n¼0

dk nð Þx nð Þe�j2pfn

�����
�����
2

¼
XM�1

f ¼0

XK

k¼1

XN�1

n¼0

dk nð Þ
X1

l¼�1
BH lð Þh n�1ð Þe�j2pfn

�����
�����
2

ð8Þ

From these equations, we can conclude that the optimal
esult of the simulation has the most similar PSD with
espect to the noise data analyzed. In summary, once the
ptimal value Hopt of the Hurst exponent is determined,
e synthetic noise can be formulated as follows:

opt nð Þ ¼
X1

l¼�1
BHopt lð Þh n�1ð Þ (9)

. Real noise data

The dataset for analysis comprises passive noise records
ollected by a receiver array deployed in the Tarim Basin in

est China. This basin is mostly flat with no vegetation.
he random noise is considered to be driven primarily by
ind friction over the ground surface. The experimental

eismic array, which meets the requirements generally
dopted in seismic prospecting, consists of 512 geophones
rranged in a single survey line at intervals of 50 m.
he sampling interval is 1 ms. The geophone used is the
-20DX-10, whose amplitude response is similar to a
igh-pass filter with a corner frequency of 10 Hz.

As is well known, whereas no shooting is being done,
e sources of coherent noise in land-seismic prospecting

ome mainly from vehicle traffic, machinery, and 60-Hz (or
0-Hz) power lines (Cooper and Cook, 1984). Since our
cquisitions are performed in remote areas, the cultural
oise is relatively low. As an example, Fig. 3 shows a 5-s

noise record acquired in the Tarim Basin, in which no
obvious coherent noise can be observed in the record.

4. Results

We applied the proposed modeling algorithm to
simulate seismic-prospecting random noise. To verify
the performance of the modeling method, the waveforms
of the real noise and synthetic noise data and their
respective properties are compared in the time domain and
the spatio-temporal domain. In general, these properties
are investigated through the spectral characteristics, the
statistical characteristics, and the phase space.

4.1. Checking results in the time domain

Here, we perform a detailed comparison between the
real noise data and synthetic noise records in the time
domain, such as the PSD and phase space. Fig. 4a shows the
waveforms for a real noise series (top) and a synthetic
noise record with a Hurst exponent of 0.95 (bottom). This
figure shows that the real noise data and the synthetic
noise series have almost the same fluctuation tendency
and a strong resemblance. Fig. 4b shows the respective PSD
functions of both noise series that reveal similar spectral
characteristics. Both real noise and simulated noise keep a
great resemblance, with the energy concentrated in the [0–
30 Hz] frequency band. All these results support the
efficiency of the proposed modeling method.

Fig. 5 allows the analysis of the statistical properties of
the real noise data and the synthetic noise series. In this
illustration, we compare the results obtained from the
noise data by means of the amplitude distributions and
cumulative distribution functions. The plots in Fig. 5a
present the probability distributions of the real noise and
synthetic record, respectively. The comparison results
reveal that the histograms of the corresponding noise data
are similar in trend, and the amplitudes centralize at
approximately [–0.02, 0.02]. Moreover, the cumulative
distribution curves presented in Fig. 5b are almost the
same, except a slight difference appearing in the interval
[0.005, 0.015]. In summary, the field and synthetic noise
records have similar statistical characteristics.

The chaotic properties attributed to random seismic
noise (Wang et al., 2016) also serve to verify the efficiency
of the modeling algorithm. In Fig. 6 we have drawn the
orbits in the phase space corresponding to the series of
field noise (Fig. 6a) and synthetic noise (Fig. 6b). These
orbits, as may well be appreciated, are very similar. From
the previous experiments, we conclude that the field noise
data and the synthetic noise records have similar
characteristics, and that the modeling algorithm is feasible.

4.2. Checking results in the spatio–temporal domain

For further verifying the efficiency of the simulation
algorithm, we selected a noise record acquired in the
desert to obtain the simulation results when applying the
proposed method. In Fig. 7, we show a real noise record
composed of 50 traces up to a time of 1 s, collected in the
course of a seismic survey in the Tarim Basin, and right

ig. 3. Field random noise data recorded in a desert area. (The number of

aces is 100 and the recording time is 5 s.).



Fig. 4. Comparison between real (up) and synthetic noise (down) waveforms (a). Respective PSD functions of both noise series (b). In the middle: enlarged

view of the beginning of the PSD functions.

Fig. 5. Histograms of amplitude distributions for real (up) and synthetic noise (down) (a); cumulative distribution curves for field noise and synthetic noise

(b).

Fig. 6. View of the chaotic nature of the ambient seismic noise: a: orbits in the phase space related to the series of field noise; b: orbit in the phase space

related to the synthetic noise series.
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ext to it we show the synthetic noise record. As before,
ne can see that the two records have similar vibration
atterns.

While the seismic noise data can be seen as a 2-D dataset,
e properties of the random seismic noise change both in
e time direction and the spatio–temporal domain. The

oise characteristics, when analyzed using a 2-D Fourier
ansform, can also be explored through the signature of the
k spectrum after converting the noise data in the spatio–
mporal domain to the frequency–wavenumber domain.

ig. 8 shows the f–k spectra of the real and simulated noise
ata records. Again we find that these two f–k spectra for real
nd synthetic noise are quite similar.

In addition to qualitative comparisons, a quantitative
nalysis is perhaps more informative to the extent that

 provides more precisely the characteristics of the
oise data. It is known that statistical properties can be

expressed by statistical moments. In this sense, we
calculated several high-order moments, such as the mean,
variance, kurtosis, and skewness, which facilitate the
presentation of data properties at a certain level. The
comparison of statistical moments for real noise data and
synthetic noise data is shown in Table 1. We see that the
differences between these statistical moments are rela-
tively small; in particular, the variance is almost the same,
while the other moments take slightly smaller values for
synthetic noise than for real noise. The results concerning
kurtosis and skewness indicate that both the real noise and
the synthetic data have symmetric character that is close
to a Gaussian distribution. Given the similarity of the
spatio-temporal characteristics of the real and synthetic
noise data, the efficiency and accuracy of the Brownian-
motion-based noise-modeling algorithm seems to be
guaranteed.

ig. 7. Real noise record (a) versus synthetic noise record (b). (The noise data were acquired in the Tarim Basin. In both cases the number of traces is 50 up to

 time of 1 s.).
Fig. 8. Frequency-wavenumber diagram (f–k spectrum) of the real (a) and simulated (b) noise data records.
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 Conclusions

In this study, we investigate the seismic-prospecting
ndom noise-modeling problem from a statistical view-
int, by analyzing the stochastic process underlying the
ndom noise. We follow the FBM theory to simulate
ckground seismic noise, and we use a band-pass filter to
ntrol the effects of recording systems. The optimal
rst exponent value is determined by comparing the
ulation results to the real noise data in terms of PSD.

e parametric modeling algorithm of random seismic
ise that we propose is based on the similarity between
e PSD of the real noise and the FBM process. We verify
e performance of the processing scheme by comparing
e simulated noise with the real noise data in both the

e domain and the spatio-temporal domain. First, we
cus our attention on the analysis of the statistical
operties of real and simulated noise, as PSD, amplitude
stribution, cumulative distribution curve, and behavior
 the phase space. Second, we explore the noise
aracteristics through the frequency–wavenumber spec-
m. The results reveal the similarity that the synthetic
ise records keep with the real noise dataset. Hence, the
ise generation algorithm, which uses the FBM theory to
rform the modeling task, is feasible. In other words: the
ismic-prospecting random noise can be considered as
e production of a stochastic FBM process. The findings

 this study are useful to develop better models for land-
ismic-prospecting random noise, and also for noise
duction and signal-detection algorithms.
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