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Abstract. Atomistic modeling and simulations have been pivotal in our understanding of the glassy
state. Indeed, atomistic modeling offers direct access to the structure and dynamics of atoms in
glasses—which is typically hidden from conventional experiments. Simulations also offer a more eco-
nomical, faster alternative to systematic experiments to decode composition-property relationships
and accelerate the discovery of new glasses with desirable properties and functionalities. However,
the atomistic modeling of glasses remains plagued by a series of challenges, e.g., high computational
cost, limited accessible timescale, lack of accurate interatomic forcefields, etc. These challenges often
result in the existence of discrepancies between simulation and experimental data, thereby limiting
the predictive power of atomistic modeling. Here, we review recent accomplishments and remain-
ing challenges facing the atomistic modeling of glasses. We discuss future opportunities offered by
the seamless integration of simulations, knowledge, experiments, and machine learning in advancing
glass modeling to a new era.

Résumé. La modélisation et simulations atomiques ont joué un role important pour notre connais-
sance de I'état vitreux. En effet, la modélisation atomique offre un acces direct a la structure et dyna-
mique des atomes dans les verres — qui n’est typiquement pas accessible par les techniques expéri-
mentales classiques. Les simulations offrent également une alternative économique et rapide aux ex-
périences systématiques pour décoder les relations composition-propriétés et accélérer la découverte
de nouveaux verres offrant des propriétés et fonctionnalités de choix. Cependant, la modélisation ato-
mique des verres reste limitée par une série de défis, par exemple, le cotit de calcul élevé, I'échelle
de temps accessible limitée, le manque de champs de force interatomiques précis, etc. Ces défis in-
duisent souvent!’existence de divergences entre les résultats simulés et expérimentaux, ce quilimite le
pouvoir prédictif de la modélisation atomistique. Dans cette contribution, nous passons en revue les
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récents progres et les défis restants auxquels est confrontée la modélisation atomistique des verres.
Nous discutons les opportunités futures offertes par les intégrations de simulations, connaissances,
données expérimentales et d’intelligence artificielle pour faire avancer la modélisation du verre vers

une nouvelle ére.

Keywords. Molecular dynamics, Interatomic forcefield, Reserve Monte Carlo, Machine learning, Ac-
celerated simulation, Differentiable programming, Inverse design.

Mots-clés. dynamique moléculaire, champ de force interatomique, Monte Carlo, machine learning,
simulation accélérée, programmation différentiable, design inverse.
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1. Introduction

As out-of-equilibrium phases, glasses exhibit a com-
plex disordered atomistic structure that can virtu-
ally accommodate the entire periodic table [Mauro,
2018, Musgraves et al., 2019, Zanotto and Coutinho,
2004]. This structural complexity has historically
limited our ability to unveil structure-property re-
lationships in glasses [Bapst et al.,, 2020, Tanaka
et al., 2019, 2010], but, in turn, offers a vast design
space to discover new glasses with unusual proper-
ties [Liu et al., 2019d, Onbash et al., 2018, Ravinder
et al., 2020]. Although different experimental proto-
cols have been developed to investigate the nature
of the linkages between glass composition, structure,
and properties [Almeida and Santos, 2015, Kamitsos,
2015, Salmon and Zeidler, 2015, Youngman, 2018],
they yield a series of structural fingerprints that
are experimentally accessible—e.g., pair distribution
function (PDF) computed by diffraction experiments
or coordination numbers accessed by nuclear mag-
netic resonance (NMR) [Fischer et al., 2005, Kroeker,
2015, Wright, 1988, Youngman, 2018]—rather than
offering a direct access to the three-dimensional
atomic structure itself [Affatigato, 2015, Greaves and
Sen, 2007, Huang et al, 2013, Yang et al., 2021,
Zhou et al., 2021]. In that regard, atomistic sim-
ulations have become a routine tool to easily ac-
cess the atomistic structure of glasses [Bauchy, 2019,
Du, 2019, Pedone, 2009]—which is otherwise invis-
ible from conventional experiments [Pandey et al.,
2016b,a]—and to decipher the physical nature of
the linkages between glass structure and properties
[Binder and Kob, 2011, Massobrio, 2015, Onbasl and
Mauro, 2020]. Atomistic simulations of glasses can be
broadly divided into two different families, namely,
knowledge-based and data-based.

1.1. Physical-knowledge-based simulations

As a primary goal, atomistic simulations aim to reveal
the atomistic structure of glasses [Mauro et al., 2016,
Takada, 2021]. This can be achieved by explicitly
simulating the time-dependent formation process of
glasses—e.g., melt-quenching [Debenedetti and Still-
inger, 2001], sol-gel transition [Du et al., 2018], va-
por deposition [Wang et al., 2020], irradiation [Kr-
ishnan et al., 2017a,b], or annealing [Grigoriev et al.,
2016]. Such simulations rely on our knowledge of the
physics governing the interaction between atoms,
i.e., the interatomic forcefields (see Figure 1) [Mas-
sobrio, 2015, Mauro et al., 2016, Onbash and Mauro,
2020]. In detail, starting from the sole knowledge of
first-principles electron interactions [Hohenberg and
Kohn, 1964, Kohn and Sham, 1965], one can compute
the interatomic interactions acting in a glass system
[Boero et al., 2015, Hafner, 2008]. In turn, this in-
teratomic forcefield drives the motions of the atoms
as per Newton’s law of motion—which is the basic
principle behind molecular dynamics (MD) simu-
lations [Alder and Wainwright, 1959, Takada, 2021].
In other words, MD simulations predict the sponta-
neous motions of the atoms in glasses (or liquids)
[Durandurdu and Drabold, 2002, Micoulaut et al.,
2013]. However, since MD simulations are gener-
ally limited to short timescales (typically up to a
few nanoseconds) [Lane, 2015], it is intrinsically un-
able to match experimental timescale (up to days)
[Li et al., 2017]. In particular, as the most common
method to prepare a glass [Mauro and Zanotto, 2014],
the melt-quenching process consists in melting a lig-
uid that is then cooling into a glass. However, the
cooling rates that are accessible to MD simulations
(1014-10° K/s) are orders of magnitude larger than
those experienced in conventional experiments (10—
10° K/s) [Li et al., 2017, Vollmayr et al., 1996a,b].
Note that, although the short timescale accessible
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Figure 1. Schematic illustrating the atomistic simulation of glasses through (i) physical-knowledge-
based simulations, e.g., molecular dynamics (MD) simulations [Soules, 1990], and (ii) experimental-
data-based simulations, e.g., reverse Monte Carlo (RMC) simulations [McGreevy, 2001]. Simulations
offer a direct access to the atomistic structure of glasses that can be validated by experiments, while,
in turn, experiments can offer some fingerprints of the atomistic structure that can be used as simulation
constraints. Note that, despite the pronounced difference of timescale between experiments and MD
simulations, a direct comparison between MD and experimental data is possible for melts—since the
structure and properties of equilibrium liquids and metastable-equilibrium supercooled liquids do not

depend on their thermal history [Le Losq et al., 2017].

to MD simulations challenges the comparison be-
tween glasses prepared by melt-quenching experi-
ments and MD simulations, it should be pointed out
that direct comparisons are possible when the simu-
lated system is at equilibrium (liquid) or metastable
equilibrium (supercooled liquid) since the structure
and properties of such systems do not depend on
their thermal history (see Figure 1) [Le Losq et al.,
2017].

To overcome the short timescale accessible to MD
simulations [Li et al., 2017], various simulation tech-
niques have been proposed to accelerate the explo-
ration of a glass’s potential energy landscape (PEL)—
which represents the topography of the potential en-
ergy of a system as a function of its atom positions
[Debenedetti and Stillinger, 2001, Lacks, 2001, Lacks
and Osborne, 2004]. Although MD simulates the real,
spontaneous evolution of the system within its PEL,
its limited timescale typically prevents large energy
barriers to be overcome [Yu et al., 2017b, 2015]. In
contrast, accelerated simulation techniques tend to

push systems across energy barriers to accelerate
their dynamics, but such accelerated dynamics may
not always match the spontaneous dynamics of the
atoms [Bauchy et al., 2017, Fullerton and Berthier,
2020, Liu et al., 2019a]. As one of the most simple
sampling technique, energy-based Monte Carlo (MC)
simulations aim to explore the PEL of a glass by per-
forming a series of random “moves” (e.g., by displac-
ing a randomly selected atom) [Allen and Tildesley,
2017, Utz et al., 2000] so as to discover lower-energy
states in the PEL [Arceri et al., 2020, Vollmayr-Lee
et al., 2013, Welch et al., 2013]. However, since MC
moves do not necessarily reproduce the spontaneous
dynamics of a glass as it relaxes toward lower-energy
states, it is not guaranteed that the simulated glass
matches that formed by experiments [Berthier and
Ediger, 2020].



38 Han Liu et al.

1.2. Experimental-data-based simulations

To overcome the limitations of simulations based
on physical knowledge [Berthier and Ediger, 2020,
Li et al., 2017, Wright, 2020], simulations based on
experimental data—e.g., reverse Monte Carlo (RMC)
simulations [Biswas et al., 2004, Keen and McGreevy,
1990] or empirical potential structure refinement
(EPSR) simulations [Nienhuis et al., 2021, Soper,
2005, Weigel et al., 2008]—have been proposed to in-
vert experimental data (i.e., structural signatures of
the real underlying atomic structure) into a three-
dimensional atomic structure. In detail, RMC sim-
ulations adopt an MC search algorithm [Allen and
Tildesley, 2017] wherein a series of MC moves (e.g.,
random displacement of atoms) is performed so as
to eventually obtain a glass structure that satisfies
the structural constraints provided by experiments
[McGreevy, 2001, McGreevy and Pusztai, 1988]. In
the same spirit, EPSR simulations reduce the differ-
ence between simulation and experimental data by
iteratively tuning the coefficients of a predefined em-
pirical potential until the structure simulated by MD
matches experiments. As compared to RMC, EPSR
simulations tend to yield more realistic structures
(which satisfy some basic stability constraints im-
posed by the empirical potential). However, the accu-
racy of EPSR simulations can be limited by the choice
of the analytical form that is adopted for the em-
pirical potential [Nienhuis et al., 2021, Soper, 2005,
Weigel et al., 2008].

Figure 1 shows a schematic illustrating the inter-
actions between experiments and simulations. On
the one hand, experiments can extract various sig-
natures (e.g., PDF computed by diffraction exper-
iments [Wright, 1988]) of the atomic structure of
glasses [Affatigato, 2015], which can be used to val-
idate knowledge-based simulations. On the other
hand, RMC simulations can utilize these structural
signatures as constraints to “inversely” construct
an atomistic structure that satisfies available exper-
imental data [McGreevy, 2001]. It is notable that
simulations based on experimental data effectively
bypass any explicit glass formation process (e.g.,
melt-quenching) and, hence, are not affected by the
limited timescale accessible to atomistic simulations.
However, such simulations cannot offer any physical
insights in the dynamics of the atoms in a glass [Bot-
taro and Lindorff-Larsen, 2018, Pandey et al., 2016b,

Yu et al., 2015].

In the following, we briefly review the state of the
art in atomistic simulations of glasses in Section 2.
The present challenges facing these simulations are
discussed in Section 3. To address these challenges,
we then highlight several new opportunities to ad-
vance the atomistic modeling of glasses in Sec-
tion 4. Finally, we offer some concluding remarks in
Section 5.

2. Overview of the state of the art in atomistic
simulations of glasses

2.1. Basic principles of atomistic simulations of
glasses

2.1.1. Newton’s law of motion

As an alternative classification, simulations can be
broadly divided in terms of their description of the
atomic motion. Namely, (i) MD simulations offer a
direct description of the spontaneous dynamics of
the atoms as per Newton’s law of motion, whereas
(ii) other types of simulations (e.g., MC or RMC simu-
lations) simply aim to construct an atomic structure
based on a target objective (e.g., minimizing energy
and maximizing agreement with experiments) with-
out any explicit description of the dynamics of the
atoms [Allen and Tildesley, 2017, Takada, 2021]. MD
simulations predict the motion of the atoms that is
predicted by Newton’s law of motion (see Figure 2a)
[Alder and Wainwright, 1959, Pedone, 2009]. This re-
quires the knowledge of the interatomic forcefield,
that is, the force experienced by each atom. Such
forces can comprise radial 2-body interactions, an-
gular 3-body interactions, and/or many-body inter-
actions [Daw and Baskes, 1983, Stillinger and We-
ber, 1985] and play a key role in predicting atom
trajectories [Du, 2015, Huang and Kieffer, 2015]. In
practice, the interatomic forcefield can be accurately
computed using first-principles electron-level meth-
ods (e.g., ab initio MD simulation [Boero et al., 2015,
Hafner, 2008]) or can be approximately estimated by
some empirical functions (i.e., classical MD simula-
tion [Carré et al., 2016, 2008]). More technical details
are provided in Sections 2.3 to 2.6.

2.1.2. Minimum search in a cost function landscape

Unlike MD simulations [Massobrio, 2015], RMC
[McGreevy, 2001], energy-based MC [Allen and
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Tildesley, 2017, Liu et al., 2019f, Utz et al., 2000],
or energy minimization based on gradient descent
[Bitzek et al., 2006, Shewchuk, 1994] do not follow
Newton’s law of motion. Rather, these approaches
rely on exploring and finding the minimum position
of a given “cost landscape” (e.g., potential energy for
MC and energy minimization, or a loss difference
between simulated and experimental fingerprints
for RMC) via a series of structural modifications
(e.g., displacing atoms) [McGreevy, 2001, Takada,
2021]. For instance, Figure 2b illustrates the princi-
ple behind energy-based MC simulations [Allen and
Tildesley, 2017], wherein the MC simulation searches
the global minimum within the PEL by performing
a series of tentative MC moves. Each move is either
accepted or rejected according to a given accep-
tance probability defined in the MC algorithm (see
Section 2.2) [Liu et al., 2019f, McGreevy and Pusz-
tai, 1988]. In contrast to MD simulations wherein
large energy barriers are unlikely to be overcome
[Debenedetti and Stillinger, 2001, Liu et al., 2019a],
simulations based on sampling a PEL can “acceler-
ate” atomic motion to (i) jump over energy barriers
and (ii) move toward the minimum energy state [Utz
et al., 2000, Yu et al., 2015], which corresponds to the
most stable energy state that the glass relaxes toward
upon aging/relaxation [Welch et al., 2013]. Note that
the landscape to explore (i.e., the function to mini-
mize) is not always the potential energy [Debenedetti
and Stillinger, 2001, Tang et al., 2021], but, rather, can
take the form of any function, e.g., a loss function
capturing the structural difference between simu-
lated and experimental glass in the case of RMC sim-
ulations [McGreevy, 2001]. More technical details on
RMC are provided in Section 2.2.

2.2. Reverse Monte Carlo (RMC) simulations

2.2.1. Cost function

RMC simulations rely on the MC search algo-
rithm to generate an atomistic structure satisfying
experimental structural constraints (i.e., measured
structural fingerprints) [Keen and McGreevy, 1990,
McGreevy, 2001, McGreevy and Pusztai, 1988]. In de-
tail, the simulation searches for the global minimum
in a cost function landscape as a function of the sys-
tem’s atom positions (see upper panel in Figure 3a)

by performing a series of random atomic displace-
ments (“MC move”, see lower panel in Figure 3a) [Mc-
Greevy, 2001]. Here, the cost function Ry, is defined as
the magnitude of difference between a simulation re-
sult and its experimental reference—often, the simu-
lated and experimental PDFs g(r), formulated as fol-
lows [Wright, 1993, Zhou et al., 2020]:

p_ [ Zr8® () —gim ()2
"_ L1820 ()2

where the superscript of g(r) denotes experiment
(exp) or simulation (sim).

) €8]

2.2.2. Acceptance rate of RMC search

In analogy to the conventional energy-based Me-
tropolis MC algorithm [Allen and Tildesley, 2017], the
acceptance probability P of each MC move can be ex-
pressed as [Zhou et al., 2020]:

1 if RYeW < RO
Rl)zew2 _R)?ldz
Ty

P= )

s£ pNnew old
exp if Ry*™ > Ry

where Tx plays the role of a (unit less) “effective tem-
perature” that controls the probability of acceptance
[Liu et al., 2019f, Utz et al., 2000], and R and Ry
are the values of the cost function Ry (analogous to
the role of the energy in energy-based MC [Utz et al.,
2000]) at the current and next MC step, respectively.
Note that, in contrast, for instance, to a steepest de-
scent minimization, a move that increases the value
of the cost function still has a nonzero probability of
acceptance in this algorithm. This makes it possible
to overcome some barriers in the landscape during
sampling—so that the system does not remain stuck
in local minima. The RMC simulation proceeds until
the cost function does not exhibit any noticeable de-
cay upon additional MC moves, that is, until the cost
function exhibits a plateau.

2.2.3. Structural match to experimental data

RMC simulations generally yield atomistic struc-
tures that exhibit an excellent agreement with the ex-
perimental data that are used to define the cost func-
tion (e.g., PDF) [Keen and McGreevy, 1990], which
is not surprising since RMC solely aims to minimize
the difference between simulated and experimental
structural data. Figure 3b shows the evolution of the
cost function Ry as a function of the number of MC
search steps during the RMC simulation of a sodium
silicate glass ((Nay0)30(SiO2)7¢) [Zhou et al., 2020],
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Figure 2. (a) Illustration of a molecular dynamics (MD) simulation of a glass system, wherein, starting
from an initial configuration, the motion of the atoms is determined based on the interatomic interac-
tions following Newton’s law of motion. (b) Illustration of a Monte Carlo (MC) simulation, wherein an MC
search algorithm (e.g., energy-based Metropolis algorithm [Allen and Tildesley, 2017]) is used to find the
minimum state (e.g., minimum energy) of a glass system within a cost function landscape—e.g., poten-
tial energy landscape (PEL), namely, a system’s potential energy as a function of its atom positions [Lacks,
2001]. The landscape is sampled by performing a series of MC moves (e.g., random displacement of an

atom) [Takada, 2021].

wherein the cost function is defined based on the
neutron PDE As expected, R, gradually decreases
and, finally, the simulation generates an atomistic
structure that exhibits an excellent match with exper-
imental data. Further, Figure 3c shows the PDF g(r)
computed both at the start and end of the RMC sim-
ulation. As expected, the final configuration exhibits
an excellent agreement with the experimental refer-
ence, i.e., the measured g(r) [McGreevy, 2001, Pandey
et al., 2015, Zhou et al., 2020].

RMC simulations have successfully been used
to reveal the structure of a variety of glasses or
amorphous solids, especially in the case of systems
that are too complex to be simulated by MD or for
which no reliable empirical forcefield is available. Ex-
ample of simulated systems include nuclear waste
glasses [Bouty et al., 2014], metal-organic frame-
works (MOFs) [Beake et al., 2013, Gaillac et al., 2017,
calcium carbonate [Fernandez-Martinez et al., 2013,
Goodwin et al., 2010], etc. Overall, RMC simulations
offer a powerful tool to model glasses when accurate
experimental data are available [Playford et al., 2014].

2.3. Molecular dynamics (MD) simulations

MD simulations rely on interatomic forcefields to
predict the trajectory of the atoms according to New-
ton’s law of motion [Alder and Wainwright, 1960,
1959, Rahman and Stillinger, 1971, Stillinger and
Rahman, 1974]. Despite their short timescale [Li
et al,, 2017], MD simulations reproduce the forma-
tion process of glasses (e.g., melt quenching process
under high cooling rate) to form the atomistic struc-
ture of a glass [Bauchy, 2014, Micoulaut et al., 2013].
In this section, we provide some general guidelines to
implement MD simulations of glasses.

2.3.1. Numerical algorithm

The algorithm of MD simulations consists of a
loop of four successive steps (see Figure 4a) [Allen
and Tildesley, 2017, Takada, 2021], namely, (i) com-
puting the system’s potential energy U({r;}) by sum-
ming up all interatomic interactions for the current
atom positions {r;}, (ii) calculating the resultant force
{F;} experienced by each atom i via energy differenti-
ation (i.e., F; = —0U/0r;), (iii) obtaining each atom’s
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Figure 3. (a) Illustration of a Reverse Monte Carlo (RMC) simulation based on the Monte Carlo (MC)
search algorithm to find the glass configuration that minimizes a given cost function [McGreevy, 2001],
where the cost function R, is defined as the magnitude of difference between a simulation result and
its experimentally measured reference. Each MC search step consists of randomly displacing a randomly
selected atom. (b) Evolution of the cost function Ry as a function of the number of MC search steps during
an RMC simulation of a sodium silicate glass ((Na20)30(5i02)70) [Zhou et al., 2020]. Ry is defined herein
as the magnitude of difference between the simulated and experimental neutron PDF g(r) (see (1)).
(c) Comparison between the simulated g(r) and its experimental reference both at the start and end of
the RMC simulation [Zhou et al., 2020]. The gray area represents the difference (i.e., R,) between the

experimental and simulated PDE

acceleration {a;} from {F;} as per Newton’s law of mo-
tion, thatis, a; = F;/ m;, where m; is the mass of atom
i, and finally, (iv) updating the atom positions and
velocities after a small, fixed timestep via numerical
integration (e.g., Verlet or leapfrog algorithm) [Allen
and Tildesley, 2017]. Eventually, this four-step loop
yields the position of the atom as a function of time,
that is, the trajectory of each atom.

It should be pointed out that the accuracy of an
MD simulation depends on (i) the realistic nature
of the initial configuration (i.e., initial positions and
velocities), (ii) the value of the integration timestep,
and, importantly, (iii) the accuracy of the interatomic
potential energy. First, in the case of the glasses, the
initial configuration is usually constructed by ran-
domly placing some atoms in a cubic box while en-
suring the absence of any unrealistic overlap (see be-
low). The configuration is then relaxed at elevated
temperature until the system loses the memory of
its initial configuration. At this point, the outcome of
the simulation does not depend any longer on how
realistic the initial configuration was. Second, the in-
tegration timestep needs to be small enough (~1 fs)

to ensure the accuracy of the numerical integration.
In practice, one can check that the timestep is small
enough by ensuring the conservation of the system’s
total energy and linear/angular momentum during a
simulated dynamics in the microcanonical (NVE) en-
semble [Grubmiiller et al., 1991, Levesque and Ver-
let, 1993, Omelyan et al., 2002]). Third, if the inte-
gration timestep is small enough, the accuracy of the
MD simulation primarily depends on that of the un-
derlying potential energy (see Figure 4a) [Du, 2015,
Huang and Kieffer, 2015].

Relying on the most fundamental quantum me-
chanics describing electron interactions (i.e., first-
principles calculation of electron interactions) [Ho-
henberg and Kohn, 1964, Kohn and Sham, 1965], the
interatomic interactions can be accurately computed
by conducting first-principles MD simulation (i.e., ab
initio MD simulation [Boero et al., 2015], see Sec-
tion 2.4). Such simulations are computationally ex-
pensive but can be used to validate or inform classi-
cal MD simulations relying on simplified, empirical
potential energy functionals (see Section 2.5) [Carré
et al., 2008].
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Figure 4. (a) Numerical algorithm of molecular dynamics (MD) simulation, which consists of an iterative
succession of four computational steps (see text for details) [Takada, 2021]. Ab initio MD computes the
potential energy U({r;}) based on first-principles electronic interactions [Boero et al., 2015], whereas,
in classical MD, the interatomic interaction is approximately estimated by some empirical functionals
[Huang and Kieffer, 2015]. (b) Schematic illustrating a melt-quenching simulation for glassy silica.
After an initial SiO, configuration is prepared, the system is melted under high temperature in the
NVT ensemble (or other ensembles, e.g., NPT ensemble), quenched with a given cooling rate to a low
temperature, and finally relaxed at this temperature [Carré et al., 2016]. From the viewpoint of the
potential energy landscape (PEL) [Wilkinson and Mauro, 2021], starting from the high-energy, ergodic
liquid state, the system gradually evolves to some nonergodic, low-energy states and finally gets trapped
in a local minimum corresponding to a glassy state [Debenedetti and Stillinger, 2001, Goldstein, 1969].

2.3.2. Thermodynamical ensembles

A direct numerical solution of Newton’s law of mo-
tion yields the microcanonical NVE dynamics of the
N atoms, that is, wherein the total energy and volume
of the system are conserved. However, the NVE en-
semble does not always mimic experimental condi-
tions. In practice, a system can either be isolated from
the rest of the universe (i.e., presenting a constant en-
ergy) or be in contact with a thermostat (wherein the
thermostat can provide or receive energy so as to fix
the temperature T of the system). The volume V of
the system can also either be fixed or variable based
on the pressure P imposed by a barostat. As such,
the most common thermodynamic ensembles used

in MD simulations are the microcanonical (\NVE),
canonical (NVT), and isothermal-isobaric (NPT) en-
sembles [Du, 2019, Leach, 2001]. Simulating the mo-
tion of the atoms in a non-NVE ensemble (e.g., NVT
or NPT) requires slight modification to the consti-
tutive equations used to calculate the acceleration
of each atom [Allen and Tildesley, 2017, Du, 2019].
On the one hand, simulating a constant-temperature
dynamics requires the use of a thermostat-based MD
algorithm (e.g., Nosé-Hoover thermostat [Hoover,
1985, Nosé, 1984a,b]) to adjust on-the-fly the atomic
velocities so as to achieve a target temperature [An-
dersen, 1980, Martyna et al., 1996]. On the other
hand, simulating a constant-pressure dynamics in-
volves the use of a barostat-based MD algorithm
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[Allen and Tildesley, 2017, Leach, 2001] (e.g., Nose—
Hoover barostat [Martyna et al., 1992]) to adjust on-
the-fly the system’s volume so as to achieve a tar-
get pressure (or state of stress) [Martyna et al., 1996,
Tuckerman et al., 2006]. More details can be found in
Allen and Tildesley [2017], Leach [2001].

2.3.3. Melt-quenching simulations

The most common method used in MD to pre-
pare a glass consists in mimicking the experimen-
tal melt-quenching process [Soules, 1990]. The melt-
quenching process is detailed in the following and
illustrated by Figure 4b for the case of a silica glass
[Carré et al., 2008, Liu et al., 2019e].

First, an initial configuration must be created. To
this end, one option is to start with a crystalline
configuration (e.g., a-quartz in the case of a silica
glass). However, this is often not the preferred option
as (i) there might not exist a crystal with the same
composition as that of the target glass, (ii) the crys-
tal might have a very different density from that of
the glass, (iii) the shape of the unit cell of the crys-
tal (e.g., triclinic unit cell) might result in an unnec-
essarily complicated simulation box geometry, and
(iv) melting the initial crystalline structure might re-
quire high temperature and/or long simulation time.
As an alternative—often preferred—option, the ini-
tial configuration can be prepared by randomly plac-
ing atoms or molecules (e.g., SiO, molecules in the
case of a silica glass) into a cubic simulation box with
periodic boundary conditions (PBC) [Leach, 2001].
The box size can either be fixed so as to match the ex-
perimental density of the glass (if when the quench-
ing is performed in the NVT ensemble) or to an ar-
bitrary value (if the quenching is performed in the
NPT ensemble). Note that, when creating the ini-
tial configuration, care must be taken to avoid any
unrealistic atom overlap that might cause spurious
fast atom motions at the beginning of the simulation
[Martinez et al., 2009]. This can be achieved by im-
posing a cutoff threshold when randomly placing the
atoms, e.g., by ensuring that the distance between a
pair of atoms is never lower than the sum of their
radii or that a pair of cations (or anions) are never
close to each other.

Second, the initial configuration must be melted
at high temperature so as to fully lose the memory
of the initial configuration. The choice of the melt-
ing temperature depends on the type of glass that is

considered. On the one hand, the temperature must
be high enough to ensure that the atoms move fast
enough to “reset” the initial configuration or fully
melt the initial crystal. On the other hand, a temper-
ature that is too high might induce some spurious
instabilities (e.g., due to the “Buckingham catastro-
phe” [Carré et al., 2008] or if the system approaches
the vaporization point) and increase the length of
the simulation (since, at fixed cooling rate, a higher
initial temperature increases the duration of cool-
ing). The fact that the initial melting is long enough
to ensure that the system has lost the memory of its
initial configuration can be checked by computing
the intermediate scattering function (ISF) or, as an
approximate rule of thumb, by ensuring that the
atoms have, on average, diffused by at least half of
the simulation box.

Third, the melt is quenched to the glassy state
by decreasing temperature. This is typically achieved
by linearly decreasing temperature over time, while
other more complicated thermal routes can be con-
sidered (e.g., nonconstant cooling rate or step-by-
step cooling). The cooling process can either be per-
formed in the NVT or NPT ensemble. The NPT en-
semble is usually desirable as it mimics the exper-
imental synthesis of glass (i.e., wherein the melt is
quenched under atmospheric pressure). In turn, the
NVT ensemble can yield some spurious effects as,
since density is fixed, the pressure changes as a func-
tion of temperature. As a result, when using the NVT
ensemble during cooling, the glass tends to “freeze”
under positive (compressive) pressure at the glass
transition temperature, which can impact the re-
sulting structure. However, some interatomic force-
fields are unable to yield the correct final glass den-
sity, so that using the NVT ensemble and fixing the
volume to achieve the experimental glass density
might, in some cases, be necessary. Due to the high
computing cost of MD, the cooling rate (typically
1014-10° K/s) is much faster than those achieved
in conventional experiments (102-10° K/s) [Li et al.,
2017]. From the viewpoint of PEL [Goldstein, 1969,
Wilkinson and Mauro, 2021], the system starts, upon
cooling, from a high-energy, ergodic liquid state and
gradually evolves to some nonergodic, lower-energy
state, before eventually getting trapped in a local
minimum corresponding to a glassy state (see Fig-
ure 4b) [Debenedetti and Stillinger, 2001]. At the end
of the cooling process, it is also common to perform
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an additional relaxation run to ensure that the sys-
tem has reached a plateau in energy, and volume or
pressure (in the NPT and NVT ensembles, respec-
tively).

Fourth, once formed, the glass can be investi-
gated or subjected to additional simulations [Du,
2019, Pedone, 2009]. Typical investigations include
various structural analysis (e.g., coordination num-
ber) [Bauchy, 2014, 2012], mechanical properties
(e.g., strain-stress curve) [Liu et al., 2019b, Yang
et al.,, 2019b], thermodynamics (e.g., potential en-
ergy) [Bauchy and Micoulaut, 2015], and vibra-
tional/dynamical properties (e.g., atom diffusiv-
ity) [Bauchy et al.,, 2013, Bauchy and Micoulaut,
2011]. More details can be found in Levchenko et al.
[2020], Massobrio [2015]. Note that any statistical
analysis must be averaged over a trajectory that
is long enough to filter out the effect of statistical
fluctuations (the magnitude thereof depending on
the size of the simulated system). It is also worth
noting that, upon quenching, the glass may end
up in notably different regions of the energy land-
scape [Allen and Tildesley, 2017]. As such, it is a
good practice to simulate a series of independent
melt-quenching simulations for each glass (typi-
cally around 3 to 6) and to average results over these
simulations.

2.4. Abinitio molecular dynamics simulations

2.4.1. First-principles calculation of interatomic in-
teractions

Ab initioMD simulations estimate the interatomic
interactions based on first-principles calculation of
electron interactions within the framework of den-
sity function theory (DFT) [Kohn and Sham, 1965,
Marx and Hutter, 2009, Parr, 1980]. Figure 5a illus-
trates the basic idea of ab initio MD, wherein a glass
system’s potential energy U is computed as a func-
tion of both the electron wave functions {¥.} (i.e., the
electron state) and the nuclei positions {r,} (i.e., the
nuclei state) [Hohenberg and Kohn, 1964, Kohn and
Sham, 1965]. The potential energy U is calculated by
summing up three types of interactions in the system
[Boero et al., 2015, Marx and Hutter, 2009]:

U({{We}, {rn}) = Un-n({rn}) + Ue-n({We}, {rn})
+Ue—e({¥e}) 3)

where the right-hand terms refer to nucleus-nucleus
interactions U,_,, electron-nucleus interactions
Ue_n, and electron—electron interactions Ue_e, re-
spectively. Ue_, can be estimated using the pseu-
dopotential (PP) approach [Hamann et al., 1979,
Troullier and Martins, 1991, Vanderbilt, 1990]
wherein core electrons (close to the nucleus, where
the electron—nucleus interaction varies rapidly in
space) are filtered out as they do not engage in
the creation of chemical bonding. Rather, inter-
atomic interactions arise from valence electrons (far
away from the nucleus) that form chemical bonds
[Bachelet et al., 1982]. The PP approach then fits a
potential describing the interaction between nucleus
and valence electrons, where the fitting uses as ref-
erence the all-electron state solution of the ground-
state single atom model [Hamann et al., 1979]. Based
on the PP approach [Troullier and Martins, 1991],
Up-n is simply the Coulombic interaction between
nuclei presenting their net valence charge [Boero
etal., 2015].

2.4.2. Choice of exchange-correlation (XC) potential

U,—. is a key ingredient in first-principles simula-
tion. It can be further described by three types of en-
ergy terms [Boero et al., 2015, Kohn and Sham, 1965]:

Ue_e({\}]e}) — Ué(igetic + UCoulomb + Ué(_(é (4)

e-e

where the right-hand terms represent the elec-
trons’ kinetic energy UXMl¢ Coulombic interac-
tion yCoulomb  and the exchange-correlation (XC)
interaction UXC, respectively. Note that, the XC in-
teraction is very challenging to describe accurately
[Gunnarsson and Jones, 1985, Johnson et al., 1993,
Perdew and Zunger, 1981], as it depends not only
on the local electron density but also on its spatial
gradient [Langreth and Mehl, 1983, Perdew et al.,
1996a]. Assuming that the local electron density
is homogeneous, the local density approximation
(LDA) method can be used to estimate UXC [Fulde,
1995, Kohn and Sham, 1965], which has been proved
to offer satisfactory descriptions of XC interactions
[Cobb et al., 1996]. However, it should be pointed out
that, in many cases (e.g., glasses exhibiting structural
heterogeneities [Micoulaut et al., 2013]), assuming
a homogeneous local electron density results in an
inaccurate estimation of UXC [Langreth and Mehl,
1983, Micoulaut et al., 2009]. To address this issue,
some generalized gradient approximation (GGA)
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Figure 5. (a) Schematic illustrating the basic idea of ab initio molecular dynamics (MD) based on
first-principles calculation of the system’s potential energy U (see text for details) [Boero et al., 2015].
(b) Comparison between the pair distribution function (PDF) g(r) computed by neutron diffraction
experiment and ab initio MD simulation using the Car—Parrinello (CP) method and generalized gradient
approximation (GGA) potential for a GeSe; glass [Micoulaut et al., 2013]. The inset is a snapshot of the

simulated GeSe; glass.

methods have been developed to construct more
accurate XC functionals with respect to the electron
density gradient [Perdew et al., 1996a,b]. More de-
tails can be found in Fulde [1995], Marx and Hutter
[2009].

2.4.3. Numerical algorithms

Based on all these formulations of first-principles
interatomic interactions [Boero et al., 2015, Marx and
Hutter, 2009], the system’s ground-state potential en-
ergy U({We},{r}) can be calculated via optimizing
{¥,} so as to minimize U for the current nuclei po-
sitions {ry} (see Figure 5a) [Hafner, 2008, Pople et al.,
1989]. After updating the new nuclei positions {r,} af-
ter a small timestep, the system’s potential energy U
is then recomputed through optimizing {¥,.} [Boero
et al.,, 2015]. Two algorithms have been developed to
optimize {¥.} and update {r,} [Niklasson et al., 2006],
viz., (i) the Born-Oppenheimer (BO) approximation
to disentangle the updates of {¥.} and {r,} [Boero
et al., 2015, Niklasson et al., 2006], wherein {¥,} is
recomputed at each timestep and offers an accurate
estimation of the potential energy U to update the
nuclei positions {ry}, and (ii) the Car—Parrinello (CP)
method to construct a Lagrangian LCP ({Wel, {rn}) that
updates both quantities on-the-fly based on La-
grangian dynamics [Car and Parrinello, 1985], where
L®® includes a constructed kinetic energy term of

{We} by assigning to {¥} a fictitious electronic mass
that dictates the update inertia of {¥} [Boero et al.,
2015]. In practice, systems with slow change of nuclei
positions tend to require a large fictitious mass to de-
lay the update of {¥.} as well as alarge timestep to ac-
celerate the update of {ry} [Car and Parrinello, 1985].
In other words, when running a CP-MD simulation,
one needs to select a proper set of timestep and fic-
titious mass large enough to (i) reduce the compu-
tation cost of the update of {¥¢} and {r,} but also
small enough to (ii) numerically conserve the sys-
tem's energy and linear/angular momentum [Boero
et al., 2015]. More details can be found in Boero et al.
[2015], Marx and Hutter [2009].

2.4.4. Applications and limitations

Since ab initio MD simulations are typically able
to accurately describe interatomic interactions
[Pople et al., 1989], they are the method of choice
to simulate complex glasses for which no robust em-
pirical forcefields are available (see below). This is
typically the case for glasses exhibiting complex
bonds (i.e., with a mixed ionic/covalent/metallic
character or varying electronic delocalization) or
flexible local structures (e.g., varying coordination
numbers) [Massobrio, 2015]. For example, chalco-
genide glasses (e.g., Ge-Se glasses) typically exhibit
complex structural features that cannot be accurately
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reproduced by classical MD [Mauro and Varshneya,
2006], including under- and over-coordinated atoms,
edge-sharing structures, and homopolar bonds (see
insert of Figure 5b) [Petri et al., 2000]. Figure 5b
shows a melt-quenched GeSe; glass prepared by ab
initio MD simulation, wherein its computed PDF
g(r) is compared with neutron diffraction data [Mi-
coulaut et al., 2013]. Relying on CP-MD method and
GGA-XC potential [Car and Parrinello, 1985, Perdew
et al., 1996al, the simulation offers a glass structure
that is in excellent agreement with experimental data
[Micoulaut et al., 2009].

However, despite their unparalleled predictive
power [Pople et al., 1989], ab initio simulations still
come with a series of limitations. First, although they
rely on a fundamental description of electronic in-
teractions, they still rely on a number of assumptions
(e.g., choice of the pseudopotential and exchange-
correlation function). Second, ab initio MD simula-
tions come with a computational cost that is orders
of magnitude larger than that of classical MD [Marx
and Hutter, 2009]. This limits the timescale that is
accessible to ab initio MD simulations (typically to
100s of ps) [Boero et al., 2015]. This restricts their use
to high cooling rates, which, in turn, tends to yield
glasses that are more disordered (higher fictive tem-
perature) than their experimental counterparts [Li
etal., 2017]. Finally, the computational cost of ab ini-
tio MD simulations typically scales with the cube of
the number of electronic degrees of freedom [Hafner,
2008]. As a result, ab initio MD simulations are usu-
ally limited to very small systems (up to a few hun-
dred atoms) [Massobrio, 2015]. This prevents their
use in capturing small compositional effects (since
replacing one atom by another largely affects the
overall composition in a small system) or extended
structural features (e.g., large rings or compositional
heterogeneity) [Du and Corrales, 2006, Nakano et al.,
1994].

Thanks to their accuracy, ab initio MD simula-
tions have been applied to predict the structure and
dynamics of various types of glasses or amorphous
solids, including amorphous silicon [Car and Par-
rinello, 1988], chalcogenide [Micoulaut et al., 2013],
Ge-Sb-Te phase-change materials [Caravati et al.,
2009], MOFs [Darby et al., 2020, Sillar et al., 2009], sil-
icates [Baral et al., 2017, Tilocca and de Leeuw, 2006],
borates [Scherer et al., 2019], etc. Notably, by accu-
rately describing the interatomic interactions, ab ini-

tio MD offers a powerful tool to simulate complex
glasses that cannot be properly described by empiri-
cal forcefields.

2.5. Classical molecular dynamics simulations

2.5.1. Empirical forcefields

In contrast to the explicit description of elec-
tronic effects offered by ab initio MD [Marx and
Hutter, 2009], classical MD relies on empirical
forcefields to describe interatomic interactions—
via physics/intuition-based, computationally effi-
cient functionals [Massobrio, 2015]. For example,
Figure 6a shows the PDF g(r) of a melt-quenched
(Naz0)3¢(Si02)7¢ glass prepared by classical MD sim-
ulation using an empirical forcefield [Cormack et al.,
2002, Du and Cormack, 2004]. The neutron diffrac-
tion data is added as a reference for comparison
[Wright et al., 1991]. Notably, this empirical forcefield
offers an atomistic structure that is in good agree-
ment with experimental data. Note that the simu-
lated and experimental glasses are prepared with
different cooling rate [Li et al., 2017]. The good agree-
ment between simulated and experimental PDFs
(see Figure 6a) suggests that, although the empirical
forcefield is a simplification of the real interatomic
interactions [Huang and Kieffer, 2015, van Beest
et al., 1990], it can accurately describe them while
relying on a significantly reduced computational cost
as compared to first-principles calculations [Bauchy
et al., 2013, Carré et al., 2008]. Thanks to its much
faster execution time as compared to ab initio MD
simulation, classical MD simulation can extend to
much longer timescales (up to a few nanoseconds)
and larger length scales (up to millions of atoms)
[Lane, 2015, Plimpton, 1995a].

2.5.2. Forcefield functionals

The optimal functional form of the empirical in-
teratomic potential depends on the type of glass that
is simulated (e.g., ionic, covalent, metallic glass, etc.)
and no “universal” empirical potential is available to
date [Du, 2015, Huang and Kieffer, 2015].

In practice, ionocovalent glasses (e.g., silicate
glasses, which feature ionocovalent bonds [Huang
and Kieffer, 2015]) can be well described by a com-
bination of: (i) long-range coulombic interactions
and (ii) a Buckingham-format functional description



Han Liu et al. 47

(a) PR R R B R (b) - ) ) (c) PR I R B N
4 - - " Empirical forcefield parameterization 8 —— " y T
— — Experiment (Neutron diffraction) P P — — ab initio MD simulation Liquid
= 4~ Classical MD simulation - Agreement Competitive H— Empirical forcefields silica
g” - Empirical interatomic | beTwee”‘ eXP- [~ Control the U(r;) parameter 6 UGry) = 4. ,1,,exp<—i> T
2 potential energy U(r;) and sim profile to match ab sets Aot P/ T
g i\ Aom - {:l initio MD reference I:} i Columbic Short-range
3 / J interaction interaction
c =
S 2 interatomic [~ = 4 . -
5 I;;;gg"f Cost function = difference between S Hard potential (large q))
i : PR -~
£l g - classical MD and ab initio reference 4 > L
% - R =7.52%
S 1 | Minimum search > x |
& R =16.1% W Soft potential (small )
i R = 4.309
) (Na0,)30(Si0,)70 x 30%
0 — T T T T R 0 — T T T T T T
1 2 3 4 5 6 Forcefield parameters 1 2 3 4 5 6
r(A) r(A)

Figure 6. (a) Pair distribution function (PDF) g(r) of a melt-quenched (Nay0)3((SiO2)7¢ glass prepared
by a classical MD simulation using an empirical forcefield (here, a Buckingham potential [Cormack et al.,
2002], see (5)) and a cooling rate of 0.001 K/ps [Zhou et al., 2020]. The neutron diffraction data is added
as a comparison [Wright et al., 1991]. The inset illustrates the shape of this empirical forcefield, i.e.,
the interatomic potential energy U(ry) as a function of interatomic distance r;; [van Beest et al., 1990].
(b) Schematic illustrating the parameterization of an empirical forcefield by searching for the minimum
position (i.e., the optimal forcefield) in a cost function landscape as a function of forcefield parameters
[Carré et al., 2016]. The cost function is defined herein as the difference between classical MD result and
its ab initio reference [Liu et al., 2019e]. The optimal forcefield is parameterized so as to match ab initio
MD simulation and also offers a good agreement with experiment (see panel (a)) [Carré et al., 2008].
Note that several competitive minima (yielding competitive optimal forcefields) can coexist in the cost
function landscape (see panel (c)) [Liu et al., 2020a]. (c) Comparison between the PDFs computed by
ab initio MD simulation and classical MD simulation using two distinct Buckingham forcefields (with
different parameterizations) for a silica liquid. The two potentials are referred to as “soft” (exhibiting
weak columbic interactions) and “hard” (exhibiting more intense columbic interactions) [Liu et al.,

2020a].

of short-range interactions to compute the potential
energy U (r;j) between atom i and atom j at a distance
rij (see inset of Figure 6a) [Carré et al., 2008, Du and
Corrales, 2006, van Beest et al., 1990]:

qiqj +Aijexp(—l)—_l]
;

_— 5
ATtEgT; pij) 18 ©)

iy

Ulry) =

where g; is the partial charge of atom i, g is the di-
electric constant, and A, p;j, and C;; are parame-
ters describing short-range interactions [Du and Cor-
rales, 2006]. These parameters are adjusted for each
pair of elements (e.g., Si-O) so as to achieve a good
agreement with experimental or ab initio references
(see below) [Sundararaman et al., 2018, van Beest
et al., 1990]. In particular, the well-established Teter
potential [Cormack et al., 2002] has been demon-
strated to offer an accurate description of various
structural, thermodynamical, and dynamical proper-
ties of silicate glasses [Bauchy, 2012, Bauchy et al.,
2013, Du and Cormack, 2004, Du and Corrales, 2006].

Note that, in the case of interactions that rapidly
converge to zero upon increasing distance (e.g.,
Van der Waals interactions, which is proportional
to 1/r%), the energy error associated with the fact of
using a finite cutoff converges to zero as the cutoff
increases. However, this is not the case for Coulom-
bic interactions, which exhibit a slow decrease upon
increasing distance r (i.e., proportional to 1/r). In
such a case, the energy contribution that is neglected
when using a cutoff (arising from long-distance in-
teractions between atoms) does not converge to
zero upon increasing cutoff. As such, long-range
Coulombic interactions (including across PBC) must
be explicitly considered to ensure the accuracy of the
simulation. In practice, computing Coulombic inter-
actions is often the most computationally expensive
step when simulating ionocovalent glasses. In that re-
gard, various summation methods have been devel-
oped to speed up the computation of electrostatic in-
teractions, such as the Ewald method [Ewald, 1921],
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particle-particle-particle-mesh  (PPPM) method
[Hockney and Eastwood, 1988], and damped-shifted-
force (DSF) method [Fennell and Gezelter, 2006]. In
detail, both the Ewald and PPPM methods are based
on the idea that the summation of long-range inter-
actions can be efficiently calculated in the reciprocal
space using a Fourier transform [Allen and Tildes-
ley, 2017]. Unlike the Ewald or PPPM methods, the
DSF method is conducted in real space and is based
on the rapidly converging summation of a short-
range potential—whose cutoff is large enough—to
approach the effective long-range Coulombic in-
teractions [Fennell and Gezelter, 2006]. In practice,
both the Ewald and PPPM summation methods offer
accurate calculations of the Coulombic interactions.
In many cases, electrostatic interactions can also be
reasonably well approximated by the DSF method
[Carré et al., 2007, Fennell and Gezelter, 2006], which,
in turn, is significantly more computationally effi-
cient than Ewald and PPPM since it does not involve
any Fourier transform [Fennell and Gezelter, 2006].

It is worth pointing out that, as the accuracy of
classical MD simulations significantly relies on the
analytical formulation of the empirical forcefield,
it is necessary, when developing empirical force-
field functionals, to account for all essential compo-
nents of the interaction (e.g., Coulombic component
of ionocovalent interaction) that affect the targeted
glass properties. Indeed, although select properties
are not very sensitive to the details of a forcefield (e.g.,
density or PDF), other properties can be strongly af-
fected by small variations in the parameters or ana-
lytical formulation of the empirical potential. In such
cases, it may be necessary to develop advanced force-
fields that are able to capture some complex chem-
ical or physical behaviors, including bond forma-
tion/breaking, charge transfers, polarization effects,
short-range repulsion, etc. [Jahn et al., 2006, Jahn
and Madden, 2007, Serva et al., 2020]. In that regard,
some advanced forcefields such as the aspherical
ion model (AIM)—which is more complex than the
Buckingham potential [Liu et al., 2020a]—have been
developed to account for these essential, complex in-
teraction behaviors in studying the dynamics of com-
plex oxides [Jahn et al., 2006, Jahn and Madden, 2007,
Serva et al., 2020]. Note that, although such poten-
tials are more computationally expensive, they gen-
erally show an improved level of agreement with ex-
periments and a high transferability upon composi-

tion, temperature, and pressure changes [Jahn et al.,
2006, Jahn and Madden, 2007, Serva et al., 2020].

In contrast to ionocovalent glasses, covalent
glasses (e.g., amorphous silicon [Stillinger and We-
ber, 1985] or chalcogenide glasses [Micoulaut et al.,
2013]) cannot be described by 2-body interatomic
potentials due to the directional nature of the co-
valent bonds they form [Phillips, 1981, 1979]. As
such, describing covalent glasses requires the use of
3-body potential interactions—e.g., Stillinger-Weber
(SW) potential [Ding and Andersen, 1986, Stillinger
and Weber, 1985]—to constraint the values of the
interatomic angular interactions between a central
atom i and its two neighbor atoms j and k [Du, 2015,
Mauro and Varshneya, 2006]:

Urip Tk, Ogi) = Y Y da2(ry))
i j>i
+2.0 ) B3y T Oy)  (6)
i jRik>j

where ¢, and ¢3 represent, respectively, the radial
2-body interaction and angular 3-body interaction
term, as a function of the interatomic distance ryj, ri,
and the bond angle 0;;; between the vectors r;; and
rix. More details can be found in Du [2019], Mauro
and Varshneya [2006], Stillinger and Weber [1985].

Finally, the simulation of metallic glasses typically
requires the description of many-body effects [Pel-
letier and Qiao, 2019, Sheng et al., 2006], which can
be well described by the Embedded Atom Method
(EAM) potential [Daw et al., 1993]. In the EAM ap-
proach, the potential energy U; of a central atom i is
formulated as [Daw and Baskes, 1984, 1983]:

Ui:fa(z pﬁ(rij))"'%z(paﬁ(rij) (7)
J#i J#i

where F is the energy gained by embedding the
cation i in the “ocean” of delocalized electrons de-
scribed by the local atomic electron density p, ¢ is
a pair potential interaction describing the cation-
cation interactions, a, f represent element type of
atom i and j, respectively, and j denotes the neigh-
bors of atom i within a radius cutoff r.. More details
can be found in Daw et al. [1993], Daw and Baskes
[1983].

Note that, to reduce the computational cost as-
sociated with the calculation of the empirical force-
fields, a cutoff r, is typically adopted—wherein the
interaction energy between a pair of atoms is as-
sumed to be zero if their distance exceeds the cutoff
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[Chialvo and Debenedetti, 1990, Du, 2015]. In addi-
tion, a neighbor list algorithm is typically adopted to
reduce the number of times the distance between a
pair of atoms is calculated [Allen and Tildesley, 2017,
Leach, 2001].

2.5.3. Forcefield parameterization

In addition to the choice of its functional form
[Du, 2015], the accuracy of an empirical forcefield
strongly depends on its parameterization [Sun-
dararaman et al., 2020, 2018, Wang et al., 2018]. Fig-
ure 6b illustrates the general idea behind the param-
eterization of an empirical potential. Such param-
eterization can be formulated as an optimization
problem, wherein the forcefield parameters are opti-
mized so as to minimize a given cost function. This
problem can be illustrated in terms of a cost function
landscape, which represents the topographical evo-
lution of the cost function as a function of the force-
field parameters. The cost function captures the level
of mismatch between a simulated metric and a given
reference value. The simulated metric can be the
interatomic energy/force, some structural features
(e.g., PDF), or some other macroscopic properties
(e.g., density, stiffness, etc.).

For each type of metric, reference values can be of-
fered by experimental data or ab initio simulations.
On the one hand, defining the cost function in terms
of the level of mismatch between computed and ex-
perimental data tends to yield a good agreement be-
tween simulated and experimental glass properties—
since the parameterization scheme specifically aims
to minimize this difference. However, on the other
hand, it is not always meaningful to compare a sim-
ulated glass with its experimental counterpart. In-
deed, glasses simulated by MD are prepared with a
cooling rate that is significantly higher than those ex-
perienced in traditional experiments and, therefore,
should be different (typically more disordered) than
their experimental counterparts [Carré et al., 2016, Li
et al., 2017, Vollmayr et al., 1996b]. Hence, param-
eterizing an empirical forcefield so as to “force” a
simulated glass to exhibit properties that match ex-
perimental data may yield an unrealistic forcefield.
That is, forcing simulated and experimental glasses
to feature similar properties can typically only be
achieved by “mutual compensations of errors”, that
is, wherein the forcefield is deformed so as to com-
pensate the fact that the simulated glass is prepared

with an extremely high cooling rate. As such, al-
though such parameterization may offer an apparent
agreement between simulations and experiments for
the properties that are included in the cost function,
the resulting forcefield, due to its nonphysical nature,
may dramatically fail at predicting properties that are
notincluded in its cost function. In contrast, parame-
terizing a forcefield so as to match with ab initio data
is expected to yield a more realistic description of
the true interatomic potential. However, glasses pre-
pared with such a realistic forcefield should be com-
pared to hyperquenched glasses (i.e., prepared un-
der high cooling rate) and, hence, may not exhibit
a good agreement with experimental data prepared
under slower cooling rates.

In terms of the metric to be considered in the cost
function, it has recently been suggested that, in the
case of glasses or liquids, using a structural property
as reference (e.g., PDF) tends to offer better results
than directly forcing the parameterized forcefield to
match reference force values (as computed by ab ini-
tio simulations) [Carré et al., 2016, 2008]. In the ex-
ample shown in Figure 6¢, the cost function R, is de-
fined as the magnitude of the difference between the
PDF g(r) computed by classical MD and ab initio MD
for a liquid silica system [Liu et al., 2019e]. Note that
parameterizing this forcefield based on liquid (rather
than glassy) configurations effectively removes any
spurious effects arising from the thermal history of
the system.

Various optimization methods are available to
“navigate” the cost function landscape, that is, to
identify the optimal forcefield parameters that min-
imize the cost function [Carré et al., 2016], includ-
ing MC search [Iype et al., 2013], Bayesian opti-
mization [Liu et al., 2019c,e], particle swarm opti-
mization [Christensen et al., 2021], or gradient de-
scent search [Shewchuk, 1994]. Note that this opti-
mization problem is typically ill-defined since sev-
eral degenerate sets of forcefield parameters can of-
ten minimize the cost function, that is, several com-
petitive minimum positions can be found in the cost
function landscape [Liu et al., 2020a, 2019c]. Fig-
ure 6¢ illustrates two competitive forcefields based
on the same Buckingham-format functional [van
Beest et al., 1990] (see (5)). These forcefields can be
described as “soft” (featuring weak coulombic inter-
actions) and “hard” (featuring more intense coulom-
bic interactions) and both offer a competitive mini-
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mum value of the cost function Ry for silica liquids
[Liu et al., 2020a]. Nevertheless, despite the apparent
harmony, the atomistic structures offered by the soft
and hard potential exhibit pronounced differences
for structural features that are not included in the
cost function (e.g., bond angular distribution or ring
size distribution) [Liu et al., 2020a]. This exemplifies
the need to a posteriori validate forcefields that vali-
date the accuracy of forcefields after their parameter-
ization [Liu et al., 2019c].

Finally, it is worth pointing out that both the
choice of forcefield functionals and forcefield pa-
rameterization can affect the forcefield’s transfer-
ability as a function of, for instance, glass compo-
sition, pressure, or temperature [Hernandez et al.,
2019, Jahn and Madden, 2007]. Indeed, forcefields
are often developed for a specific glass composition
and range temperature/pressure (e.g., liquid silica).
In general, there is no guarantee that such forcefields
can offer realistic predictions far from the conditions
used during their training [Sundararaman et al., 2020,
2018]. For instance, certain chemical behaviors—e.g.,
charge transfers—may not be similar under various
conditions of temperature or pressure and, hence,
may require some adjustments in the parameteriza-
tion of empirical forces to be properly accounted for
[Liu et al., 2020a]. The transferability of forcefields is
also likely to be poor when the forcefield is used un-
der conditions wherein the atoms exhibit some local
environments (e.g., varying coordination numbers)
that are different from those observed during the
training of the forcefield. This limitation is especially
pronounced for borate glasses (wherein the average
coordination number of boron depends on tempera-
ture) and pressurized glasses (wherein coordination
numbers tend to increase under pressure) [Salmon
and Zeidler, 2015]. In order to overcome these limi-
tations and develop transferable forcefields, one first
needs to propose a forcefield functional that is com-
plex enough to capture the nature of interatomic
interactions in all the conditions of interest (e.g.,
Buckingham-format potential for ionocovalent bond
interactions in silicate glasses), but generic enough to
avoid any unrealistic extrapolations due to “overfit-
ting” [Du, 2015, Huang and Kieffer, 2015]. Then, the
transferability of a forcefield greatly depends on its
forcefield parameterization scheme, where the cost
function should be designed so as to consider the
structure and properties of glasses under different

conditions [Liu et al., 2019¢, Sundararaman et al.,
2018]. Note that there always exists a balance be-
tween (i) the ability of a forcefield to accurately pre-
dict the unique, detailed properties of a specific sys-
tem and (ii) the capability of a forcefield to offer a
robust transferability for a wide range of composi-
tions and conditions [Liu et al., 2019c]. To address
the issue of transferability, several recent works have
focussed on developing generic forcefields that can
be applied to a large compositional envelope at the
expense of potentially being unable to capture the
fine structural details of a specific composition [Her-
nandez et al., 2019, Jahn and Madden, 2007], includ-
ing the well-established Teter potential for modified
silicate glasses [Du and Corrales, 2006], the Wang-
Bauchy potential for borosilicate glasses [Wang et al.,
2018], etc.

Thanks to their high computational efficiency as
compared to ab initio simulations [Carré et al., 2008,
Huang and Kieffer, 2015], classical MD simulations
relying on empirical forcefields have been extensively
used to model glasses [Cormier et al., 2003, Mead
and Mountjoy, 2006, Tanguy et al., 1998]. Simulated
systems include glassy silica [Carré et al., 2008, Liu
et al., 2020a, van Beest et al., 1990], modified (e.g.,
alkali) silicate glasses [Cormack and Du, 2001], alu-
minosilicate glasses [Bouhadja et al., 2013], borates
[Kieu et al., 2011, Sundararaman et al., 2020, Wang
et al., 2018], etc. It should be pointed out that, as
the number of elements in the glass increases, it be-
comes extremely challenging to properly describe all
the distinct interactions between pair of elements
(since the number of parameters that need to be ad-
justed scales with the square of the number of ele-
ments) [Du, 2015].

2.6. Reactive molecular dynamics simulations

2.6.1. Gap between ab initio and classical MD simu-
lations

In contrast to classical MD, ab initio MD can ac-
curately describe a chemical reaction process but is
limited to small system size (up to hundreds of
atoms) [Boero et al., 2015], while, in turn, classi-
cal MD can extend to large systems (up to mil-
lions of atoms) but lack an accurate description of
chemical reaction processes [Plimpton, 1995a, Sen-
ftle et al., 2016]. Although classical MD simulations
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exhibit high computation efficiency [Marx and Hut-
ter, 2009, Massobrio, 2015], they rely on simplified
empirical forcefields, which may accurately predict
certain properties (e.g., PDF g(r)) of glasses but may
not offer robust predictions for more complex prop-
erties that are more sensitive to the details of the
forcefields [Ganster et al., 2007, Ispas et al., 2002]. In
addition, classical MD simulations relying on static
forcefields and fixed charges are often unable to ro-
bustly account for charge transfer mechanisms and
defective coordinated states, which prevents such
simulations from properly describing the breaking
and formation of bonds during chemical reactions
[Buehler et al., 2006, Deng et al., 2021, Du et al.,
2019a, Yu et al., 2018]. To address this limitation,
reactive MD simulations—i.e., MD relying on reac-
tive forcefields (e.g., ReaxFF) [van Duin et al., 2003,
2001]—have been proposed as an intermediate op-
tion, in between classical and ab initio MD. The
promise of reactive MD is to offer an accuracy that
approaches that of ab initio MD while involving a
computational burden that is more comparable to
that of classical MD. This makes it possible for reac-
tive MD to simulate fairly large systems (up to tens of
thousands of atoms) over extended time scales (up
to a few nanoseconds) with an enhanced accuracy
as compared to classical MD (see Figure 7a) [Sen-
ftle et al., 2016]. However, reactive forcefields typi-
cally rely on hundreds-to-thousands of parameters
and, hence, are extremely challenging to parameter-
ize. This has thus far limited their applications to a
small number of glass families [Senftle et al., 2016].

2.6.2. ReaxFF forcefield

The ReaxFF forcefield is one of the most popular
implementations of reactive MD [Leven et al., 2021].
As detailed in the following, the key advantages of
ReaxFF are that it (i) explicitly describes the dynam-
ical formations and breaking of bonds, (ii) accounts
for charge transfers between atoms, and (iii) dynam-
ically adjusts the interatomic interactions as a func-
tion of the local environment of each atom [van Duin
et al., 2003, 2001]. This makes it possible to describe
phase transitions, defect formations, or chemical re-
actions between atoms (e.g., to simulate the reactiv-
ity of a glass surface with water) [Buehler et al., 2006,
Duetal., 2018].

In detail, the ReaxFF forcefield calculates the sys-

tem’s potential energy Usys by summing up the fol-
lowing energy terms [van Duin et al., 2003]:

Usys = Ubond + Uvdwaals + Ucoulomb + Uunder + Uover
+ Uyp + Uval + Utors + Uconj + Upen ®)

where the right-hand terms refer, respectively, to
the short-range bond energy, Van der Waals energy,
Coulomb potential energy, under-coordination en-
ergy, over-coordination energy, long-range electron
pairs energy, valence angle energy, torsion energy,
conjugation energy, and penalty energy. A detailed
description of these terms can be found in Senftle
etal. [2016], van Duin et al. [2003, 2001]. Importantly,
ReaxFF is a bond-order-based forcefield, that is, the
energy terms are generally formulated as a function
of the local bond order of each atom, which is dy-
namically determined by its local environment [van
Duin et al.,, 2003]. This bond-order formulation en-
ables reactive MD to capture the dynamical process
of bond formations and dissociations. Moreover, in
contrast to classical MD simulations relying on fixed
charges [Liu et al., 2019e, van Beest et al., 1990], the
charges of the atoms are dynamically assigned based
on a charge equilibration (QEq) method [Rappe and
Goddard, 1991], which captures the occurrence of
charge transfers during bond breakages and reforma-
tions. All these features—i.e., dynamical bond forma-
tions and charge transfers—render ReaxFF ideal to
simulate chemical reactions [Senftle et al., 2016].

2.6.3. Glass reactivity

Reactive MD simulations offer an ideal tool to in-
vestigate the chemical reactivity of glasses [Senftle
et al., 2016]. For instance, Figure 7b illustrates the
sol-gel formation process of glassy silica (in terms
of the condensation of Si(OH),4 precursors) from the
viewpoint of an energy state transition in PEL [Du
et al., 2018, Steinfeld et al., 1999]. Classical MD rely-
ing on empirical forcefield (e.g., Buckingham poten-
tial [van Beest et al., 1990]) generally offers an accu-
rate description of near-equilibrium properties (i.e.,
around local minimum energy states) but typically
fails at properly describing far-from-equilibrium be-
haviors like those experienced in transition states
[Liu et al., 2019e]. In particular, classical MD typically
does not offer realistic energy barrier predictions [Du
et al., 2018]. In contrast, reactive MD (e.g., based on
ReaxFF) can offer more accurate description of tran-
sition energy barriers, which makes it possible to
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Figure 7. (a) Illustration of reactive molecular dynamics (MD) simulations relying on reactive forcefield
(e.g., ReaxFF) to bridge the gap between ab initio and classical MD, both in terms of range of system
size and accuracy [Senftle et al., 2016]. (b) Illustration of the sol-gel formation process of glassy silica
in terms of the potential energy landscape (PEL) predicted by ab initio MD, reactive MD, and classical
MD [Du et al.,, 2018, Steinfeld et al., 1999]. Using the ab initio PEL as a reference, reactive MD shows
a more accurate transition energy than classical MD [Du et al., 2018], on account of the fact that the
ReaxFF forcefield explicitly models dynamical bond formations and charge transfers during the chemical
reaction [van Duin et al., 2003]. (c) Comparison between the neutron structure factor Sy(Q) computed
by classical MD and reactive MD for a sodium silicate glass ((Na;0)30(SiO2)7¢) [Yu et al., 2017a]. The same
experimental Sy (Q) is added as a reference [Grimley et al., 1990].

simulate sol-to-gel transitions [Du et al., 2019b, 2018,
Zhao et al., 2021, 2020]. Reactive potentials also make
it possible to model the reactivity of glass with aque-
ous solutions [Deng et al., 2019, Du et al., 2019a, Fog-
arty et al., 2010, Mahadevan and Du, 2020, Yu et al.,
2018]. The description of bond formation/breaking
also make reactive MD simulations an ideal tool to
study fracture processes [Bauchy et al., 2016, 2015,
To et al., 2020] or vapor deposition processes [Wang
et al., 2020].

2.6.4. Glass structure

The fact that ReaxFF can dynamically adjust in-
teratomic interactions as a function of the local en-
vironment of each atom is also a key advantage in
glass simulations—since glasses can exhibit a large
variety of local structures (e.g., varying coordination
states). As such, when properly parameterized, re-
active forcefields have the potential to offer an im-
proved description of the atomic structure of glasses
as compared to classical MD [Yu et al., 2017a, 2016].
Figure 7c shows a comparison between the neutron
structure factor Sy (Q) computed by classical and re-
active MD simulation for a (Na20)3(SiO2)79 glass [Yu
et al., 2017a]. Taking the experimental Sy(Q) as a
reference [Grimley et al., 1990], reactive MD relying

on the ReaxFF forcefield offers an improved descrip-
tion of the medium-range structure (e.g., improved
left-skewed symmetry of Sy (Q) at low-Q region [Yu
etal., 2017a]) as compared to that offered by classical
MD relying on a Buckingham forcefield [Du and Cor-
mack, 2004]. The ability of ReaxFF to properly han-
dle coordination defects also makes it an ideal tool
to study irradiation-induced vitrification [Krishnan
etal, 2017a,c, Wang et al., 2017].

Although its application to glassy systems has thus
far remained fairly limited, the ReaxFF forcefield has
been used to model several noncrystalline systems,
including amorphous silicon [Buehler et al., 2006],
glassy silica [Yu et al., 2016], sodium silicate glasses
[Deng et al., 2020], modified aluminosilicate glasses
[Dongol et al., 2018, Liu et al., 2020c, Mahadevan
and Du, 2021], organosilicate glasses [Rimsza et al.,
2016], and zeolitic imidazolate frameworks (ZIFs)
[Yang et al., 2018], etc. Despite the unique advan-
tages offered by ReaxFEF its applications are presently
limited by the range of elements that have been pa-
rameterized [Leven et al., 2021, Senftle et al., 2016].
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3. Grand challenges in atomistic simulations
of glasses

3.1. Parameterization of empirical forcefields

3.1.1. High dimensionality

Empirical forcefields involve many parameters
that need to be optimized [Liu et al., 2019c]. For ex-
ample, ReaxFF forcefields generally comprise hun-
dreds (or thousands) of parameters [van Duin et al.,
2003]. Although classical forcefields are usually sim-
pler, they still involve dozens of parameters—a num-
ber that increases upon increasing number of ele-
ments [Huang and Kieffer, 2015]. Such high dimen-
sionality makes it challenging to identify optimal val-
ues for the parameters, that is, to reliably find the
minimum position in the cost function landscape
[Carré et al., 2016, Shewchuk, 1994].

3.1.2. Roughness of cost function landscape

Figure 8a illustrates a cost function landscape as a
function of arbitrary forcefield parameters, where the
cost function Ry is defined herein as the magnitude
of difference between the PDF g(r) computed by clas-
sical MD and its ab initio reference [Liu et al., 2019¢].
Since the landscape is rough and features many lo-
cal minima, traditional gradient-descent-based op-
timization algorithms are usually largely inefficient
since they tend to get stuck in local minima—so that
the outcome of the optimization strongly depends on
the initial starting point [Shewchuk, 1994].

As an illustrative example, Figure 8b shows the
cost function landscape of a Buckingham forcefield
for glassy silica as a function of two forcefield param-
eters (i.e., the silicon partial charge gs; and the short-
range Si-O interaction intensity Asjp) [Liu et al.,
2019e]. Even for this simple system, the cost function
landscape is rough and exhibits several local min-
ima. As a result, optimizations relying on conjugated
gradient descent [Shewchuk, 1994] tend to get eas-
ily stuck at the positions nearby the start point (see
Figure 8b) [Liu et al., 2019¢]. Indeed, although the
cost function looks fairly smooth at a high level, a
closer inspection reveals that the cost function lo-
cally features a very rough landscape showing a large
number of local minima (see bottom panel in Fig-
ure 8b) [Liu et al., 2019¢]. Overall, as a consequence

of the rough nature of typical cost function land-
scapes, forcefield parameterization schemes are of-
ten strongly biased, heavily relying on intuition, or re-
quiring a large number of independent optimization
(with different starting points) [Liu et al., 2019e,c].

3.2. Effect of the cooling rate

3.2.1. Importance of thermal history

Due to the short timescale that is accessible to
MD simulations (up to a few nanoseconds trajecto-
ries) [Plimpton, 1995a], glass simulations relying on
the melt-quenching approach are limited to ultra-
fast cooling rates (10'4-10° K/s), which far exceed the
cooling rates achieved in conventional experiments
(102-10° K/s) [Li et al., 2017]. This is important since,
glasses being out-of-equilibrium phases, their struc-
ture and properties depend on their thermal history.
Specifically, glasses tend to reach deeper positions in
their PEL upon decreasing cooling rates (i.e., they be-
come more stable, see Figure 9a) [Debenedetti and
Stillinger, 2001].

Figure 9b illustrates the evolution of the poten-
tial energy U of a glass with respect to the decreas-
ing temperature during melt-quenching with vary-
ing cooling rates: (i) MD simulation with a large
cooling rate (typically 10 K/ps), (ii) MD simulation
with a slow cooling rate (typically 10~ K/ps), and
(iii) experimental melt-quench (typically 1072 K/ps)
[Debenedetti and Stillinger, 2001]. At high tempera-
ture, the three systems are at the equilibrium liquid
state and, hence, exhibit the same potential energy
U [Debenedetti and Stillinger, 2001]. As temperature
decreases, U decreases (the slope depending on the
heat capacity of the liquid) and all three systems en-
ter into the metastable supercooled liquid state fol-
lowing the same linear master curve [Debenedetti
and Stillinger, 2001]. From this point, the transi-
tion from the metastable supercooled liquid state to
the out-of-equilibrium glassy state (i.e., at the glass
fictive temperature Ty) occurs when the relaxation
time of the system exceeds the observation time. Al-
though, at fixed temperature, all the three systems ex-
hibit the same relaxation time, the observation time
is significantly lower in MD simulations, especially
upon large cooling rate. As such, glasses simulated by
MD using a large cooling rate enter the glassy state at
higher temperature and remain stuck is high-energy
states in the PEL (see Figures 9a and b) [Debenedetti
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Figure 8. (a) Illustration of the rough nature of typical cost function Ry landscapes for empirical force-
field parameterization. Ry is defined herein as the difference between a classical MD result (e.g., PDF) and
its ab initioreference [Liu et al., 2019e]. The outcome of a typical gradient descent optimization can easily
get stuck at numerous local minima and, hence, strongly depends on the initial starting point [Liu et al.,
2019e, Shewchuk, 1994]. (b) Contour plot of the cost function Ry associated with a Buckingham potential
for glassy silica as a function of two forcefield parameters gs; and Asj, (see (5)) [Liu et al., 2019e]. For il-
lustration purposes, the other parameters are fixed based on the well-established van Beest-Kramer—van
Santen (BKS) potential [van Beest et al., 1990]. By using conjugated gradient descent [Shewchuk, 1994],
the optimization easily gets trapped in a local minimum due to the rough nature of the cost function
landscape (see bottom panels), so that the optimization fails to identify optimal forcefield parameters

that minimize the cost function [Liu et al., 2019e].

and Stillinger, 2001]. As a result, glasses simulated by
MD strongly depend on the choice of the cooling rate
and tend to be more stable (i.e., lower final energy Uy,
more ordered) upon decreasing cooling rates.

3.2.2. Gap between simulated versus experimental
glasses

Figure 9c shows the evolution of the glass fictive
temperature Ty and final potential energy U as a
function of the cooling rate for both melt-quenching
experiments and MD simulations—using the case of
a (Naz0)3((SiO2)79 glass as an archetypical example
[Lietal., 2017, Zhou et al., 2020]. As expected, slower
cooling rates result in lower Ty and U,. However, due
to the huge gap between the cooling rates that are
accessible to experiments and simulations [Li et al.,
2017], experimental values of Ty and Uj tend to be
much lower than their simulation counterparts [Li
et al.,, 2017, Zhou et al., 2020]. This difference in the
order of the magnitude of the cooling rate is a critical

limitation of MD simulations since it results in a sys-
tematic difference between experimental and simu-
lated glasses [Li et al., 2017, Vollmayr et al., 1996b].
Note that different types of glasses may exhibit vari-
ous dependence on the cooling rate, so that certain
glasses are more sensitive to variations in the cool-
ing rate than others [Liu et al., 2018]. It should also be
noted that certain glass properties or structural fea-
tures (e.g., medium-range order structure) are more
sensitive to the cooling rate than others (e.g., short-
range order structure) [Li et al., 2017].

3.3. Finite size effects

Due to their high computational cost, atomistic sim-
ulations are limited to fairly small systems (i.e., small
number of atoms). Although PBC are typically used
to mitigate any spurious effects arising from the pres-
ence of surfaces, the limited size of simulated glasses
(from hundreds to millions of atoms) can affect the
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Figure 9. (a) Illustration of different local minimum states in the potential energy landscape (PEL)
that are reached by melt-quenched glasses upon different cooling rates [Debenedetti and Stillinger,
2001]. Slower cooling rates result in more stable glasses, i.e., featuring a deeper position in the PEL.
(b) Evolution of the potential energy U of a glass with respect to temperature during a melt-quenching
molecular dynamics (MD) simulation under fast cooling (yellow) and slow cooling (blue) [Debenedetti
and Stillinger, 2001]. The energy profile of a glass subjected to a melt-quenching experiment (i.e., at
much lower cooling rate) is added as a reference (green). (c) Fictive temperature T (upper panel) and
final potential energy Uy (bottom panel) as a function of cooling rate for a (Na»0)3((SiO2)7¢ glass offered
by both melt-quenching MD simulations (blue squares) and experiments (green squares) [Li et al., 2017,

Zhou et al., 2020]. The lines are to guide the eyes.
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Figure 10. Neutron structure factor Sy(Q)
of silica glasses prepared by melt-quenching
molecular dynamics (MD) simulations for
varying system sizes, namely, N = 648, 5184,
and 41,472 atoms [Nakano et al., 1994].

accuracy of the simulation [Du, 2015]. Difficulties re-
lated to the system size include: (i) lack of statistical
sampling if the number of atoms is too low [Berthier
et al., 2012, Horbach et al., 1996], (ii) enhanced fluc-
tuations in the thermodynamic properties of the sim-
ulated system (e.g., temperature or pressure) since
the magnitude of fluctuations inversely scale with
the square root of the number of atoms [Du, 2019,
Leach, 2001], and (iii) systematic errors arising from
the limited size of the simulation box (e.g., absence of
large rings or extended collective vibrational modes)
[Ganster et al., 2004, Nakano et al., 1994].

Figure 10 shows the computed neutron structure
factor Sy(Q) of a glassy silica system prepared by
melt-quenching MD simulations while using three
different system sizes N, namely, 648 (small sys-
tem), 5184 (intermediate system), and 41,472 atoms
(large system) [Nakano et al., 1994]. The computed
structure factor Sy(Q) is found to depend on the
system size since, especially in the low-Q region
(which captures the medium-range order structure
of the glass)—before the structure factor eventually
converges for large systems [Nakano et al., 1994]. This
indicates that glass simulations relying on small sim-
ulation boxes (and, hence, small numbers of atoms)
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do not always properly capture the structure and
properties of glasses [Du, 2015, Ganster et al., 2004,
Nakano et al., 1994]. In practice, one needs to select
a system size that is large enough to mitigate finite
size effects, but small enough to ensure a reasonable
computational cost [Du, 2015].

3.4. Limitations of reverse Monte Carlo (RMC)
simulations

3.4.1. Need for structural data

Reverse Monte Carlo (RMC) simulations aim to
construct atomistic structures that match one or sev-
eral structural fingerprints provided by experiments
(often, the PDF) [McGreevy, 2001]. As such, RMC
simulations offer an attractive alternative to MD sim-
ulations since such simulations can effectively by-
pass the melt-quench route to form a glass and,
hence, are not affected by high cooling rate effects.
However, RMC simulations largely rely on the avail-
ability (and accuracy) of experimental data. This lim-
its the predictive power of RMC simulations since
this approach does not make it possible to simulate
in silico glasses that have not been experimentally
synthesized and characterized yet. This also limits
the range of conditions (temperature, pressure, etc.)
to the ones that have already been experimentally ex-
plored.

3.4.2. Ill-defined nature of RMC simulations

RMC simulations adopt the MC algorithm to
search for an atomic structure that exhibits a mini-
mum in the cost function landscape (see upper panel
of Figure 11a) [Allen and Tildesley, 2017], wherein the
cost function Ry is defined as the magnitude of differ-
ence between the simulated structural fingerprints
and their experimental references [Zhou et al., 2020].
This can be formulated as an optimization problem,
wherein some degrees of freedom (i.e., the positions
of the atoms) are adjusted so as to minimize a cost
function. However, the optimization problem at the
core of RMC simulations is intrinsically ill-defined.
Indeed, although a given three-dimensional struc-
ture yields unique values for the fingerprints, a given
fingerprint can be associated with a large number of
different three-dimensional structures. That is, the
structure—fingerprint relationship is not reversible.

For instance, due to the complex, disordered na-
ture of glasses [Bunde and Havlin, 2012], very dif-
ferent structures can be associated with the same
PDF (see Figure 11b) [Pandey et al., 2016b]. This is
a consequence of the fact that the PDF is simply a
one-dimensional signature of a glass structure (av-
eraged over various types of elements) and, there-
fore, only offers a highly compressed representation
of a three-dimensional structure—which does not
contain enough information to robustly reconstruct
the structure itself. In short, RMC simulations do
not exhibit a single solution, which manifests itself
by the fact that the cost function landscape exhibits
various competitive minima [Pandey et al., 2015].
Since traditional RMC simulations do not embed
any knowledge of the interatomic interactions, the
structures generated by RMC may not be thermody-
namically stable [Zhou et al., 2020] and the regions
of the PEL that are explored in RMC simulations may
be very different from those that are accessed during
the melt-quenching of a glass (see bottom panel in
Figure 11a) [Pandey et al., 2015].

Figure 11c shows the evolution of the optimiza-
tion cost function R, and the potential U with respect
to the number of MC search steps during an RMC
simulation for a (Naz0)30(Si02)7¢ glass [Zhou et al.,
2020]. Note that the values of R, and U obtained for
the same glass prepared by a melt-quenching MD
simulation are also added as references [Zhou et al.,
2020]. As expected, Ry gradually decreases and even-
tually becomes lower than the MD reference, that is,
the RMC simulation offers an optimal structure that
indeed matches the experimental structural finger-
prints (see upper panel of Figure 11c) [Zhou et al.,
2020]. However, upon RMC refinement, the poten-
tial energy U is not monotonically decreasing but,
rather, tends to increase in the late stages of the MC
search. Eventually, the final glass structure exhibits
a notably higher potential energy U than that of
the MD-simulated glass reference (see bottom panel
of Figure 11c) [Zhou et al., 2020]. These results ex-
emplify that an apparent excellent agreement with
experimental data (e.g., based on the PDF) does
not always translate into a realistic glass structure
[Pandey et al., 2015, Zhou et al., 2020]. The ill-defined
nature of RMC can be partially mitigated by the in-
troduction of an energy penalty term U in the MC
cost function to favor structures featuring low po-
tential energy—an approach that is typically referred
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Figure 11. (a) Illustration of the existence of competitive minima in the cost function landscape for a
reverse Monte Carlo (RMC) simulation [McGreevy, 2001]. The cost function R, is defined herein as the
magnitude of difference between the simulated and experimental PDFs (see (1)) [Zhou et al., 2020].
Compared to the targeted minimum (green circle, which exhibits both low R, and potential energy
U), some competitive minima (red sphere) exhibit the same value of the cost function Ry, but high
values of U, i.e., they correspond to unstable energy states in the potential energy landscape (PEL) [Zhou
et al., 2020]. (b) Illustration of atomic configurations that exhibit the same PDF g(r) while presenting
notably different structures [Pandey et al., 2016b]. (c) Evolution of the cost function Ry (upper panel) and
potential energy U (bottom panel) as a function of the number of Monte Carlo (MC) search steps during
an RMC simulation of a sodium silicate glass ((Na20)30(SiO2)7) [Zhou et al., 2020]. The Ry and U values
obtained for the same glass prepared by melt-quenching molecular dynamics (MD) simulation with a
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cooling rate of 0.001 K/ps are added as references (green dash line) [Zhou et al., 2020].

to as hybrid RMC [Bousige et al., 2015, Jain et al.,
2006, Opletal et al., 2002]. However, hybrid RMC re-
quires trial-and-error tests or intuition to adjust the
weights of Ry and U in the cost function. In addition,
hybrid RMC simulations are significantly more com-
putationally expensive than traditional RMC simula-
tions since the potential energy of the system U must
be computed at each MC step [Zhou et al., 2020].

4. New developments in atomistic modeling of
glasses

4.1. Machine-learned forcefields

4.1.1. Types of machine-learned forcefields

To address the limitations associated with empiri-
cal forcefields relying on a fixed analytical form, ma-
chine learning (ML) offers a promising pathway to
develop new complex forcefields that rely on an ML
model to map a given atomic configuration to its
potential energy. The promise of machine-learned

forcefields is to approach the accuracy of ab ini-
tio simulations with a computational burden that
is more comparable to (although typically higher
than) that of classical empirical forcefields. In de-
tail, machine-learned forcefields adopt ML regres-
sion models to fit the system’s PEL as a function
of the atom positions [Behler, 2016, Mishin, 2021,
Mueller et al., 2020], without the need to rely on
any physical or chemical intuition to define a func-
tional format of the empirical forcefield [Du, 2015,
Huang and Kieffer, 2015]. The ground-truth PEL dat-
apoints are often provided by ab initio MD simula-
tions [Boero et al., 2015]. Several types of regression
models have been developed so far to interpolate the
PEL information provided by ab initio simulations
[Mishin, 2021], i.e., to map the system’s atom posi-
tions {r;} to its potential energy U{r;} (see Figure 12a).
This includes (i) physically informed neural networks
(PINN) or PINN-type regression models, which use
as inputs several structural features (e.g., translation-
and rotation-invariant angular 3-body and radial 2-
body order parameters [Bartok et al., 2013, Chmiela
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et al., 2018, Pun et al., 2019]) to predict the system’s
potential energy U [Huan et al.,, 2017, Pun et al,,
2019, Schiitt et al., 2018], (ii) graph neural networks
(GNN), which directly use as input the atom posi-
tions (modeled as a graph, wherein some nodes, the
atoms, are connected by some edges, the chemical
interactions) to predict U [Gilmer et al., 2017, Park
et al., 2021], and (iii) Gaussian approximation po-
tentials (GAP), which, in contrast to the neural net-
work fitting used in PINN and GNN [Russell et al.,
2010], adopt a nonparametric fitting technique (i.e.,
Gaussian process regression (GPR) [Rasmussen and
Williams, 2008]) to offer not only the PEL predic-
tion but also the confidence interval of the predic-
tion [Barték et al., 2010, Barték and Csanyi, 2015].
Importantly, this confidence interval can be used to
train forcefields by active learning, that is, wherein
new ground-truth ab initio simulations are dynam-
ically conducted for structures associated with high
confidence intervals—which are then added to the
training set to retrain the GAP forcefield. Such active
learning makes it possible to dynamically retrain the
forcefield based on the very structures that are the
most informative to improve its accuracy [Byggmais-
tar et al., 2019, Caro, 2019].

4.1.2. Accuracy of machine-learned forcefields

As compared to empirical forcefields based on
fixed functional formats [Du, 2019], machine-learned
forcefields exhibit more flexibility to fit the PEL and,
therefore, tend to offer more accurate predictions
(when properly trained) [Mishin, 2021]. Figure 12b il-
lustrates, from the viewpoint of a PEL [Lacks, 2001],
the amorphous-to-crystalline transition of a silicon
solid upon increasing pressure [McMillan et al., 2005,
Pandey et al., 2011]. The reference PEL datapoints
are provided by ab initio MD simulations and are fit-
ted by both an analytical classical and a machine-
learned forcefield, respectively [Deringer et al., 2021].
The evolution of the average atomic volume as a
function of pressure predicted by both the classi-
cal and machine-learned forcefields are provided
in Figure 12c [Deringer et al., 2021]. On the one
hand, the classical forcefield based on a SW po-
tential offers a good description of the close-to-
equilibrium states (amorphous and crystalline states,
corresponding to local minima in the PEL) [Stillinger
and Weber, 1985], but fails to properly predict the
pressure-driven amorphous-to-crystalline transition

[Deringer et al.,, 2021] as it overestimates the en-
ergy barrier between these two states [Debenedetti
and Stillinger, 2001]. On the other hand, the GAP
machine-learned forcefield accurately fits the refer-
ence PEL datapoints and offers an accurate predic-
tion of the energy of the transition state upon in-
creasing pressure [Deringer et al., 2021]. This illus-
trates the ability of machine-learned forcefields to
offer accurate predictions, both for equilibrium and
out-of-equilibrium systems [Mishin, 2021]. It should
nevertheless be noted that, like any ML model, the
accuracy of a machine-learned forcefield largely de-
pends on the size, accuracy, and diversity of the train-
ing set—that is, the ensemble of configurations (and
their ground-truth potential energy) that are used to
train the forcefield.

As an emerging family of forcefields [Chmiela
et al., 2018], machine-learned forcefields have been
successfully applied to simulate select glasses or dis-
ordered solids [Friederich et al., 2021], including
amorphous Si [Deringer et al., 2021], silica [Li and
Ando, 2018], Ge-Sb-Te (GST) phase-change materi-
als [Mocanu et al., 2020, 2018], MOFs [Eckhoff and
Behler, 2019], etc. On the one hand, these forcefields
yield very accurate predictions, whose accuracy ap-
proaches that of ab initio MD [Chmiela et al., 2018].
On the other hand, in contrast to the high computa-
tion cost of ab initio MD [Hafner, 2008], the MD sim-
ulations relying on machine-learned forcefields are
more efficient, which unlocks the prediction of more
complex properties—e.g., properties involving long-
term timescales or extended length scales [Friederich
et al., 2021], such as thermal conductivity [Sosso
et al., 2018], glass reactivity [Erlebach et al., 2021],
and phase transformations [Deringer et al., 2021].
Clearly, machine-learned forcefields are an extremely
promising pathway to address the challenges facing
the simulation of glasses, but their challenging pa-
rameterization remains a key bottleneck.

4.2. Development of analytical empirical force-
fields by machine learning

4.2.1. Advantages of analytical empirical forcefields

Despite the fact that, thanks to their flexibility,
machine-learned forcefields have the potential to
offer very high accuracy [Mishin, 2021], analytical
empirical forcefields exhibit several key advantages
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Figure 12. (a) Schematic illustrating various methods to obtain a machine-learned forcefield by fitting
the potential energy landscape (PEL) of a system through (i) physically informed neural network (PINN)
[Pun et al., 2019], (ii) graph neural network (GNN) [Park et al., 2021], (iii) Gaussian approximation poten-
tial (GAP) (see text for details) [Barték et al., 2010]. In the fitting process, the reference PEL datapoints
are provided by ab initio molecular dynamics (MD) simulations [Boero et al., 2015]. (b) Example of the
structural transition of amorphous silicon (a-Si) into crystalline Si when pressure increases [McMillan
et al., 2005, Pandey et al., 2011], by using MD simulations relying on a machine-learned forcefield [De-
ringer et al., 2021]. The transition process is illustrated in terms of a PEL computed by first-principles
calculation (i.e., ab initio reference [Boero et al., 2015]), machine-learned forcefield (i.e, GAP [Deringer
etal., 2021]), and classical forcefield (i.e., SW potential [Stillinger and Weber, 1985]), respectively. The GAP
forcefield is trained by fitting the ab initio PEL datapoints (black circle) and exhibits a more accurate pre-
diction of the transition energy of silicon upon crystallization than the classical forcefield [Deringer et al.,
2021]. (c) Evolution of the average atomic volume as a function of the silicon system’s pressure using clas-
sical (i.e., SW potential [Stillinger and Weber, 1985]) and machine-learned forcefields (i.e., GAP [Deringer
et al., 2021]). A crystallization transition is observed using GAP (as expected) but does not occur when

using the SW potential [Deringer et al., 2021].

[Du, 2015, Huang and Kieffer, 2015]. As an important
feature, the functional forms are selected based on
physical and chemical knowledge/intuition regard-
ing the nature of the interatomic interactions [van
Beest et al., 1990]. For instance, ion—ion interactions
are modeled based on the Coulomb’s law, forcefields
can explicitly account for Van der Waals interactions
(with a term proportional to 1/79), or the dipole of
an atom can explicitly be modeled as a spring in po-
larizable forcefields [Allen and Tildesley, 2017, Carré
et al.,, 2016, Du, 2015, Fennell and Gezelter, 2006,
Huang and Kieffer, 2015, Musgraves et al., 2019]. This
tends to render empirical forcefields more physics-
based, but also more interpretable than their “black-
box” machine-learned counterparts [Cranmer et al.,
2020, Hernandez et al., 2019]. Such fixed analytical
form also has several advantages. First, it imposes a
strong constraint on the predicted potential energy—
for instance, the selected analytical form can en-

sure that the energy diverges to infinity at close dis-
tance and converges to zero at long distance [Senf-
tle et al., 2016]. This is important as, in contrast, due
to their large flexibility, machine-learned forcefields
can sometimes offer unrealistic, nonphysical predic-
tions. This is a consequence of the fact, like any ML
model, machine-learned forcefields can excel at in-
terpolating the regions of the PEL that they have been
trained on, but tend to offer very unrealistic predic-
tions far from their training set. In turn, the fixed an-
alytical form of analytical forcefields limit their abil-
ity to accurately interpolate complex PEL, but makes
them more robust and more likely to offer reason-
able transferability to systems that are different from
those included in the training set [Liu et al., 2019c].
Second, machine-learned forcefields typically rely on
complex models (e.g., artificial neural networks) that
present a very large number of tunable parameters.
Such a large dimensionality must be balanced by a



60 Han Liu et al.

large training set. As a result, machine-learned force-
fields typically require a significantly larger training
set (that is, a larger number of configurations with
their ground-truth potential energy) than analytical
empirical forcefields (which typically involve orders
of magnitude fewer parameters) [Liu et al., 2020a]. In
addition, although machine-learned forcefields have
the flexibility to interpolate any PEL without requir-
ing any intuition regarding the nature of the interac-
tions, they still rely on a certain number of assump-
tions regarding the complexity of the PEL (e.g., to de-
termine the optimal number of neurons or layers in
an artificial neural network model). Finally, although
machine-learned forcefields are orders of magnitude
faster than ab initio simulations, they still typically
involve an increased computational burden as com-
pared to simple analytical forcefields [Cranmer et al.,
2020, Yaseen et al., 2016].

4.2.2.  Machine-learning-aided parameterization

scheme

As an alternative to machine-learned forcefields,
machine-learning-aided parameterization can com-
bine the power of ML with the robustness of analyt-
ical forcefields. Indeed, as compared to traditional
gradient-descent-based parameterization schemes
(see Figure 8) [Carré et al., 2016], ML offers a new
paradigm to parameterize analytical forcefields in
a more efficient and unbiased fashion [Liu et al.,
2019e]. For instance, Figure 13 shows an ML-aided
parameterization scheme based on Gaussian pro-
cess regression (GPR) and Bayesian optimization
(BO) [Frazier and Wang, 2016, Ueno et al., 2016],
which is applied to parameterize a Buckingham
forcefield (see (5)) for glassy silica [Liu et al., 2019e].
The ML approach aims to find the global minimum
(i.e., the optimal set of parameters) in the cost func-
tion landscape as a function of the forcefield param-
eters [Liu et al., 2019c], where the cost function R,
is here defined as the magnitude of difference of the
PDF g(r) computed by classical MD simulation and
its ab initio reference [Wright, 1993].

Figure 13a illustrates the basic idea behind the use
of GPR and BO to parameterize empirical forcefields
[Liu et al., 2019c]. For illustration purposes, only
one forcefield parameter (i.e., silicon charge ¢gg) is
here selected to plot the cost function landscape [Liu
et al,, 2019c¢], while the other parameters are fixed
to their values in the well-established BKS potential

[van Beest et al., 1990]. First, the GPR model fits the
known (i.e., ground-truth) points in the cost function
landscape—so as to offer not only a smooth inter-
polation of the landscape profile but also its confi-
dence interval (see upper panel of Figure 13a) [Liu
et al., 2019c]. Then, BO prescribes the set of param-
eters (i.e., gs; herein) that exhibits the highest prob-
ability to yield the global minimum for Ry (see bot-
tom panel of Figure 13a) [Liu et al., 2019c]. This is
achieved by computing the expected improvement
(EI) metric that offers the best balance between (i) the
“exploitation” of the forcefields parameters that are
predicted by the GPR model to yield a minimum R,
value and (ii) the “exploration” of the domains of
forcefield parameter values that are associated with
high confidence interval (i.e., high uncertainty) [Fra-
zier and Wang, 2016]. This parameterization scheme
ensures that the optimal forcefield parameters (i.e.,
those that minimize the cost function) can quickly be
identified, while mitigating the risk for the optimiza-
tion scheme to remain stuck in a local minimum of
the cost function landscape.

4.2.3. Efficient search of global minimum

Figure 13b shows the search path that is pre-
scribed by ML to find the optimal forcefield pa-
rameters (i.e., those yielding a global minimum for
the cost function R,) [Liu et al., 2019e¢]. For illus-
tration purposes, the search is conducted within a
two-dimensional parameter space (i.e., comprising
the silicon partial charge gs; and the short-range SiO
interaction intensity Asig) [Liu et al., 2019e], while
the other forcefield parameters are fixed to their val-
ues in the BKS potential [van Beest et al., 1990]. No-
tably, this ML-aided parameterization approach can
quickly identify the optimal set of forcefield parame-
ters after only a few iterations [Liu et al., 2019e]. Im-
portantly, this optimization scheme is unbiased to
the start position in the search space, that is, the out-
come of the optimization does not depend on the
initial values of the forcefield parameters [Liu et al.,
2019e]. This approach offers a promising route to ef-
ficiently refine existing empirical forcefields at a frac-
tion of the computational cost that is needed to de-
velop a machine-learned forcefield [Liu et al., 2020a,
2019c,e].
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Figure 13. (a) Parameterization of a Buckingham-format empirical forcefield (see (5)) for glassy silica
based on Gaussian process regression (GPR) and Bayesian optimization (BO) (see text for details) [Liu
et al., 2019c]. For illustration purposes, only gj; is set as a variable, while the other forcefield parameters
are fixed to their values in the well-established van Beest-Kramer—van Santen (BKS) potential [van
Beest et al., 1990]. (b) Illustration of the efficient search for optimal forcefield parameters (i.e., yielding
minimum Ry) for glassy silica in the parameter space of the Buckingham forcefield by the iterative
learning method combining GPR and BO [Liu et al., 2019e]. For illustration purposes, a two-dimensional
parameter space (i.e., gs; and Agjo) is adopted in the search process, while the other forcefield parameters
are fixed to their values in the BKS potential [van Beest et al., 1990]. The search path (white dashed line)
prescribed by ML quickly identifies the optimal forcefield after only five iterations [Liu et al., 2019e].

4.3. Constructing stable glass structures by force-
enhanced atomic refinement

4.3.1. Bypassing the melt-quenching route

Due to the huge gap of cooling rate between
melt-quenching experiments and MD simulations
(see Figure 9) [Li et al., 2017], glasses prepared by
MD simulations tend to exhibit higher fictive tem-
perature (i.e., to be less stable) than experimentally
synthesized glasses [Vollmayr et al., 1996b]. Alter-
natively, RMC simulations can bypass this melt-
quenching route by directly constructing atomic
structures that match experimental data (see Sec-
tion 2.2) [McGreevy, 2001]. However, due to the ill-
defined nature of RMC (see Section 3.4), RMC-based
glasses are often thermodynamically unstable (see
Figure 11) [Pandey et al., 2015, Zhou et al., 2020].
To mitigate this issue, force-enhanced atomic re-
finement (FEAR) has been proposed as a powerful,
information-based approach that simultaneously
leverages the knowledge of experimental data (which

are used to constraint the glass structure) and inter-
atomic potential (which is used to ensure the ther-
modynamic stability of the simulated glass) [Pandey
etal., 2016a,b, 2015].

4.3.2. FEAR algorithm

Figure 14a illustrates how the FEAR algorithm
searches for a realistic atomistic structure that simul-
taneously matches experimental data and features
minimum potential energy [Pandey et al., 2016a,
2015]. In detail, each FEAR iteration consists of a
given number (e.g., 5000) of RMC search steps in the
cost function landscape Ry (i.e., difference between
simulated and experimental data), followed by one
energy minimization step in the PEL [Zhou et al,,
2020]. The cost function R, is defined herein as the
magnitude of the difference between the PDFs g(r)
computed by FEAR simulation and neutron diffrac-
tion experiment [Zhou et al., 2020]. RMC and en-
ergy minimalization steps are then literately repeated
until both the cost function R, and the potential
energy converge. In this scheme, the RMC steps are
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both Monte Carlo (MC) searches in the cost function landscape—i.e., reverse Monte Carlo (RMC) simu-
lation [McGreevy and Pusztai, 1988]—and energy minimization in the potential energy landscape (PEL)
(see text for details) [Pandey et al., 2015]. (b) Evolution of the cost function R, (see (1)) as a function of
the number of optimization iterations upon RMC (blue) and FEAR simulation (green) of a sodium silicate
glass ((Na20)30(SiO2)70) [Zhou et al., 2020]. The cost function Ry of glasses prepared by melt-quenching
molecular dynamics (MD) simulations at different cooling rates ranging from 10? K/ps to 103 K/ps are
added as references (red dash lines) [Zhou et al., 2020]. (c) Pair distribution function (PDF) g(r) of the
glasses formed at the end of the RMC, MD, and FEAR simulation [Zhou et al., 2020], compared to the g(r)
reference obtained by neutron diffraction experiment [Wright et al., 1991]. (d) Evolution of the system’s
potential energy U as a function of the number of optimization iterations upon RMC (blue) and FEAR
simulation (green) [Zhou et al., 2020]. The potential energy of glasses prepared by melt-quenching MD
simulations are also added as references (red dash lines) [Zhou et al., 2020].

used to slightly deform the atomic structure (so as
to escape local minima in the PEL), while the en-
ergy minimization is used to ensure that the simu-
lated structure never drifts away from the stable re-
gion of the PEL that is physically accessible [Pandey
et al., 2015, Zhou et al., 2020]. Eventually, by simul-
taneously leveraging both experimental and inter-
atomic energy information, FEAR simulations can
yield glass structures that simultaneously exhibit en-
hanced agreement with available experimental data
and a larger thermodynamic stability than glasses
prepared by MD or RMC [Pandey et al., 2015]. It
is worth pointing out that, in contrast to MD sim-

ulations that heavily rely on the accuracy of inter-
atomic forcefields [Takada, 2021], the accuracy of
FEAR simulation is fairly insensitive to the quality of
interatomic forcefield that is used during the energy
minimization step [Zhou et al., 2021]. That is, both
high- and low-quality forcefields can guide the sys-
tem toward energy-stable regions in the PEL, while,
eventually, the details of the simulated structure are
mainly controlled by the RMC steps [Zhou et al.,
2021]. Importantly, FEAR simulations are extremely
computationally efficient since the potential energy
of the system only needs to be computed during the
energy minimization step—whereas it needs to be
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computed at any step during MD or hybrid RMC
simulations.

4.3.3. Realistic prediction of atomistic structure

Figure 14b shows the evolution of the cost func-
tion Ry as a function of the number of optimiza-
tion steps for both RMC and FEAR simulations [Zhou
et al., 2020]. The Ry values of glasses prepared by
melt-quenching MD simulations at different cool-
ing rate are added as references [Zhou et al., 2020].
Both FEAR and RMC eventually offer atomistic struc-
tures exhibiting small R, values, which are notably
lower than that of the MD references [Zhou et al.,
2020]. Indeed, the PDFs g(r) provided by both FEAR
and RMC simulations are in excellent agreement
with the experimental g(r) (see Figure 14c) [Zhou
et al., 2020], while MD simulation slightly deviates
from the experimental g(r) due to the large cool-
ing rate [Li et al., 2017]. Interestingly, the energy
minimizations steps upon FEAR refinement yield a
faster convergence (i.e., faster decrease in the cost
function Ry) as compared to RMC. Further, Fig-
ure 14d shows the evolution of the potential energy
U as a function of the number of optimization steps
both upon FEAR and RMC simulations [Zhou et al.,
2020]. MD simulation results are also added as refer-
ences [Zhou et al., 2020]. It is notable that RMC simu-
lation yields unrealistic atomic structures that are un-
stable as they present a potential energy that is sig-
nificantly higher than those achieved by MD [Zhou
et al., 2020]. In comparison, the FEAR simulation
offers a notably more realistic, energy-stable atom-
istic structure that still satisfies the experimental con-
straints as well as the RMC-based structure [Zhou
et al., 2020]. Importantly, the FEAR-generated struc-
ture features a potential energy that is notably lower
than those achieved by melt-quenching MD, even in
the case of the slowest cooling rate [Zhou et al., 2020].
This highlights the fact that the structure generated
by FEAR exhibits a lower fictive temperature than
the MD-based configurations—that is, FEAR can ef-
ficiently bypass limitations arising from the fast cool-
ing rate used in MD simulations [Debenedetti and
Stillinger, 2001, Li et al., 2017]. This establishes FEAR
as a promising technique to generate glass structures
that are very stable and that can directly be quantita-
tively compared with experimental glasses.

5. Conclusions and future opportunities

Overall, atomistic simulations provide an efficient
tool to access the atomic structure of glasses, which
is otherwise challenging to directly visualize by con-
ventional experiments. However, simulations remain
plagued by a series of challenges, including (i) slow
execution runtime, (i) small accessible timescales
and/or length scales, (iii) cooling rate difference be-
tween experiments and simulations, (iv) availabil-
ity and accuracy of empirical forcefields, and (v) ill-
defined nature of simulation protocols (e.g., RMC
simulations). To overcome these limitations, one can
resort to either (i) simulation protocols involving
more physical information (e.g., FEAR simulations,
or more accurate empirical forcefield functionals)
or (ii) ML approaches (e.g., machine-learned force-
fields, or ML-aided forcefield parameterization). In-
deed, with the aid of ML, one can develop more ac-
curate and computationally efficient forcefields to
speed up MD simulations, thereby unlocking longer
timescales or larger system sizes.

As a future opportunity, we envision that smart
closed-loop integrations of ML modeling and MD
simulations will leapfrog glass modeling (see Fig-
ure 15). Example of such opportunities are listed in
the following:

(i) Deciphering complex simulation data by ML.
Atomic trajectories generated by MD simulations
contains all the structural information that govern
glass properties. However, due to the complex, dis-
ordered nature of glass structures, it is challenging
to “separate the wheat from the chaff”, that is, to
pinpoint the key structural features that govern glass
properties [Tanaka et al., 2019]. In that regard, owing
to its ability to discover hidden pattern in complex,
multi-dimensional data, ML offers a new opportu-
nity to identify relevant structural patterns in sim-
ulated glassy structures [Biroli, 2020, Tanaka et al.,
2019]. Prominent examples include the recently de-
veloped softness approach based on classification-
based ML [Cubuk et al., 2017, Liu et al., 2021¢,b] and
graph neural networks (GNN)—a new and power-
ful family of ML models—that represent atomistic
structures as nodes-and-edges graphs [Bapst et al.,
2020]. Inputting complex simulation data into such
advanced ML models makes it possible to decipher
previously hidden structure-property relationships
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Figure 15. Schematic summarizing future opportunities for glass modeling offered by the mutual inte-
gration of simulations and machine learning (ML). On the one hand, ML can assist in (i) developing em-
pirical forcefields for accurate and computationally efficient simulations [Liu et al., 2019¢], (ii) “separat-
ing the wheat from the chaff” in large amounts of complex simulation data to gain new insights or gen-
erate new knowledge of the underlying physics governing glasses [Liu et al., 2021b], and (iii) accelerating
simulations by surrogate ML engines [Liu et al., 2021a]. On the other hand, simulation can generate large
amounts of high-fidelity data that can be used to train ML models [Liu et al., 2019d], which, in turn, can
be validated by simulations. Both simulations and their integration pipeline with ML can be accelerated
by leveraging automated differentiable programing engines (e.g., Python JAX) and hardware accelera-
tors (e.g., graphics processing unit (GPU) and tensor processing unit (TPU)) [Liu et al., 2020b]. Note that,
when applicable, “ground-truth” experimental data can either a priori inform or a posteriori validate the
physics-based (i.e., simulations) and data-based (i.e., ML) models.

and capture the key structural features that govern
glass properties. The ability to learn new physics
from ML models depends on their “interpretability”.
For instance, one can analyze the weight associated
to each input structural feature in the softness ap-
proach [Cubuk et al.,, 2017, Liu et al., 2021c,b] or
monitor the model responses for various graph in-

puts in the GNN method [Bapst et al., 2020]. These
approaches make it possible to unravel the key struc-
tural patterns, that is, the ones that are the most
influential in governing the properties of glasses.
Finally, it is worth mentioning that, in addition to
ML, topological analyzes represent an alternative,
traditionally challenging but direct approach to in-
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vestigate simulated glassy structures [Bauchy, 2019].
For instance, some recently developed topological
approaches (e.g., persistent homology [Nakamura
et al.,, 2015]) have been demonstrated to be effective
tools in identifying influential medium-range order
structural features in disordered phases [Serensen
etal., 2020].

(i) Combining simulations and ML for glasses’ inverse
design. Owing to its economical nature as compared
to systematic experiments, high-throughput virtual
screening (HTVS, that is, the systematic simulation of
a large number of glasses) offers an efficient route to
identify in silico an optimal glass composition featur-
ing an optimal characteristics within a given compo-
sitional domain [Noh et al., 2020, Sanchez-Lengeling
and Aspuru-Guzik, 2018]. However, although simu-
lations excel at predicting the properties of a given
glass as a function of its composition (i.e.,, “for-
ward prediction”), their application to “inverse de-
sign” problems (that is, given an optimal property
target, find the best glass composition) remains lim-
ited by their high computational cost—which pre-
vents the systematic exploration of large composi-
tional spaces [Sanchez-Lengeling and Aspuru-Guzik,
2018]. To address this issue, ML offers an ideal com-
panion to MD simulations—since an ML model can
learn from a series of MD simulations and, based on
this, recommend what should be the next glass com-
position to simulate. Such closed-loop integrations
of MD and ML could greatly accelerate the discov-
ery of novel glasses featuring desirable properties or
functionalities [Liu et al., 2020b, 2019g, Noh et al.,
2020]. Note that, when applicable, it is desirable to in-
tegrate experimental data into the closed loop of MD
and ML, wherein such “ground-truth” experimental
data can either inform or validate the models (see
Figure 15). This is essential to ensure the reliability of
glass modeling approaches so as to avoid any “bub-
ble effect” arising from the error accumulation within
the closed-loop integration of MD and ML (wherein
MD and ML would mutually comfort and amplify
each other in their improper predictions) [Bagnoli
etal., 2022, Yang et al., 2019b].

(iii) Leveraging differentiable programing platforms.
When integrating simulations and ML models within
unified pipelines, different programing languages
can present a communication barrier between ML

and simulation packages, which often rely on Python
and C++/Fortran, respectively. In addition, most MD
packages are still rooted in fairly ancient computing
paradigms (e.g., with no automated differentiation),
which is reminiscent of the state of ML before au-
tomatic hardware acceleration and differentiation
became popular. To overcome these frictions, au-
tomatic differentiable (auto-diff) programing plat-
forms (e.g., Python JAX [Bradbury et al., 2018]) have
been recently developed to seamlessly integrate ML
and simulations within unified pipelines. In con-
trast to traditional programing platforms that rely
on handwritten derivatives (e.g., C++ [Plimpton,
1995b]), auto-diff platforms excel at computing on-
the-fly the backward gradient of any quantities with
no additional computation burden associated with
differentiation [Bradbury et al., 2018]—an operation
that comes with a notable computing time in tradi-
tional simulators (e.g., force calculation in MD sim-
ulations [Allen and Tildesley, 2017], see Figure 4a).
Moreover, simulations built on auto-diff platforms
gain backward differentiability, which makes it possi-
ble to use their outcomes to directly train ML models
using gradient back propagation [Schoenholz and
Cubuk, 2020]. This create new opportunities to train
a ML model directly based on differentiable physical
knowledge rather than on data [Liu et al., 2020b].
Finally, the auto-diff platforms generally enable na-
tive “just-in-time” compilation on high-performance
dedicated hardware accelerators [Bradbury et al.,
2018, Schoenholz and Cubuk, 2020], such as graph-
ics processing units (GPU) and tensor processing
units (TPU) [Wang et al., 2019]. Specifically, TPUs
are specifically designed as matrix processors and,
thanks to their tailored architecture, offer unparal-
leled performances in deep learning problems (up
to 200X faster than GPUs). Note that MD simulations
(e.g., JAX-MD [Schoenholz and Cubuk, 2020]) can na-
tively run on GPU- or TPU-based auto-diff platforms,
which is key to avoid any speed bottleneck arising
due to moving from one hardware to another within
simulation pipelines [Plimpton, 1995b, Schoenholz
and Cubuk, 2020]. This could greatly accelerate MD
simulations relying on artificial neural networks
potentials [Liu et al., 2020b, Yang et al., 2019a].

(iv) Replacing slow simulations by faster surrogate
ML simulation engines. Although the develop-
ment of auto-diff platforms enables differentiable
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simulations and native hardware acceleration, the
computational efficiency of numerical simulations is
still limited by the intrinsic computation cost associ-
ated with the underlying numerical algorithms (e.g.,
Newton’s law of motion in MD simulations [Allen and
Tildesley, 2017]). The numerical algorithms behind
scientific numerical simulations are likely to remain
their bottleneck [Lane, 2015, Yang et al., 2019b]. To
mitigate this issue, surrogate ML simulation engines
offer a unique, largely untapped opportunity to re-
place slow simulations so as to accelerate their ex-
ecution without compromising accuracy [Kochkov
et al,, 2021, Liu et al., 2021a]. Surrogate ML engines
can be implemented as artificial neural network
(ANN) models, such as convolutional neural network
(CNN) [Kochkov et al., 2021] or GNN [Bapst et al.,
2020].

Overall, we envision that the “fusion” of experi-
ments, simulations, and ML models (see Figure 15)
will unlock a new era in glass modeling (and ma-
terials modeling in general)—wherein traditional
boundaries between physics and empirical models,
knowledge and data, forward and inverse predic-
tions, or experimental and simulation data would
eventually fade. We hope that the present perspec-
tive will modestly contribute to stimulating new
developments in that direction.
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