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Abstract. Evaporation is a function of both climate conditions and other environmental conditions,
including land use. In the context of large-scale environmental changes, understanding the relative
impacts of each driver of past and future evaporation changes is necessary for land and water
planning. While climate change impacts on evaporation can be estimated straightforwardly by
original Budyko formulations, including the role of land use within these formulations remains
an open question. In this paper, we collected an extensive set of 5026 worldwide catchments to
parametrize a land use dependent Budyko-type formulation. By trading space for time, we then
assess the potentialities of the proposed formulation in predicting the impacts of land use changes
on the evaporation changes. Results show a clear modulation of land use on evapotranspiration,
suggesting larger and lower evaporation rates over croplands and urban areas respectively. The
proposed formulation was able to reasonably predict the magnitude of the decrease of the evaporative
ratio on urbanizing catchments, but fails to efficiently predict the hydrological impacts of vegetated
land use conversions, both in terms of direction and magnitude of changes. This suggests either the
proposed formulation is too crude, or the underlying hypotheses of space-time trading are not valid.

Keywords. Rainfall-runoff modeling, Land use change, Budyko, Hydrology, Evaporation, Urbaniza-
tion, Afforestation.
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1. Introduction

Most, if not all, of hydrological models are conceptual
models requiring validation tests specific to their de-
sired objective [de Marsily, 1994]. When these mod-
els are applied under non-stationary conditions e.g.
for climate and land use change impact studies, it is
necessary to ensure that their structure/parameters
are transferable in time [Thirel et al., 2015], by adopt-
ing more rigorous cross-validation tests, e.g. the
differential split-sample test proposed by Klemeš

∗Corresponding author.

[1986]. This strategy is rather limited since mod-
els are often developed and used for extrapolation.
Consequently, pure cross-validation for specific en-
vironmental changes is seldom possible, because of
a lack of historical environmental conditions similar
to projected environmental conditions. An appeal-
ing way to circumvent this problem is trading time
for space [Peel and Blöschl, 2011], the rationale be-
ing that if a model can deal with different environ-
ments in different locations, it will deal with differ-
ent environments for different periods at a given lo-
cation. Despite the widespread use among hydrolo-
gists of the “trading time for space” approach [Singh
et al., 2011], very few experimental studies were pro-
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posed to (in)validate it.

In this paper, we develop a modeling framework
designed to test the “trading time for space” method.
We start from the simplest expression of rainfall-
runoff transformation at the pluriannual time scale
using Budyko-type formulations that relate the ra-
tio of long-term average evaporation ratio (E/P) to
the ratio of long-term average potential evaporation
PET to long-term average rainfall P [Budyko, 1974,
Ol’Dekop, 1911, Schreiber, 1904, Turc, 1954]. These
formulations had perceived a renewed interest over
the last two decades since they may provide simple
assessment tools to the attribution problem, i.e. they
may be employed to separate the effects of climate to
other environmental changes on long-term average
evapotranspiration and consequently long-term av-
erage runoff [Jaramillo et al., 2018, Roderick and Far-
quhar, 2011, Wang, 2014]. Adaptations of the clas-
sical models flourished intending to include more
and more drivers in addition to long-term climate
settings [Donohue et al., 2007, Li et al., 2013, Zhang
et al., 2004]. Among these attempts, including land
use and vegetation characteristics into the model for-
mulation is the most popular since vegetation likely
exerts a significant influence on regional water bal-
ance and feedback to the atmosphere.

A common feature of the frameworks aiming
at developing vegetation-dependent water balance
models is to collect hydroclimatic data from clima-
tologically diverse “steady-state” catchments, in the
idea to use then these parametrizations for land use
changes studies, i.e. trading time for space. The
diversity of the catchment set used to derive the
parametrized Budyko-type formulations is often put
forward as a necessary condition, as advocated by
Large-Sample Hydrology groups [Gupta et al., 2014].

Two objectives form the main sections of this arti-
cle: (i) develop a land use dependent Budyko formu-
lation based on an extensive set of 5026 worldwide
catchments to encompass a large variety of climatic
and land use conditions, (ii) assess the potentialities
of the derived land use dependent Budyko formula-
tion to detect and quantify hydrological impacts of
land uses modifications at the catchment scale. As
stated by Singh et al. [2011] on climate, the hypoth-
esis is that the spatial relationship between land use
and streamflow characteristics is similar to the one
observed between land use and streamflow over long
periods at a single location.

2. Material

2.1. Data

We selected a large sample of catchments, from
several international and national databases: the
Global Streamflow Indices and Metadata Archive
(GSIM) [Do et al., 2018] consisting of a collection of
streamflow time series for more than 35,000 catch-
ments worldwide, the 9322 GAGE-II US stream
gauges maintained by the U.S. Geological Survey
(USGS) [Falcone, 2011], the HydroPortail database
(http://www.hydro.eaufrance.fr), where flow mea-
surements are available for more than 4000 stations
across France [Leleu et al., 2014] and the UK Na-
tional River Flow Archive for which streamflow data
for more than 1500 stations are available. Since the
GSIM database contains catchments from the na-
tional databases (France, UK, US) we consider ex-
tracting data from these national databases prefer-
able and excluding catchments for these countries
from the GSIM database, to avoid any duplicated
catchments. The selection was made following two
criteria:

(1) Availability of at least five years of annual
streamflow data between 1992 and 2015.
This criterion stems from the use of pluren-
nial water balance models and the availabil-
ity of land use historical data.

(2) Catchment area between 10 km2 and 10,000
km2. The motivation for the lower limit was
due to the spatial resolution of the climate
reanalysis data (1/24°), and the upper limit
was set so that reduce mixing effects of both
land use and climate over a given catchment.

Applying the above criteria led to a selection of
6002 catchments. As many of these catchments are
nested within each other, this poses the problem of
redundant information that may bias model eval-
uation using classical cross-validation experiments.
To remove redundancy, we subset the database to
reach a final set of 5026 non-nested catchments (Fig-
ure 1). The catchment represents a large variety of cli-
matic conditions but with a lack of representation of
drylands, originating from a lack of river network in
these areas. The mean number of available years over
the catchment set is 18 and the mean catchment area
is 1800 km2. According to the Koppen classification,

http://www.hydro.eaufrance.fr
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majority of catchments (64%) are under mild temper-
ate climate, 19% are under snow environment, 12%
are under tropical climate and only 3% and 2% are
under dry and polar climates respectively.

Climatic data were extracted from the TerraCli-
mate gridded data [Abatzoglou et al., 2018], with
a spatial resolution of 1/24°. Annual precipitation
(P), Penman–Monteith potential evaporation (PET),
and net radiation (Rn) were retrieved for each catch-
ment over the period 1992–2018 and temporally ag-
gregated at an annual time scale. TerraClimate uses
climatically aided interpolation, combining high-
spatial-resolution climatological normals from the
WorldClim dataset, with monthly data from other
sources namely CRU Ts4.0 and JRA-55.

Land use data were extracted from the ESA CCI
Land Cover time-series [ESA, 2017], for which histor-
ical land use maps are available at the annual time-
scale over the period 1992–2018 at a spatial resolu-
tion of 300 m. This dataset was produced in two
steps: first, the Medium Resolution Imaging Spec-
trometer (MERIS) archive from 2003 to 2012 was used
to construct a 10-year baseline land cover map, sec-
ond, the annual time series are obtained by combin-
ing the baseline map with land cover changes de-
tected from (i) Advanced Very-High-Resolution Ra-
diometer (AVHRR) time series from 1992 to 1999, (ii)
SPOT-Vegetation (SPOT-VGT) time series from 1998
to 2012 and (iii) PROBA-Vegetation (PROBA-V) and
Sentinel-3 OLCI (S3 OLCI) time series from 2013 to
2019. The original classification of ESA CCI Land
Cover contains 21 classes (Table 1). A 6-level aggre-
gation product was derived using the original classes
into IPCC classes that are conventionally used to de-
tect land use change at the global scale. Though
highly simplified, this 6-level land use classification
appears as a reasonable compromise between the ex-
pected role of land use on evaporation and the repre-
sentativeness of each land use over the catchment set
(Figure 2).

2.2. Tixeront–Fu formulation and benchmark
water balance models

Several equations/models were developed under the
Budyko framework. In this study, we used the so-
called Tixeront–Fu parametrized equation [Fu, 1981,
Tixeront, 1964], which was used in many previous
studies [Li et al., 2013, Teuling et al., 2019, Zhang

et al., 2004]. This formulation includes one free
parameter and we hypothesized in this study that
this parameter may depend on land use. Three
calibration-free models, namely the Schreiber [1904],
the Ol’Dekop [1911] and the Budyko [1974] equations
are also used as benchmarks. The equations of these
models are presented in Table 2.

2.3. Tixeront–Fu parameter determination

Li et al. [2013] reviewed numerous studies aiming
at determining the parameter ω of the Tixeront–Fu
equation. As an integrator of many physical pro-
cesses in water and energy budgets,ω can potentially
be related to many physiographic patterns of a catch-
ment: land surface characteristics, including vegeta-
tion, soil types, and topography, as well as climate
intra-annual variability (e.g. seasonality of P and
PET). Given that land use reflects integrated land-
scape properties, we hypothesized in this study that
prescribing a single value of ω for each land use class
might improve the performance of the Tixeront–Fu
model. This is done by spatially averaging the contri-
bution of E/P for each land use class present within
each catchment, following (5), and illustrated in Fig-
ure 3:

E

P
=

n_LU∑
i=1

Si

S
f

(
PET

P
,ωi

)
(5)

where f ((PET /P ),ωi ) is the Tixeront–Fu equation (4)
that requires estimation of the aridity index (PET /P )
and a value for the parameter ωi specific for the land
use class i, Si /S represent the fractional area of land
use class i over the total catchment area and n_LU
is the total number of land use classes considered.
As the proposed water balance models are designed
for plurennial time step, climatic variables and the
fractional area of each land use class are averaged
over the the record period by arithmetic mean of
annual values.

Given (5), the number of free parameters is equal
to the number of land use classes considered, i.e.
six classes. The calibration of these parameters was
dealt with a single objective function based on the
root mean square error over the catchment set (6)
over a range of acceptable values of ω from unity
to five. Below this lower limit, the physical basis of
the equation is lost and above the upper limit, the
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Table 1. Land use classes considered in this paper

IPCC classes Original legend from CCI-LC maps

1. Agriculture 1. Rainfed cropland

2. Irrigated cropland

3. Mosaic cropland (dominant) with natural vegetation (tree, shrub, herbaceous cover)

4. Mosaic natural vegetation (dominant) and cropland

2. Forest 5. Tree cover, broadleaved, evergreen

6. Tree cover, broadleaved, deciduous

7. Tree cover, needle-leaved, evergreen

8. Tree cover, needle-leaved, deciduous

9. Tree cover, mixed leaf type (broadleaved and needle-leaved)

10. Mosaic tree and shrub (dominant) with herbaceous cover

3. Wetland 11. Tree cover, flooded, fresh, or brackish water

12. Tree cover, flooded, saline water

13. Shrub or herbaceous cover, flooded, fresh-saline, or brackish water

4. Grassland 14. Mosaic herbaceous cover (dominant)/tree and shrub

15. Grassland

5. Settlement 16. Urban

6. Other 17. Shrubland

18. Lichens and mosses

19. Sparse vegetation (tree, shrub, herbaceous cover)

20. Bare areas

21. Water

Table 2. Equations of the water balance models used in the study

Model Equation Parameters Reference

Schreiber
E

P
= 1−e−PET /P (1) None Schreiber [1904]

Ol’Dekop
E

P
= PET

P
· tanh

(
P

PET

)
(2) None Ol’Dekop [1911]

Budyko
E

P
=

[
PET

P
· tanh

(
P

PET

)
· (1−e−PE/P )

]0.5

(3) None Budyko [1974]

Tixeront–Fu
E

P
= 1+ PET

P
−

(
1+ PET

P

)1/ω

(4) ω Tixeront [1964];
Fu [1981];

Zhang et al. [2004]

P represents the mean annual precipitation, E represents the mean annual evaporation and PET
represents the mean annual potential evaporation.
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Figure 1. (a) Location of the 4539 hydrometric stations of the catchment set and mean annual flow over
the record period and (b) dominant Koppen climate type distribution of the catchment set.

equation is only slightly modified. This objective
function is minimized during the calibration process.

RMSE =
√∑nBV

i=1 (ŷi − yi )2 (6)

with yi = Ei /Pi represents the mean evaporation
ratio for catchment i. The simulated mean catch-
ment ratio ŷi is obtained by applying (5) and the
“observed” mean catchment evaporation ratio yi is
obtained by solving the water budget at the catch-
ment scale (7), considering that at the plurennial

time scale, runoff (Q) is equal to precipitation (P) less
evaporation (E).

y = E

P
= P −Q

P
(7)

We assessed the robustness of the calibrated param-
eters by performing 500 realizations of split-sample
tests. For each realization, half of the catchments
are randomly selected from the catchment set and
are then used for calibration while the other half is
used to assess the model performance in validation.
This procedure also allows assessing the uncertainty
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Figure 2. Map of catchments’ (a) dominant land use and (b) distribution of fraction cover for each of the
6 land use classes over the catchment set.

Figure 3. Spatial averaging of the contribution
of E/P for each land use class in the Tixeront–
Fu model (5).

of the calibrated parameter values by analyzing the
spread of the distribution of the parameter across the
500 realizations.

2.4. Attributing changes in evaporation rates to
climate and land use changes

For each catchment presenting more than 20 years
of data (n = 2462), the record period was split into
two independent periods (noted “1” and “2”). The
change in observed evaporation ratio (∆y) between
periods 1 and 2 was decomposed into a change re-
lated to climatic variability (∆yc ) between the two pe-
riods, and a residual change (∆y r ) that can be com-

pared to the estimated change due to land use con-
versions (∆yLU ):

∆y = y2 − y1 =∆yc +∆y r (8)

To determine the change of evaporative ratio due to
climatic variability (∆yc ), the theoretical evaporative
ratio of the second subperiod is determined. To do
so, the parameter ω is calibrated over the first subpe-
riod, and the Tixeront–Fu equation is applied using
this parameter value and the aridity index of the sec-
ond subperiod. The change related to climatic vari-
ability (∆yc ) was then estimated by subtracting the
evaporative ratio of the first subperiod to the theo-
retical evaporative ratio of the second subperiod:

∆yc = ŷ(
ω1,

PET2
P2

)− y1 (9)

By combining (8) and (9), the residual change can be
estimated:

∆y r = y2 − ŷ(
ω1,

PET2
P2

) (10)

Usingω parameter values derived from land use frac-
tions for each subperiod, it is possible to determine a
theoretical change of ω due to land use changes be-
tween the two subperiods. This is done by exploiting
the calibrated ω values for each land use stemming
from the spatial calibration of Section 2.3, noted
hereafter ωLU

1 and ωLU
2 . These prior estimations of

ω parameter are then used to make vary the param-
eter value obtained by local calibration over the first
subperiod by applying simply a ratio of change:

ω̂2 =ω1 ·
ωLU

2

ωLU
1

(11)
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And the change in evaporative ratio due to land use
is then computed:

∆yLU = ŷ(
ω̂2,

PET2
P2

)− ŷ(
ω1,

PET2
P2

) (12)

3. Results

3.1. Catchment water balance analysis under the
Budyko framework

In this section, the physical plausibility of the water
balance at each catchment is assessed. Three cat-
egories of catchments are identified on the Budyko
graph and located in Figure 4.

299 catchments (i.e. 6% of the catchment set)
present inconsistent water balance (Q > P ). Those
catchments are mainly located in high relief con-
texts (Figure 4) where problems in estimating precip-
itation (and particularly underestimation of snow-
fall) accurately are frequent. Other plausible reasons
are uncertainties in streamflow estimation, wrong
catchment delineation, and/or unknown interbasin
groundwater flows. 150 catchments (i.e. 3% of the
catchment set) present inconsistent energy balance
(E > Rn). Rn was chosen as a more physical limit of E
compared to potential evaporation (PET) since anal-
ysis on PET might be largely influenced by the for-
mulation used to derive PET. As a comparison, 364
catchments present E larger than Penman–Monteith
PET. These catchments are mainly located in hu-
mid energy-limited regions, where latent heat flux
(or E) are deemed close to net radiation (or PET).
Except for this trivial observation, no clear patterns
emerged from the location of these catchments since
the reasons for violating the energy budget are sev-
eral, including measurement errors of precipitation,
streamflow, or net radiation. The remaining 4538 (i.e.
91% of the initial catchment set) present consistent
water and energy balance. Still, these catchments
can present other inconsistencies (which remain un-
known here), and many of these catchments are close
to the theoretical limits in terms of water and en-
ergy budget. Since there is no automatic/objective
way to investigate the plausibility of water and en-
ergy balances on the remaining 4538 catchments, no
further investigation was conducted on these catch-
ments and the analyses presented in the forthcoming
sections are restricted to those 4538 catchments.

3.2. A land use dependent model using a large
sample of catchments

Calibration results indicate relatively similar RMSE
values for the different tested water balance mod-
els (Table 3). RMSE values range from 0.150 (for the
Tixeront–Fu with calibrated ω specific for 6 land use
classes) to 0.181 (for the Ol’Dekop model). Increas-
ing the number of free parameters allows to achieve
more satisfying performance, but the calibration of
a single parameter for all land use classes only very
marginally increases performance compared to the
original non-calibrated models. The improvement
brought by including land use information is about
0.003 in terms of RMSE (from 0.153 for the Tixeront–
Fu model with the sameω calibrated for all land uses
to 0.150 for the Tixeront–Fu model with calibrated ω
specific for 6 land use classes), representing a relative
decrease of 2%. The coefficient of determination R2

provides a similar assessment and it increases from
0.544 for the non-calibrated Schreiber model to 0.571
for the Tixeront–Fu model with 6 land use classes.

The differences in terms of prediction of the evap-
orative ratios are quite small but visible when ana-
lyzing the correlation between observed and simu-
lated evaporative ratios (Figure 5). The analysis of the
residuals of the Tixeront–Fu model with calibrated ω
specific for 6 land use classes does not allow identi-
fying some specific conditions for which the model
fails (Figure 6). The model appears less efficient on
small catchments compared to large catchments and
it also encounters difficulties in cold regions. The dis-
tributions of the residuals are relatively homogenous
along with land use classes. Catchments where wet-
lands are dominant, are poorly modeled but these
catchments are very few (n = 10).

For all models, the RMSE obtained in validation
are quite similar to those obtained in calibration (Fig-
ure 7), showing that the models are spatially robust,
i.e., the spatial transferability of the model param-
eters is satisfying. This is reassuring and confirms
that the dataset is broad enough to draw stable and
significant conclusions. In validation, the advan-
tage of a parameter-specific land use classification
remains.

The parameter values obtained by calibrating the
Tixeront–Fu model equation with 6 different land use
classes are rather spread over the range of possible
values, from close to unity to 5 (Figure 8), and rel-
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Figure 4. (a) Catchment water balance in the non-dimensional Budyko graph and (b) location of their
corresponding hydrometric stations. Catchments where the evaporation ratio is lesser than zero indicate
that the mean annual runoff is greater than the mean annual precipitation received by this catchment,
hence violating the water budget (blue points), while catchments where latent heat flux exceeds net
radiation (red points) violate the energy budget. Note that 31 catchments present evaporative ratio lesser
than −1.0 and are not displayed on panel (a).

Table 3. Calibration results over the entire catchment set

Model RMSE R2 Number of calibrated
parameters

Schreiber [1904] 0.153 0.544 0

Ol’Dekop [1911] 0.181 0.561 0

Budyko [1974] 0.158 0.557 0

Tixeront–Fu with the same ω calibrated for all land uses 0.153 0.555 1

Tixeront–Fu with calibrated ω specific for 6 land use classes 0.150 0.571 6

atively consistent with a priori expectations. The
“Settlement” land use class reaches a low median
parameter value of 1.78 (interquartile range: 1.72–
1.83) indicating low evaporation ratios, while flooded
vegetation gets a median parameter value of 5.00
(interquartile range: 3.54–5.00), indicating evapora-
tion close to potential evaporation, which is physi-
cally consistent given that water is not a limiting fac-
tor on these landscapes. Forest and grassland show
close parameter values, with median values at 2.08
and 2.11 and interquartile ranges of 2.06–2.10 and
2.09–2.14, respectively. Among the most common
land use, agriculture gets a remarkably high param-
eter value, with a median at 2.81 (interquartile range:
2.79–2.84). The large range of parameter values for
the land use class “Other” is probably explained by
the large diversity of land use composing this class,
and their diverse behavior relative to evaporation

(e.g. sparse vegetation, shrublands, bare areas, see
Table 1). As a consequence, the median parameter
value is close to the optimal lumped value, with a me-
dian at 2.33 (interquartile range 2.27–2.43).

3.3. Trading space for time: analyzing model be-
havior on transient catchments

In this section, we assess the ability of the Tixeront–
Fu model equation with 6 different land use classes
to predict the effect of land use changes on evapo-
ration ratios. To do so, we compared the change in
evaporative ratio due to land use (12), to the residual
change in evaporative ratio computed as the differ-
ence between the total change, and the change due
to climate variations across the two subperiods (10).

For many catchments, the Tixeront–Fu model
parametrized to take into account explicitly land use
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Figure 5. Observed and simulated evaporative ratios by three different models with zero to six calibrated
parameters. Results are shown in calibration mode.

Figure 6. Residuals of the Tixeront–Fu model with calibratedω specific for 6 land use classes. The distri-
butions of the absolute values of the residuals are represented by boxplots according to the characteris-
tics of the catchment in terms of drainage area, climate class, and dominant land use class. The lower and
upper hinges correspond to the first and third quartiles and the upper and lower whiskers extend from
the hinge to the largest value no further than 1.5 ∗ IQR from the hinge (where IQR is the interquartile
range).
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Figure 7. Cross-validation results for the three benchmark models and the two calibrated Tixeront–Fu
models. The boxplots represent the distribution of the two assessment criteria (RMSE and R2) for the
500 realizations of the split sample test. The lower and upper hinges correspond to the first and third
quartiles and the upper and lower whiskers extend from the hinge to the largest value no further than 1.5
∗ IQR from the hinge (where IQR is the interquartile range).

typology fails to predict change in evaporative ratio
due to land use change (Figure 9). Generally speak-
ing, the estimated change is quite small compared to
the observed change, meaning either that the model
inappropriately reproduces the role of land use on
evaporative ratios or that the observed change is due
to factors other than climate and land use.

To address more specifically the former hypothe-
sis, we restrict our analysis to those catchments that
experienced important gross land use change. Three
typical land use conversions are considered: (i) the
conversion from forest to arable land, to constitute
this sample, we retained the catchments for which
the fraction of arable land increased up to 0.1 while
the fractions of forest decreased up to 0.1; (ii) the
conversion from arable land to forest, to constitute
this sample, we retained the catchments for which
the fraction of forest increased up to 0.1 while the
fractions of arable lands decreased up to 0.1; (iii) the
conversion of vegetated lands to urban areas, to con-
stitute this sample, we retained the catchments for
which the fraction of urban area increased up to 0.1
while the fractions of other vegetated areas (forest,

arable and grasslands) decreased up to 0.1. This leads
to the selection of 52 catchments: 27 urbanizing,
10 from agriculture to forest, and 15 from forest to
agriculture.

Since the selected catchments are indeed expe-
riencing important land use change, the simulated
change of evaporative ratio is more visible (Figure 10)
than when considering the whole catchment set.
However, the model still fails to detect the sign and
intensity of change for the conversion from arable
land to forest and vice-versa. Urbanization is the sole
type of conversion for which the model can repro-
duce the effect on evaporative ratio, with a decreas-
ing trend of evaporation with urbanization.

4. Discussion

4.1. Comparison with previous model parame-
trization and performance

Before comparing the modeling results of this study
with previous attempts, it is important to keep in
mind that such comparison is complex due to (i) the
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Figure 8. ω parameter values for 6 land use classes (upper). The boxplots represent the distribution of
the 500 split-sample tests. The lower and upper hinges correspond to the first and third quartiles and
the upper and lower whiskers extend from the hinge to the largest value no further than 1.5 ∗ IQR from
the hinge (where IQR is the interquartile range). Corresponding Budyko curves (lower) with predictive
bounds, based on the interquartile ranges.

relatively small number of large sample studies,
(ii) the different target variables within these stud-
ies, and (iii) the different data prefiltering methods.
We found that 449 catchments (9% of the total catch-
ment sample) did not fall within the theoretical range
for the evaporative ratio. This ratio is similar to pre-
vious studies on the global scale: Peel et al. [2010]
and Zhou et al. [2015] found ratios of 19% and 10%
for global streamflow datasets constituted by 861 and
1928 worldwide catchments, respectively. The choice
of including these catchments or not for developing

and assessing a hydrological model is not trivial. On
the one hand, including these catchments may lead
to greater uncertainties in the estimations of model
parameters value but on the other hand, excluding
these catchments poses the question of the validity
of the remaining catchments, that are still susceptible
to have water balance issues. For these reasons, some
authors included further data checks, including as-
sessments of the impacts of dams or preliminary esti-
mation of interbasin groundwater flows [de Lavenne
and Andreassian, 2018], which may affect signifi-
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Figure 9. Observed and simulated changes in
evaporative ratios as estimated by the residual
approach and the Tixeront–Fu model with 6
different land use classes. Dots located in blue
and red rectangles correspond to catchments
for which the evaporative trend sign is correctly
predicted either positive or negative, respec-
tively.

cantly water balance for some geological settings.

This choice also has important consequences on
the performance of the model since water balance
formulations from the Budyko framework are not
able to reproduce the behaviors of the catchment
that do not fall within the theoretical range. As
a consequence, studies that prefilter hydroclimatic
data before assessing model performance show re-
markably better modeling results than those with-
out or with basic filtering (Table 4). Probably the
most similar study in terms of data is the study
by Beck et al. [2015] who developed dedicated neu-
ral networks for a set of flow characteristics including
mean annual runoff (QMEAN) and runoff yield (i.e.
QMEAN/PMEAN). To compare our results with pre-
vious studies, we compute additional performance
metrics, including R2 and RMSE on several mean an-
nual variables. The obtained performance metrics
are very similar to those obtained by Beck et al. [2015]
with a very different modeling approach (Table 4).

4.2. Is the role of land use significant and rele-
vant?

As stated in Section 3.2, the improvement brought
by incorporating specific ω parameter value for each
land use is modest: RMSE on evaporative ratio-y
varied from 0.153 for the Tixeront–Fu model with
the same ω calibrated for all land uses to 0.150 for
the Tixeront–Fu model with calibrated ω specific for
6 land use classes. Previous attempts to improve
Budyko formulations by adding free parameters also
report marginal improvements: Oudin et al. [2008]
improved RMSE on the evaporative ratio of 0.007 by
including vegetation parameters while de Lavenne
and Andreassian [2018] got an improvement of 0.006
by including a seasonality parameter. Considering
the much larger and diverse catchment set of the
present study, we may consider that the improve-
ment of model performance agrees with previous
studies and pointed out the difficulty to improve
Budyko-type formulations. One may argue that the
modest improvement might come from the fact that
land use is not as important as expected in explain-
ing catchment-scale water budgets. From the liter-
ature results, it is not clear whether the Tixeront–
Fu parameter shall be related only to land use (and
particularly vegetation types) or also to other phys-
iographic and/or climatic characteristics. Previous
attempts to regionalize ω leads to some contrasting
results: while Li et al. [2013] found that ω may be
closely related to vegetation coverage, Xu et al. [2013]
noticed that the variance of ω explained by vegeta-
tion indices (namely the NDVI) seems low and Abat-
zoglou and Ficklin [2017] found that vegetation met-
rics did not improve the determination of ω com-
pared to some other descriptors such as the ratio of
soil water holding capacity to precipitation and topo-
graphic slope.

While modest, the improvement of the model per-
formance obtained in Section 3.2 appears significant:
a Welch Two Sample t-test on RMSE distributions of
the Tixeront–Fu model with the sameω calibrated for
all land uses and the Tixeront–Fu model with cali-
brated ω specific for 6 land use classes leads to a p-
value below 0.005. Therefore, interpreting the pa-
rameter values for each land use class makes sense.
Theω parameter values obtained in this study can be
compared in range and in order with previous stud-
ies (Table 5). Investigating the ω parameter of the
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Figure 10. Observed and simulated changes in evaporative ratios as estimated by the residual approach
and the Tixeront–Fu model with 6 different land use classes for three types of land use changes. Dots
located in blue and red rectangles correspond to catchments for which the evaporative trend sign is
correctly predicted either positive or negative, respectively.

Table 4. Comparison of model performance with previous studies

Reference This study This study Beck et al.
[2015]

de Lavenne and
Andreassian [2018]

Oudin et al.
[2008]

Sanford and
Selnick [2013]

Modeling
approach

Tixeront–Fu
model with

fixed w

Optimized
model with 6
parameters

Neural
network

Tixeront–Fu
model including a
seasonality index

Parametrized
Budyko model

Climate-based
regression

Number of
catchments

4539 4539 4079 171 1508 838

Filtering
of data

Basic Basic Basic Advanced Advanced Basic

Spatial scale Global Global Global France Global (but mainly
France, US and UK)

US

RMSE (y) 0.153 0.150 0.051 0.052

RMSE (QMEAN)
(mm/yr)

172.1 169.6 51.4 52.9

RMSE (sqrtQ) 3.87 3.82 3.91

R2 (ET_MEAN) 0.611 0.621 0.882

R2 (sqrtQ) 0.800 0.804 0.88

Tixeront–Fu water balance model on a selection of
lysimeter data, Teuling et al. [2019] found for set-
tlement the value of 1.3, for grassland/cropland 1.7,
while forest presents the larger value. Zhang et al.
[2004] differentiated two land use: grassland and for-
est with values of 2.55 and 2.84, respectively. The
comparison of absolute values is biased by method-
ology, including the choice of the potential evapora-
tion equation or the way to determine the parameter

values, but it appears that ω parameter values are in-
consistent in terms of relative values for forest, grass-
land, and cropland: the value we obtained for agri-
culture and forest are particularly high and low re-
spectively, compared to these previous studies. In-
terestingly, Williams et al. [2012] using a synthesis
of evapotranspiration measured across a global net-
work of flux towers also found that grasslands and
croplands have on average a higher evaporative ratio
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than forested landscapes, which tends to corroborate
our findings.

4.3. Why trading space for time is inefficient?

The land use dependent model developed in this
study appears inappropriate to describe the change
in time of the evaporative ratio of the majority of
catchments, even for those catchments that expe-
rienced important land use change. This is not
good news for hydrologists who are asked to develop
models able to integrate climate and land use sce-
narios, to help water resources planning and man-
agement [Milly et al., 2008]. In our opinion, this
relative failure may be due to either the over-
simplistic Budyko framework, or the fact that land
use loses its interest when trading space for time.
These points are discussed hereafter.

While the use of the Budyko framework is advo-
cated by many authors for attribution studies [Wang
and Hejazi, 2011], its crudeness may not allow it
to model land use change effect on evapotranspi-
ration. To fit the simplicity of the Budyko frame-
work, we designed in this paper a semi-lumped ap-
proach by combining the responses of the diverse
land use fractions in a catchment. We hypothesized
that the hydrological behavior of a land use class
may be formulated by adjusting a single parameter
of the Tixeront–Fu model by considering that this be-
havior for each land use class is homogenous across
environmental conditions. This is probably a too
crude assumption but a more detailed description
of the soil-vegetation-atmosphere hydrological pro-
cesses would come with heavier parametrization. In-
deed, the idea that assessing land use changes can
only be made through distributed model with physi-
cal bases is well-spread in literature [Beven, 2002, Wi-
jesekara et al., 2012].

The pluriannual time step makes it impossible to
integrate the seasonality effects of climate and vege-
tation activity. Some studies intend to parametrize
the climate seasonality effect [de Lavenne and An-
dreassian, 2018, Potter and Zhang, 2009], but the sea-
sonal patterns of vegetation transpiration might also
be taken into account within these parametrizations,
as perennial vegetation generally transpires through-
out the spring, summer, and autumn seasons, while
the majority of the transpiration from crops occurs
during the summer.

In contrast with the one-parametrized model, the
effects of vegetation change can be subtle and the im-
pacts of some major land use changes are still subject
to debate [Andréassian, 2004, Beck et al., 2013]. Land
use changes might also influence water balance only
until a long time period so that the new vegetation
cover reaches maturity [Kuczera, 1987]. Wang [2014]
proposed to distinguish two types of human-induced
changes: the changes that yield measurable effect on
water balance just after the activity is in places such
as surface water abstraction/diversion and storage,
and the changes that yield measurable effect only un-
til a long time period. Our results suggest that urban-
ization may belong to the latter since its impact on
the evaporative ratios is relatively well detected and
quantified by the model proposed in this study. Con-
versely, vegetation changes may belong to the former
type of changes, with highly case-specific changes.

Finally, the space for time trading concept
presents inherent caveats [Berghuijs and Woods,
2016] due to the non-orthogonality of climate, land
use, and other physiographic descriptors such as to-
pography, and soil types [Troch et al., 2015, van Dijk
et al., 2012, Xu et al., 2013]. As perennial vegetation
may be viewed in equilibrium with environmental
conditions, the spatially calibrated model parame-
ters are likely related to other factors like vegetation,
e.g. water holding capacity, slope. When applied to
non-stationary conditions, vegetation covers may
change while the other characteristics remain, at
least for some time, which may explain to a certain
extent the failure of the model under non-stationary
conditions.

5. Conclusion

Empirical assessments of the impact of land use on
water balance are not straightforward. While the
Budyko framework is often advocated as a simple but
efficient way to distinguish the effects of climate and
land use on water balance, very few studies applied
it on large samples of non-stationary catchments. In
this paper, we adapted the Budyko framework to de-
velop a land use dependent water balance model us-
ing a large sample of 4539 catchments worldwide and
we then applied it under non-stationary conditions,
by trading time for space. Despite slight but sig-
nificant improvements of the model to differentiate
the role of several land use across catchments, the



Ludovic Oudin and Morgane Lalonde 113

Table 5. ω parameter values for several land use classes given by the present study and two other studies

Data and methods

This study Zhang et al. [2004] Teuling et al. [2019]

Catchment scale with
fractional land use

Catchment scale with
dominant land use

Lysimeter data

ω for agriculture 2.81 (IQ range: 2.79–2.84) 1.7

ω for forest 2.08 (IQ range: 2.06–2.10) 2.84 [2.3–3.1]

ω for grassland 2.11 (IQ range : 2.09–2.14) 2.55 1.7

ω for wetlands 5.00 (IQ range: 3.54–5.00)

ω for settlement 1.78 (IQ range 1.72–1.83) 1.3

ω for other 2.33 (IQ range 2.27–2.43)

Note that Teuling et al. [2019] used a rather different PE equation and acknowledged that this may
lead to lower ω values.

model fails to predict both the sign and the magni-
tude of change in evaporative ratios due to land use
changes, except the case of urbanization. In 1994,
de Marsily pointed out that the constraints of Greek
tragedy (uniqueness of place, time, and action) ap-
plied to empirical hydrological models. Even with
the progress in model developments and availability
of worldwide hydro-climatic data, we shall acknowl-
edge that de Marsily’s view is still relevant.
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