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Abstract. Groundwater flow depends on subsurface heterogeneity, which often calls for categorical
fields to represent different geological facies. The knowledge about subsurface is however limited and
often provided indirectly by state variables, such as hydraulic heads of contaminant concentrations.
In such cases, solving a categorical inverse problem is an important step in subsurface modeling. In
this work, we present and compare three recent inverse frameworks: Posterior Population Expansion
(PoPEx), Ensemble Smoother with Multiple Data Assimilation (ESMDA), and DREAM-ZS (a Markov
chain Monte Carlo sampler). PoPEx and ESDMA are used with Multiple-point statistics (MPS) as
geostatistical engines, and DREAM-ZS is used with a Wasserstein generative adversarial network
(WGAN). The three inversion methods are tested on a synthetic example of a pumping test in a fluvial
channelized aquifer. Moreover, the inverse problem is solved three times with each method, each time
using a different training image to check the performance of the methods with different geological
priors. To assess the quality of the results, we propose a framework based on continuous ranked
probability score (CRPS), which compares single true values with predictive distributions. All methods
performed well when using the training image used to create the reference, but their performances
were degraded with the alternative training images. PoPEx produced the least geological artifacts
but presented a rather slow convergence. ESMDA showed initially a very fast convergence which
reaches a plateau, contrary to the remaining methods. DREAM-ZS was overly confident in placing
some incorrect geological features but outperformed the other methods in terms of convergence.

Keywords. Stochastic inversion, Multiple-point statistics, Monte Carlo sampling, Posterior Population
Expansion, Ensemble smoother, Groundwater flow, Scoring rules.
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1. Introduction

Roughly twenty years ago, Ghislain de Marsily gave
an overview of four decades of inverse problems in
hydrogeology [de Marsily et al., 1999]. What is strik-
ing when reading this review is that all the methods

∗Corresponding author.

are aimed at inferring a continuous field of parame-
ter values. The review highlights the evolution of the
ideas in this domain and how the initial determinis-
tic and direct methods were progressively replaced by
indirect and geostatistical methods. In the epilogue
of that paper, Ghislain de Marsily indicates where
the research is heading with the emerging category
of approaches which consists of generating images
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of the geologic reality. Indeed, in the last 20 years,
a considerable effort has been devoted to develop-
ing novel geostatistical simulation methods able to
deal with categorical fields representing the spatial
distribution of rock types or geological formations
[de Marsily et al., 2005]. In a categorical inverse prob-
lem, the aim is to identify for every location the rock
type or lithology among a discrete and fixed number
of possibilities.

Solving the inverse problem in the categorical
case while respecting prior geological knowledge has
raised new challenges and difficulties [Oliver and
Chen, 2011, Linde et al., 2015]. In particular, stan-
dard optimization techniques based on a gradient
or adjoint-based approaches which were used suc-
cessfully in the continuous case [de Marsily et al.,
1984] cannot be directly applied in the categorical
case since the concept of “derivative” has no mean-
ing in these situations because the possible changes
in parameters are discrete. One had either to find a
latent representation of the geology using an under-
lying continuous representation or to rely on Monte
Carlo techniques that are more robust but less effi-
cient. Many of these challenges are still open and the
groundwater modeling community is actively pur-
suing this research. It is however not always clear
what are the advantages and limitations of the differ-
ent approaches. Previous intercomparison exercises
[Zimmerman et al., 1998, Hendricks Franssen et al.,
2009] did not consider the case of discrete fields with
geological prior knowledge.

The aim of this paper is therefore to provide a
comparison of three recent inversion methods ded-
icated to the categorical inverse problem. All those
methods are flexible. They are based on different rep-
resentations of geology that all account for a concep-
tual prior model and could be applied to different
types of geology. They all tackle the inversion prob-
lem using a different approach and they have not yet
been compared for the same inverse problem to our
knowledge.

The first technique is based on a multiple-point
statistics (MPS) approach to represent the categor-
ical field. The prior knowledge is given to the al-
gorithm by providing a training image [Journel and
Zhang, 2006] which can be seen as a training data
set or geological analog representing the type of pat-
terns that are expected to occur in the region of inter-
est. The MPS approach respects high-order statistics

and allows flexible control of heterogeneities. MPS
algorithms have been extensively used in inversion
frameworks. Early examples include for example the
probability perturbation method [Caers and Hoff-
man, 2006], the blocking moving window algorithm
[Alcolea and Renard, 2010, Hansen et al., 2012], or the
iterative spatial resampling [Mariethoz et al., 2010].
These methods iteratively update MPS realizations
by imposing hard or soft conditioning data either in
an optimization or Monte Carlo Markov chains per-
spective. Here, we will use the Posterior Popula-
tion Expansion (PoPEx) algorithm [Jäggli et al., 2017,
2018]. It is an adaptive importance sampling (AIS)
scheme that also uses hard conditioning data to iter-
atively expand an ensemble of models. PoPEx learns
the relation between the state variables and categor-
ical parameter values using conditional probabilities
and employs this knowledge to generate new realiza-
tions that are progressively more likely to fit the data.
An important feature of PoPEx is that it is highly par-
allelizable. Note that we present a modification in the
PoPEx approach in this paper and introduce the no-
tion of tempered weights.

The second technique uses a slightly different
MPS representation of the heterogeneity allowing to
use a data assimilation method [Evensen, 2009] for
the parameter identification step. The assimilation
approaches are known to be very efficient to infer
multi-Gaussian fields from state variables. They were
extended to non-Gaussian and categorical examples
[Zhou et al., 2014, Oliver and Chen, 2018, Kang et al.,
2019] but always require a continuous representation
of the geology. A recent development in the MPS
technology is a multiresolution algorithm [Straub-
haar et al., 2020]. The fine-scale geological and cat-
egorical fields are upscaled on lower-resolution grids
using Gaussian pyramids. An MPS simulation can
be conditioned by the values of the Gaussian pyra-
mids, and this allowed Lam et al. [2020] to apply the
ensemble smoother with multiple data assimilation
(ESMDA) [Emerick and Reynolds, 2013] directly to
MPS realizations of categorical variables. In this ap-
proach, the relation between the underlying contin-
uous variables and the state variables are estimated
using covariances.

Finally, the third technique uses a generative ad-
versarial network (GAN) to represent geology. GAN
became very popular in recent years [Goodfellow
et al., 2014] due to their ability to generate highly re-
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alistic images provided a sufficiently large training
dataset is available. One of their main interest is their
flexibility and their capacity to learn the relation be-
tween a relatively low dimensional latent space rep-
resentation and the final images. The representa-
tion of parameters in the latent space (which is of-
ten Gaussian) is convenient for Markov chain Monte
Carlo inverse algorithms. Here, we used the DREAM-
ZS algorithm [Laloy and Vrugt, 2012] combined with
spatial GAN following the very successful work of
Laloy et al. [2018].

In this paper, we first introduce the three differ-
ent techniques and how they were implemented. In-
deed, to ensure a fair comparison, we implemented
the three methods using similar tools. The corre-
sponding codes are available online.1 To compare
the performances of the three methods, it was im-
portant to have access to the reference, and there-
fore we designed a synthetic pumping test experi-
ment. A geological model was generated and we sim-
ulated the pumping test. The data are then used for
identifying the geology and the corresponding uncer-
tainty with the three techniques: PoPEx, ESMDA, and
DREAM-ZS. Since in practice, it is difficult to identify
the proper prior model for the geology (i.e. the right
training image), we also tested the inverse methods
with the incorrect priors. This allows us to compare
not only the performances of the inverse method in
the ideal case where the prior is correct but also to
check the robustness of the three techniques to in-
correct priors.

2. Inversion algorithms

In this section, we provide a description of the three
stochastic inversion algorithms and the tools used to
generate the discrete random fields. Let us first re-
call the main notions of the stochastic formulation of
the inverse problem. We will use these notations to
present the three algorithms. The observed data are
stored in a vector of real values dobs ∈ RN , and N is
the number of observed data points. Let us consider
a model manifold M. Any model m ∈M is supposed
to describe fully the physical system. In other words,
it provides sufficient input for the forward solver to
simulate the data. The forward solver is an operator

1https://github.com/randlab/inversion-comparison.git.

g :M→RN , mapping from the model manifold M to
the data space. For example, the observed data can
be a time series of hydraulic heads at different loca-
tions, or a time series of tracer concentrations. The
model space can describe a field of geological facies
in the subsurface (discrete model space) or a field of
hydraulic properties (continuous model space). The
forward operator can be a groundwater flow solver or
transport solver. Usually, it solves a set of partial dif-
ferential equations. The output of the forward solver
is deterministic: given the same model, the simu-
lated data are uniquely defined.

The probabilistic solution to the inverse problem
is given by Tarantola [2005]:

σ(m) = cρ(m)L(m;dobs), (1)

with σ(m) the posterior probability distribution, c
some normalization constant, ρ(m) the prior proba-
bility distribution, and L(m;dobs) the likelihood func-
tion. The likelihood function L(m;dobs) describes
how likely is the model given the observations (it
measures the mismatch between the simulated and
the observed data) and it depends on the problem at
hand (we indicated that the function L uses the ob-
served data with L(m;dobs), but we will write L(m)
for brevity). The prior probability distribution ρ(m)
contains knowledge that is independent of measured
data. It is a domain-specific (expert) knowledge
about model parameters; for example, constraining
models to be generated by a specific geostatistical
method. In practice, the normalization constant c
does not play a role, as the model manifold is approx-
imated using a finite-dimensional space, and solu-
tions can be self-normalized.

The characterization of the posterior distribution
σ(m) is the goal of the inversion algorithms, and any
useful property can be written as a prediction in the
following manner:

µ=
∫
M
σ(m) f (m)dm, (2)

where µ represents the prediction (expected value)
of the quantity of interest which is obtained using
function f (m). Typically, Monte Carlo methods aim
to sample the posterior, and then use a subset M ⊂
M to approximate the integral using a sum.

https://github.com/randlab/inversion-comparison.git
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2.1. PoPEx + MPS

The Posterior Population Expansion (PoPEx) algo-
rithm [Jäggli et al., 2017, 2018] is an adaptive impor-
tance sampling (AIS) technique designed for solving
inverse problems in the context of categorical geosta-
tistical fields. In this work, we use the parallelized
implementation of PoPEx based on asynchronous
worker processes [Jäggli et al., 2018], with a modifica-
tion for computing the weights for generating predic-
tions. We do not use corrected weights as described
by Jäggli et al. [2018], but instead, tempered weights,
based on tempered likelihood, which is explained be-
low. The motivation to use tempered weights instead
of corrected weights is explained by the fact that Jäg-
gli et al. [2018] and Juda and Renard [2021] had to use
a subset of tracer test data to allow convergence of
PoPEx. For example, Juda and Renard [2021] used
6 out of a total of 276 data points in the tracer con-
centration curve. This approach had to be used to
increase the number of effective weights for predic-
tion, otherwise, too few models were retained for the
prediction, and uncertainty was not very well repre-
sented. While reducing the dimensionality of data in
this way, might be an effective ad hoc solution, it is
not generic and arbitrary. Tempered weights aim to
solve this issue more generally.

2.1.1. Tempered weights

Tempered weights have been inspired by other
solutions to the problem of the peakedness of the
likelihood function. Laloy et al. [2018] presented a
case of 3-D Transient Hydraulic Tomography, where
1568 data points were used in the inversion using the
DREAM-ZS algorithm [Laloy and Vrugt, 2012]. The
inversion was stopped before reaching the conver-
gence criterion. In that study, tempering of the like-
lihood function was implemented but limited to the
burn-in. It consisted in using an inflated variance
term in the likelihood function. A similar technique
to tempering is also used in the context of data assim-
ilation. Lam et al. [2020] used ensemble smoother
with multiple data assimilation (ESMDA) for discrete
inversion, where geostatistical simulation uses pyra-
mids. ESMDA applies Kalman update repeatedly to
assimilate data but introduces a factor α for reduc-
ing the correction term, as the same data is assim-
ilated multiple times [Emerick and Reynolds, 2012].
It corresponds to reducing the confidence given to

the (noisy) data at every iteration of the data assim-
ilation.

The adaptive importance sampling provides a
convenient formula, the self normalized estimator
µ̂sn, to approximate integrals like (2) using the follow-
ing sum [Jäggli et al., 2018]:

µ̂sn =
k∑

j=1
f (m j )w̃ j . (3)

The w̃ j are normalized weights: w̃ j = w j /
∑k

i=1 w j ,
with k representing the total number of generated
models (iterations). The superscript is not used as
exponent, instead, it is used for indexing iterations,
and we keep this notation for consistency with the
reference PoPEx paper [Jäggli et al., 2018]. In the AIS
framework, the weights wk are given by:

wk = σ(mk )

φk (mk )
= c

ρ(mk )

φk (mk )
L(mk ), (4)

with a constant c (that can be ignored later due
to self-normalization), L(m) the likelihood function,
and ρ(m) the prior measure. φk is a sampling distri-
bution that is updated at every iteration k. The main
idea of adaptive importance sampling is to updateφk

in a way that it resembles σ but has heavier tails.
To resolve the problem of few significant weights,

we suggest an approach based on tempered likeli-
hood function. It is similar to using higher error vari-
ance in the likelihood formula. The tempering factor
is adapted (optimized) based on the desired number
of significant models.

Let us define the family of tempered likelihood
function Lt(m; fσ):

Lt(m; fσ) = exp

[
1

f 2
σ

log(L(m))

]
(5)

with the tempering factor fσ ≥ 1. If fσ = 1 we have:
Lt(mi ;1) ≡ L(mi ), and the tempered likelihood be-
comes equivalent to the standard likelihood func-
tion. In this sense, the tempered likelihood is a gen-
eralization of the correct likelihood function for the
problem at hand. The tempering factor reduces con-
fidence in the data, it can be interpreted as a factor
inflating the variance of the measurement error. Of-
ten, the standard likelihood considers the data points
as non-correlated, and the tempering factor then
makes sense as compensation for ignoring correla-
tion between data points, which is difficult to eval-
uate.
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If we use the soft likelihood in (4), we obtain a
parametric formula for tempered weights:

wk
t ( fσ) = c

ρ(mk )

φk (mk )
Lt(mk ; fσ). (6)

Finally, it leads to the tempered formula for the
self-normalized estimator:

µ̂sn,t( fσ) =
k∑

j=1
f (m j )w̃ j

t ( fσ). (7)

2.1.2. Optimal tempering factor

The tempering factor can be chosen arbitrarily,
for example fσ =p

N would correspond to taking the
average of log-likelihood over N observation points
of the mismatch. Instead of fixing a value for fσ, we
propose a method to adaptively choose optimal fσ.
It is inspired by the formulation of corrected PoPEx
weights.

Let us consider a set W k ( fσ) of k tempered weights
with parameter fσ:

W k ( fσ) =
{

w1
t ( fσ), . . . , wk

t ( fσ)
}

. (8)

The effective sample size for the set W k ( fσ) is given
by:

ne (W k ( fσ)) = (
∑k

i=1 w i
t ( fσ))2∑k

i=1(w i
t ( fσ))2

. (9)

Suppose that the target value of the minimal num-
ber of effective weights θ is chosen by the user, who
also specifies the value of fmax which will be the max
bound for fσ. We will define fσ as optimal if it is such
that the number of effective weights ne equals at least
θ and fσ ∈ [

1, fmax
]

is as small as possible. This can be
translated into the following optimization problem:

fopt = argmin
fσ∈[1, fmax]

(ne (W k ( fσ))−θ)2, (10)

where fopt is the optimal tempering factor. The set
of the optimal tempered weights is given by W k ( fopt),
and after normalization, they can be used in (7) to get
the desired estimator.

The tempering framework can be summarized in
the form of an algorithm. It takes as input: θ—the
target number of effective weights; fmax—the max
bound for the tempering factor. The algorithm is as
follows:

Optimal-tempered-weights (θ, fmax)

1 Minimize (ne (W k ( fσ))−θ)2 subject to fσ ∈ [1, fmax]
2 fopt = argument of the minimum
3 Compute W k ( fopt)
4 for j = 1, . . . ,k

5 w̃ j
t = w j

t /
∑k

i=1 w i
t

6 return {w̃1
t , . . . , w̃k

t }

Once the models are generated (PoPEx stops after
a number of steps predefined by the user), PoPEx
uses weights for generating predictions. While it is
possible to use the tempered likelihood instead of
the exact likelihood during PoPEx sampling, we do
not use this approach in this study. PoPEx is run
with the correct (exact) likelihood for the problem at
hand, and the tempered likelihood is only applied for
computing predictive weights.

In this study and in previous ones [Jäggli et al.,
2017, 2018, Dagasan et al., 2020], PoPEx was coupled
with the Direct Sampling (DS) MPS algorithm to gen-
erate the categorical fields. More precisely, we use the
DeeSse implementation with multi-resolution fea-
tures [Straubhaar et al., 2020]. The multi-resolution
capability (Gaussian pyramids) is a technique allow-
ing for improved reproduction of patterns at different
scales.

2.2. ESMDA + DS pyramid

The second inversion method that we will compare
is the one proposed by Lam et al. [2020]. It is based
on the ensemble smoother with multiple data as-
similation (ESMDA) coupled with DS with Gaussian
pyramids. ESMDA [Emerick and Reynolds, 2013]
runs for a predefined number of steps Na (parame-
ter given by the user, also known as number of data
assimilations), and at each iteration k ∈ {1,2, . . . , Na}
the ensemble Ne of models {mk

1 ,mk
2 , . . . ,mk

Ne
} is up-

dated to {mk+1
1 ,mk+1

2 , . . . ,mk+1
Ne

}. We use subscript
here for the model index and superscript for the it-
eration index. The index 1 corresponds to the initial
(prior) ensemble, and the ensemble after Na data
assimilations will have index Na + 1. We based the
algorithmic implementation of the method on the
paper by Emerick [2016].

Contrary to PoPEx, in the ESMDA framework, a
model is a vector of real values (not discrete) and
the described method concerns matching data rep-
resented by continuous values. The main novelty
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of the approach proposed by Lam et al. [2020] is
the way of conditioning categorical simulations with
continuous variables. Therefore, the ESMDA pro-
cedure is a standard one, but the data that is as-
similated is used to condition categorical simula-
tions. In this subsection, we will review briefly how
it is done. We need two ingredients: a procedure
for generating an initial ensemble of models, which
is a vector of continuous parameters, and a proce-
dure to generate categorical models based on such a
vector.

2.2.1. Coupling DS and ESMDA

The ensemble of models M1 = [m1
1,m1

2, . . . ,m1
Ne

] is
generated using the following steps.

We use the multi-resolution option of the DeeSse
code [Straubhaar et al., 2020] to generate uncondi-
tional realizations. The fine-scale realizations are
categorical but the DeeSse simulation algorithm
starts by generating a pyramid of lower-resolution
continuous images over the same grid. The low-
resolution continuous images guide the simulation
of the higher-resolution categorical images Lam
et al. [2020]. The link between the continuous and
categorical variables is established on the training
image using Gaussian kernels to blur and represent
the field at a lower resolution. At the coarse reso-
lution, a fraction f of the total number of cells is
sampled to obtain an ensemble of pyramid values
(now continuous) at fixed locations {p1

1,p1
2, . . . ,p1

Ne
},

with pk
i ∈ RNm , where k is the iteration index, i the

ensemble member index, and Nm the number of
conditioning locations. pk

i [ j ] represents a Gaussian
pyramid value at a location with index j . While it
would be possible to use directly pk

i vectors in the
ESMDA procedure, it is not a good idea, because
these parameter distributions are not necessarily
Gaussian and ESMDA performance will be hindered.
Therefore, Lam et al. [2020] suggest using normal
score transform, as proposed in the study of Zhou
et al. [2011].

The normal score transfer function is constructed
for each parameter in the vector p1

i [ j ] and is kept
fixed for the entire data assimilation process. Let
F j for all j ∈ {1,2, . . . , Nm} be the cumulative distri-
bution function (CDF) deduced from the ensemble
{p1

1[ j ],p1
2[ j ], . . . ,p1

Ne
[ j ]}. For each pyramid location,

j corresponding F j is computed with its inverse F−1
j

and they are stored. Now the direct normal score

transform is defined:

Φdirect
i (x) =G−1(F j (x)), (11)

where G−1 is the inverse of normal CDF. The normal
score back transform is given by:

Φback
i (x) = F−1

j (G(x)), (12)

where F−1
j is inverse of the pyramid CDF, and G

stands for normal CDF.
Finally, the vector m1

i = [m1
i [1],m1

i [2], . . . ,m1
i [Nm]]⊤

is obtained from the initial ensemble:

m1
i [ j ] =Φdirect

j (p1
i [ j ]) (13)

for all j ∈ {1,2, . . . , Nm} and i ∈ {1,2, . . . , Ne }. At
each iteration k, to transfer the parameter vector mk

i
into pyramid conditioning data we employ the back
transform:

pk
i [ j ] =Φback

j (mk
i [ j ]), (14)

for j ∈ {1,2, . . . , Nm}. The set of pyramids can now
be used in the DeeSse implementation to obtain the
realizations by conditioning the simulations at the
coarse resolution. It is important to note that the
same simulation seed must be used at each itera-
tion for the given realization index i . It ensures that
the realizations are gradually improved by the inver-
sion. Otherwise, the stochastic nature of the MPS
simulation would make it impossible. Before every
forward model call, the model parameters are con-
verted to pyramid values and the subsequent realiza-
tion is generated. The details of the multi-resolution
Direct Sampling implementation are given in Straub-
haar et al. [2020], and the details about the condition-
ing of Gaussian pyramids are in Lam et al. [2020].

2.3. DREAM-ZS + WGAN

The third inversion method is DREAM-ZS used
with a Wasserstein Generative Adversarial Network
(WGAN). The approach was initially proposed by
Laloy et al. [2018], we use it with only a slight modi-
fication: we employ a Wasserstein GAN instead of a
Spatial GAN.

2.3.1. DREAM-ZS

DREAM-ZS is a modified Metropolis sampler,
sampling multiple chains which exchange informa-
tion using an archive Z of past models [Laloy et al.,
2018, 2017]. Metropolis samplers generate proposals
and accept them if their likelihood is higher, or with
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a probability if it is lower. In a standard Metropolis
sampler, chains would not communicate with each
other, which makes it easily parallelizable, but re-
quires removing outlier trajectories; this results in a
slower convergence. DREAM-ZS provides a way to
allow efficient parallelization and communication
between the chains; hence avoiding the necessity
of removing outlier chains. Usually, the sampler is
run unless a convergence criterion is satisfied [for
example Gelman and Rubin, 1992] but in practical
cases with a large amount of data, the convergence
might not be achieved in a reasonable number of
iterations [Laloy et al., 2018]. Therefore, we simply
run here Nc chains during a predefined number of
iterations T and use the two last recorded samples
from each chain to form the posterior. Samples are
recorded every K iterations. Our implementation
uses a Wasserstein GAN (WGAN), instead of a spatial
GAN (SGAN) as it was suggested by Laloy et al. [2018],
because WGANs are known to be more stable, and
easier to train for different training data sets. More
details on our WGAN setup are given in the next
subsection. The details of our implementation are
based on the MT-DREAM-ZS paper Laloy and Vrugt
[2012] but we do not use the multiple tries (MT) tech-
nique. Our implementation essentially corresponds
to MT-DREAM-ZS with one trial. The algorithm for
computation of crossover values is based on the work
of Vrugt et al. [2009].

The parameter space is the latent space of the
GAN, x is the parameter vector of length d : x ∈Rd . We
will use Z to denote the archive, which is a collection
of past models used to create new proposals in the
Markov chain; the archive is updated every K itera-
tion. The posterior should be formed by taking sam-
ples from Z and ignoring initial and burn-in sam-
ples. In our setting, we propose to take the last 2Nc

samples from Z , where Nc is the number of chains.
It means that the two last archived samples of each
chain are conserved for the posterior.

The initial archive Z is composed of Np (number
of prior samples in the archive) random normal vec-
tors:

Z =
{

xl : xl ∼N (0,Id ), l ∈ {1,2, . . . , Np }
}

, (15)

with Id identity matrix of size d × d , and N nor-
mal multivariate distribution. We used subscript
to index different chains and not vector elements.

Similarly, the initial vector in each chain is sampled
from N (0,Id ).

In each chain i ∈ {1,2, . . . , Nc }, for all t < T , (t is the
iteration index) a transition from the current point xi

to a new point x′i is proposed. There are two ways
to generate a proposal point in DREAM-ZS: either by
the parallel update or by the snooker update. The
snooker update is applied with a certain frequency
( fs ), otherwise, parallel update is applied. The pro-
posed point is always accepted if its likelihood L(x′i )
is higher than L(xi ), otherwise it is accepted with
probability L(x′i )/L(xi ). If the point is accepted, we
set xi = x′i , otherwise, the state of the chain remains
unchanged. Every K iterations the archive Z is up-
dated:

Z =Z ∪ {x1,x2, . . . ,xNc }. (16)

The snooker update was described by ter Braak
and Vrugt [2008] and parallel update by Laloy and
Vrugt [2012]: Laloy and Vrugt [2012] suggested that
every fifth iteration, the jump size γ is set to 1, in
our implementation, it is set every fifth iteration on
average.

The final piece of the DREAM-ZS algorithm is
the implementation of crossover values, which has
two ingredients: determination of CR value for each
chain, and the CR distribution improvement. Unlike
Vrugt et al. [2009], we improve the CR distribution at
every iteration until the end of the DREAM-ZS algo-
rithm.

The determination of CR value for the chain i
proceeds as follows. Supposing that we have a prob-
ability vector p ∈ RnCR such that pm ∈ [0,1] and∑nCR

m=1 pm = 1. The value vi is drawn from a categor-
ical distribution with possible values {1,2, . . . ,nCR}
and corresponding probabilities p. Let us use
M ({1,2, . . . ,nCR},p) to denote such a categorical
distribution. The corresponding CR value is set as:
CR = 1/vi .

Now, we need a way to update the vector p. The
initial values of elements for the vector are pm =
1/nCR for m ∈ {1,2, . . . ,nCR} and these values are re-
calculated after each DREAM-ZS iteration. Let v ∈
{1,2, . . . ,nCR}Nc be the vector with the sampled CR
values for each chain. Let us define vectors ∆,L ∈
RnCR , initialized with zero vectors, whose elements
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Table 1. Layers of the convolutional neural network used for generator

Layer type Kernel Stride Padding Output shape

Input 50

2D transp. conv. 4×4 1×1 0×0

Batch norm, ReLU 1024×4×4

2D transp. conv. 4×4 2×2 1×1

Batch norm, ReLU 512×8×8

2D transp. conv. 4×4 2×2 1×1

Batch norm, ReLU 256×16×16

2D transp. conv. 4×4 2×2 1×1

Batch norm, ReLU 128×32×32

2D transp. conv. 4×4 2×2 1×1

Batch norm, ReLU 64×64×64

2D transp. conv. 4×4 2×2 1×1 1×128×128

Tanh 1×128×128

are updated as follows:

∆m =∆m +
N c∑
i=1

1m(vi )
d∑

j=1
((x′i [ j ]−xi [ j ])2/r 2

j ),

m ∈ {1,2, . . .nCR},

with r 2
j = Var({xt

1[ j ],xt
2[ j ], . . . ,xt

N c [ j ]}) the variance of
the parameter j of the state vector among all chains.
The square brackets serve to obtain elements of a
vector x. The vector L counts how many times each
CR value was drawn:

Lm = Lm +
N c∑
i=1

1m(vi ), m ∈ {1,2, . . .nCR}. (17)

Finally, we can state the update of the vector of prob-
abilities:

pm = ∆m/Lm∑nCR
j=1(∆ j /L j )

, m ∈ {1,2, . . . ,nCR}. (18)

2.3.2. WGAN

Generative adversarial neural networks (GAN) can
learn a complex mapping between a latent space
and the space of two-dimensional images [Goodfel-
low et al., 2016]. In this work, we decided to use the
Wasserstein GAN [Arjovsky et al., 2017] with gradi-
ent penalty term, which is claimed to be robust for
changing architecture of the network [Gulrajani et al.,
2017]. GANs are composed of two neural networks: a
critic (discriminator) and a generator. The generator
maps the latent space vectors to the image space. The
critic is fed by the output from the generator or real

images (the images from the training set) and pre-
dicts if the images are fake (generated images) or not.
The goal of the generator is to deceive the critic so
that it cannot distinguish the generated images from
the images of the training set. Typically, for an epoch
(GAN training iteration), the critic is optimized sev-
eral times after a single generator training.

In our case, the latent space has d dimensions
and the images represent the geology. While the
generated images (GAN output) have values between
[−1,1], they can be converted to binary images by ap-
plying a threshold (0). However, the threshold is not
applied when evaluating the likelihood of the model.
Instead, the physical parameters are linearly trans-
formed from the pixel values, with −1 and 1 corre-
sponding to the exact values according to facies. The
training set contains all the possible extractions from
the TI of the size 128× 128. The training batch size
is 64, the learning rate 1×10−4, the ADAM optimizer
was used with beta parameters: 0.5 and 0.999. There
are 5 critic iterations per generator iteration, and the
lambda term for the gradient penalty was set to 10.
The architectures of the generator and the critic are
shown in Tables 1 and 2, respectively.



Przemysław Juda et al. 27

Table 2. Layers of the convolutional neural network used for critic

Layer type Kernel Stride Padding Output shape

Input 1×128×128

2D conv. 4×4 2×2 1×1

Instance norm, leakyReLU 64×64×64

2D conv. 4×4 2×2 1×1

Instance norm, leakyReLU 128×32×32

2D conv. 4×4 2×2 1×1

Instance norm, leakyReLU 256×16×16

2D conv. 4×4 2×2 1×1

Instance norm, leakyReLU 512×8×8

2D conv. 4×4 2×2 1×1

Instance norm, leakyReLU 1024×4×4

2D conv. 4×4 1×1 0×0 1

3. Test case

3.1. The inverse problem

We consider a pumping test in a confined aquifer of
thickness 10 m. At the beginning of the test, the hy-
draulic heads are uniform and constant at 0 m. Water
is pumped with a constant discharge rate of 0.08 m3/s
during 2 h. The hydraulic heads are recorded in the
pumping well and nine piezometers in the vicinity
of the pumping well (Figure 1 and Table 3). The hy-
draulic heads are recorded every 100 s, so that 72
measurements are available at each of the 10 loca-
tions, which makes up for a total of N = 720 measure-
ment points (Figure 2).

3.2. The reference set-up

The data presented in the previous section were ob-
tained from a synthetic setup. We will refer to it as the
reference. It is not the solution to the inverse problem
framed in a probabilistic manner. It is rather a model
which has a very high likelihood, given the data. The
domain has an extension of 640 m by 640 m. The
petrophysical parameters are modeled using a cate-
gorical 2D field with two geological facies: a perme-
able (channels or ellipsoidal deposits, labeled with 1)
and a less permeable matrix (labeled with 0). The
area is discretized using a regular grid with cells of
size 5 m by 5 m, thus the grid contains 128 by 128

Figure 1. Position of the pumping well (W) and
nine piezometers (A–I) in the pumping test.

cells. The two geological facies have constant hydro-
geological parameters (Table 4). The boundary con-
ditions are constant head values at all edges, equal
to 0 m, and at the beginning of the pumping test,
hydraulic charge equals to 0 m everywhere in the
domain. The reference field was created using the
DeeSse software, which is an implementation of Di-
rect Sampling algorithm with pyramids [Straubhaar
et al., 2020]. An extended image of a channelized
aquifer was used as the training image (Figure 3). We
chose to run the DeeSse in the Direct Sampling Best
Candidate (DSBC) mode, which boils down to choos-



28 Przemysław Juda et al.

Figure 2. Time series of hydraulic heads recorded at nine piezometers (A–I) and the pumping well (W).

Table 3. Positions of piezometers (x, y coor-
dinates), corresponding columns and row in-
dexes, and labels

x (m) y (m) Column index Row index Label

242.5 392.5 48 78 A

392.5 392.5 78 78 B

492.5 392.5 98 78 C

167.5 317.5 33 63 D

357.5 317.5 71 63 E

442.5 317.5 88 63 W

527.5 317.5 105 63 F

242.5 242.5 48 48 G

392.5 242.5 78 48 H

492.5 242.5 98 48 I

ing a threshold of 0 in the standard Direct Sampling,
or very small, close to 0, if the software does not al-
low for non-positive input. The maximal scan frac-
tion was set to 0.01 and the number of neighboring
nodes to 40. Two pyramid levels were used, with
the reduction by 2 in each direction at every level.
The groundwater flow was simulated using the FloPy
python package [Bakker et al., 2016], which is a wrap-
per for the MODFLOW software [Hughes et al., 2017].
To emulate the measurement error, the obtained val-
ues of hydraulic heads were corrupted with Gaussian
noise with mean 0 m and standard deviation 0.005 m.
These data will be used as input for the different in-
version procedures.

To evaluate the quality of the inversion methods,
we use in addition a prediction problem. The pre-
diction data will not be used by the inversion algo-
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Figure 3. Reference (true) training image, used to generate the reference (“true”) field. Data from Zahner
et al. [2016].

Table 4. Hydrogeological parameters of different geological facies considered in the study

Less permeable (0) More permeable (1)

Hydraulic conductivity (m/s) 1×10−4 1×10−2

Specific storage (m−1) 5×10−4 5×10−5

Porosity 0.4 0.3

rithms. Here we consider, the prediction of the 10-
day groundwater protection zone, it is also referred
to as the 10-day capture zone [van Leeuwen et al.,
1998]. It is calculated in a slightly different setup
but with the same geological model and its proper-
ties. The boundary conditions are prescribed heads
equal to 1 m on the left boundary, 0 m on the right
boundary and interpolated between those two val-
ues on the upper and the lower boundaries. A con-
stant pumping rate of 0.04 m3/s is imposed at the
well and forward particle tracing is performed on the
steady-state solution of groundwater flow. The 10-
day zone contains each location (pixel), from where

groundwater reaches the pumping well in less than
10 days.

3.3. Inversion set-up

We will perform the inversion three times for each
method. Every time, we use a different training im-
age. The baseline case uses the reference TI, the two
other cases use a different one. In this way, the ro-
bustness of the inversion methods can be tested. The
two other training images were generated with the
TI generator tool [Maharaja, 2008] in the AR2GEMS
software. Their size is identical to the one of the
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Figure 4. The reference field (A) used as the synthetic reality (considered unknown) and the correspond-
ing 10-day groundwater protection zone (B).

Figure 5. “Channels TI”, an alternative training image.

original TI. The first is a channelized medium with
disjoint channels, and the second represents ellip-
soidal deposits. TIs have the same proportion of fa-
cies as the original TI. We will refer to them as “Chan-
nels TI” (Figure 5) and “Ellipses TI” (Figure 6).

Both PoPEx and ESMDA benefit from the same

geostatistical engine as the original reference; it
means that the same DeeSse parameters are used in
PoPEx + MPS and in ESMDA + MPS to generate the
reference. In theory, it is possible (but highly un-
likely) that PoPEx samples the same model as the ref-
erence. It might not be the case for ESMDA, as it im-
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Figure 6. “Ellipses TI”, an alternative training image.

poses dense conditioning on a coarse grid, but very
similar models can be produced. The fact that PoPEx
and ESMDA use DeeSse, gives them an edge com-
pared to DREAM-ZS+GAN, as the reference is a real-
ization generated by DeeSse (therefore not present in
the TI). GAN is trained on images cut from the TI and
learns to develop similar realizations, but it does not
have access to samples simulated with MPS.

It is important to note that the three inverse meth-
ods identify a different number of unknowns. For
PoPEx, the number of unknowns is simply the num-
ber of grid cells in the domain, i.e. (128×128) =
16,384. For ESMDA, the number of unknowns is re-
duced, as compared to PoPEx, because they are the
continuous values on the low-resolution map used
to constrain the MPS realizations. In the example,
two pyramid levels are added, each one being ob-
tained by dividing by 2 the number of cells along
each axis, and 20% of the cells in the coarse level are
updated by the procedure, which results in a total
of 0.2× (128× 128)/(4× 4) ≈ 204 unknowns. Finally,
for DREAM-ZS+GAN, the number of unknowns is the

size of the latent Gaussian vector used as input to the
GAN (Table 1), and it is only 50. However, note that
the above calculation omits the fact that, for the two
first approaches, the values in the grid cells are cor-
related via the MPS statistics, and it is therefore diffi-
cult to estimate the actual dimension of the underly-
ing parameter space.

PoPEx was run with the following parameters: 32
parallel processes, and for a total of 50,000 iterations
(50,000 forward runs), the maximal number of con-
ditioning points is 10. The choice of the number of
parallel processes depends on available computing
resources, in our case it was adjusted to the num-
ber of cores in a computing node. The number of
forward runs and conditioning points are similar to
values suggested in the paper introducing the par-
allel PoPEx algorithm [Jäggli et al., 2018], where the
problem size was of comparable dimensions. ES-
MDA was run for 16 iterations (16 data assimila-
tions), the size of ensemble is 128 (a total of 2048 for-
ward runs) and number of parallel processes 32. The
chosen parameters are again close to those used in
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the paper which introduced the method Lam [2019],
which also suggested that using larger number of it-
erations would not lead to better results. DREAM-ZS
was run for total T = 5000 iterations with 32 paral-
lel chains (160,000 forward runs). The initial archive
size is set to 500. The size of the latent vector is
d = 50. Frequency of snooker update is 0.1, δmax = 1,
and nCR = 3, according to recommendations for stan-
dard parameters. To study the convergence, we set a
fairly low value for K , equal to 10, but the value 100
should be sufficient for the chosen number of itera-
tions. Moreover, we set b = 0.05 and b⋆ = 1× 10−6.
These parameters have been tested in the paper pre-
senting the DREAM-ZS with GAN for a hydrogeolog-
ical problem [Laloy et al., 2018]. For practical rea-
sons, to avoid too long computing times, we chose a
smaller size of the latent vector and set a limit on the
number of iterations.

4. Comparing the results

Since our numerical experiments involve a large
number of results, we need to use summary statistics
to compare the different methods efficiently. For that
purpose, we will use three metrics for comparing the
quality of the results:

(1) The first metric indicates how well the mea-
surements are reproduced by the simulation
ensemble. Each continuous measured value
will be compared with the ensemble of sim-
ulated values. A score that allows for such a
comparison is the continuous ranked proba-
bility score (CRPS) used to assess probabilis-
tic forecasts [Gneiting et al., 2007, Gneiting
and Raftery, 2007].

(2) The second metric indicates how well the
protection zone is predicted. In this case, a
discrete (categorical) value is compared with
a probability for each point using a quadratic
score [Gneiting et al., 2007].

(3) Finally, the third metric indicates how well
the geology is identified. For that purpose,
we use the average of pixel-by-pixel qua-
dratic scores of predicted facies.

Below, we recall the definition of the CRPS and
quadratic (Brier) scores.

4.1. CRPS score

The continuous ranked probability score (CRPS) is
given by:

crps(F, x) =
∫ ∞

−∞
(
F (y)− 1(y ≥ x)

)2 dy, (19)

where F is the predictive cumulative distribution
function (CDF), and x the true (observed) value, and
1(y ≥ x) = 1 if y ≥ x and 0 otherwise. The advantage
of the CRPS score is that it is expressed in the same
units as the observations, and it generalizes absolute
error, as when the CDF becomes a point observation,
it equals the absolute error. In this way, it also pro-
vides a way to compare probabilistic and determinis-
tic forecasts.

In our context, the crps score will be averaged for
all measurement points:

CRPS = 1

N

N∑
i=1

crps(Fi ,d obs
i ), (20)

where Fi is the predicted CDF corresponding to the
measurement point d obs

i .

4.2. Quadratic (Brier) score

The quadratic score was first introduced by Brier
[1950] to quantify forecasts of categorical variables
expressed in terms of probabilities. The quadratic
(aka Brier) scoring rule is given by:

bs(p, i ) =
M∑

j=1
(δi j −p j )2, (21)

where p is a discrete probability distribution, i.e.∑M
i=1 pk = 1, and pk ≥ 0 for all k ∈ {1,2, . . . , M }, M the

total number of categories, in this case equal to 2. δi j

is the Kronecker delta δi j = 1 if i = j , and 0 otherwise.
In our context, we will average the Brier score over

all locations where it is predicted if that location is in
the groundwater protection zone. Let pk be a prob-
abilistic forecast if point k is in groundwater protec-
tion zone, and lk true category (in this case binary) of
point k. The average Brier score is then given by:

BS = 1

Nl

Nl∑
k=1

bs(pk , lk ), (22)

with Nl the total number of locations. In the case of
geology, the score is calculated in the same manner,
but the facies data is used instead of the protection
zone.



Przemysław Juda et al. 33

5. Results

For each of the methods and for each of the TIs, we
report prior data coverage and posterior data match,
and corresponding prior and posterior probability
maps (groundwater protection zone, facies) with ex-
amples of realizations. We also compare the conver-
gence of the methods with respect to the number of
forward calls.

5.1. Prior distributions

The prior groundwater protection zones are essen-
tially circular (Figure 7), as the most probable event
is that the well is placed in the less impermeable
facies. Such a configuration results in a large (and
unrealistic) drawdown. If we look more closely at
the prior groundwater protection zone maps, we can
see a second mode, which is an ellipse. This oc-
curs when the pumping well intersects a channel.
Such a zone shape is visible for the Channels TIs
(Figure 7).

The channel prior probability maps are roughly
homogeneous for all the simulation methods and
training images (for example, see Figure 7). This is
expected as we did not impose any prior condition-
ing data, the prior probability of a channel corre-
sponds then to the proportion of channels in the
training image.

For the drawdown curves in the piezometers and
pumping well, the prior distribution shows wide con-
fidence intervals, as can be seen for DREAM-ZS and
Ellipses TI for example (Figure 10). The true data
are usually within the 95% confidence intervals, but
there are some exceptions, and it happens that some
head data lie outside of this range.

5.2. Posterior distributions

The confidence intervals for the drawdown curves
are very much reduced, and they mostly match the
data well (Figures 8–10).

Even if we do not show the figures here for the sake
of brevity, the posterior distribution computed using
the reference TI with all the methods achieved a sat-
isfactory data fit, with DREAM-ZS and PoPEx produc-
ing very narrow confidence intervals and an excellent
match and ESDMA producing wider confidence in-
tervals.

With the Channels TI, PoPEx produced wider con-
fidence intervals, and some piezometric data (A, F, H,
I) are not matched perfectly, but the fit is reasonable.
ESMDA achieved slightly worse piezometer data fit,
but the well data is reproduced poorly, giving a high
probability of the well placement in (or close to) the
less permeable region. DREAM-ZS achieves a very
close fit and provides narrow confidence intervals.

The Ellipses TI is the most difficult one. PoPEx
does not match the data well for some piezometers
(A,C,F) and produces quite wide confidence intervals
(Figure 8). ESMDA produces wide confidence in-
tervals, and the head data in the pumping well are
poorly represented (Figure 9). DREAM-ZS produced
very narrow confidence intervals, but the data are
sometimes not very well matched (Figure 10F).

In terms of posterior probability maps, all meth-
ods solved reasonably well the inverse problem in
the reference case. The protection zone probability
maps are very close to the reference protection zone
for all methods (Figure 11). The permeable facies
probability maps were able to represent the bifurca-
tion. We note however some general trends to predict
with over-confidence certain geological features. For
PoPEx, on the right side of the map, the channel goes
straight with a high probability, while in the reference
it goes slightly to the bottom. For the ESMDA algo-
rithm, the posterior probability map suggests some
“eye” feature to the left of the bifurcation. This pat-
tern is not suggested by PoPEx. For DREAM-ZS, the
“eye” structure is even more pronounced and the
same map indicates with high probability a channel
at the bottom, which only partially coincides with the
channel in the reference realization. These rather
high posterior probabilities of the presence of cer-
tain geological features that are not present in the ref-
erence seem to correspond to some artifacts of the
methods and not to features suggested by the statis-
tics of the TI.

The case of the Channels TI (Figure 12) posed
more challenges for the inversion algorithms. The
protection zone was only very well represented by
the DREAM-ZS method. The zone obtained with
PoPEx is more elongated and less influenced by the
bifurcation. Indeed, PoPEx indicates a higher proba-
bility of channel only in the lower branch. Due to this
TI with disjoint channels, it had difficulties in repro-
ducing the branching of channels. ESMDA did not
attribute a high probability of permeable facies near
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Figure 7. Prior probability distributions obtained with the Channels TI for the groundwater protection
zone (left column), and the channel occurrence (middle column). The black contours correspond to the
reference. The right column shows one example of realization. The top row shows results obtained with
PoPEx, the middle row shows results obtained with ESMDA, and the bottom row shows results obtained
with DREAM-ZS. The colormap is the same as for Figure 4B.

the pumping well. However, it managed to find the
double channel on the left side of the field. DREAM-
ZS performed best in reproducing the bifurcation,
but it also displays channel artifacts in the upper part
of the image.

The Ellipses TI can be considered as the hard-

est case, due to the disconnected nature of the high
permeability features (the ellipses). The solution
provided by PoPEx can be thought of as the most
conservative, as it only places a blurred region of
higher channel probabilities around the pumping
well (Figure 13). The advantage of this solution is
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Figure 8. Prior and posterior distributions of the drawdown curves obtained with PoPEx and the Ellipses
TI at the nine piezometers (A–I) and pumping well (W). The observed data is marked with thick brown
dots, the median of the posterior distribution with thin black line, the 95% confidence intervals of the
posterior are shown as dark shaded region, and those of the prior distribution are shown as the light
shaded region.

the absence of a high probability of channels in
spurious zones. Nevertheless, the protection zone
is not accurately reproduced. ESMDA placed a
smaller protection zone than it should be and in-
dicated with high certainty the presence of chan-
nels in regions where they should not be. DREAM-
ZS provides the most contrasted probability maps
and places incorrect geological features in the whole
area.

5.3. Convergence and quality metrics

The previous comparison of the posterior distribu-
tions shows that it is not simple to compare visually

the results. Therefore, in this section, we compare
the convergence of three quality metrics to get a bet-
ter understanding of the performances of the meth-
ods. We grouped the convergence plots by methods
in Figure 14. The quality metrics are plotted as a
function of the number of forward model runs since
these runs constitute the most expensive computa-
tional cost during the inversion.

Figure 14 shows that all the methods produced
the best results (smaller values of the quality indica-
tors) for the true training image. The methods also
converge, i.e. the errors diminish, with the number
of forward calls (iterations) for the true training im-
age. Generally, the scores are similar or better for
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Figure 9. Prior and posterior distributions of the drawdown curves obtained with ESMDA and the
Ellipses TI at the nine piezometers (A–I) and pumping well (W). The observed data is marked with thick
brown dots, the median of the posterior distribution with thin black line, the 95% confidence intervals of
the posterior are shown as dark shaded region, and those of the prior distribution are shown as the light
shaded region.

the channel TI than for the Ellipses TI. While differ-
ent scores show similar trends for the same case, a
good CRPS score does not necessarily imply a good
Brier score. The most notable example of the lack
of correlation is the case of the DREAM-ZS algo-
rithm. The CRPS score goes down for all TIs rather
fast, and the scores for Channels TI and Ellipses TI
are close. However, when comparing the BS-zone
scores, the Ellipses TI results become significantly
worse than those with the Channels TI. Moreover, the
BS-channel score increases after 1×104 forward calls.
It seems that the realizations collapse on a very simi-
lar (and not fully correct) model realization, and pro-
duce geological artifacts which are highlighted by this

score, while the CRPS score on data match remains
low.

When comparing the different methods for the
same TIs, we note that ESMDA exhibits a very fast
convergence at the beginning and then reaches a
plateau. The method stops after relatively few for-
ward runs (as compared to the other methods),
and this is related to the choice of the parameter
governing the number of data assimilations. Here,
the default value of 16 is used [Lam et al., 2020] and is
based on recommendations of Emerick and Reynolds
[2013]. In a sense, it is the least computationally ex-
pensive method, but the achievable quality is lim-
ited. Other methods can provide results of better
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Figure 10. Prior and posterior distributions of the drawdown curves obtained with DREAM-ZS and the
Ellipses TI at the nine piezometers (A–I) and pumping well (W). The observed data is marked with thick
brown dots, the median of the posterior distribution with thin black line, the 95% confidence intervals of
the posterior are shown as dark shaded region, and those of the prior distribution are shown as the light
shaded region.

quality, but they need more iterations. DREAM-ZS
shows the best convergence for the data match and
protection zone reproduction for the Channels TI,
but the error diverges for BS-channel and becomes
larger than those of PoPEx and ESMDA for the largest
number of iterations. We note a slow but steady con-
vergence of PoPEx when using the Ellipses TI, as op-
posed to ESMDA, which stagnates after the first itera-
tions, and DREAM-ZS, which matches the piezomet-
ric data very well but has slow convergence on the
BS-zone and even diverges on the estimation of the
geological features (BS-channel).

In summary, PoPEX is the method that seems to

be the most robust. It converges steadily with the
number of forward model calls, and rather fast when
the proper training image is given but slowly if a
wrong training image is provided. On the contrary,
ESMDA always improves the solution very fast for the
first iterations even with a wrong training image, but
it stagnates rapidly after a few iterations. DREAM-ZS
has an intermediate behavior, it can be faster than
PoPEx and continues to improve the results when
ESMDA stagnates even with a wrong TI. But there are
cases where the DREAM-ZS method diverges and the
error increases with additional iterations.
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Figure 11. Posterior probability maps obtained with the true TI for the groundwater protection zone (left
column), and the channel occurrence (middle column). The black contours correspond to the reference.
The right column shows one example realization. The colormap is the same as for Figure 4B.

6. Conclusions

In this study, we compared three recent stochastic
inversion methods capable of inverting categorical
fields: Posterior Population Expansion (PoPEx) with
multiple-point statistics (MPS), Ensemble Smoother
Multiple Data Assimilation (ESMDA) with MPS pyra-

mids, and DREAM-ZS with Wasserstein Generative
Adversarial Network (WGAN). A synthetic test case
with hydrogeological data (time series of hydraulic
heads) was used, and two geological facies were con-
sidered. The results were analyzed both for the in-
version and for a prediction of the 10-day groundwa-
ter protection zone. The quality indicators took into
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Figure 12. Posterior probability maps obtained and example realizations with the Channels TI.

account the reference solution (ground truth repre-
sented by the reference solutions) with probability
forecasts.

Our main finding is that when the methods were
given the correct prior information (represented by
a training image), they all achieved reasonable con-
vergence. Even with the wrong priors, some accept-
able solutions were obtained. However, the choice
of the prior is essential. The convergence was neg-
atively affected when the TI with lenticular deposits

was used. The TI with disjoint channels (as opposed
to the original TI with bifurcating channels) provided
slightly better results than ellipsoidal deposits, but
the two wrong TIs deteriorated the results and intro-
duced artifacts. As previously discussed in the inter-
comparison exercise of Zimmerman et al. [1998], we
also observed that none of the methods performed
systematically better than the others for all the crite-
ria that we studied.

The advantage of PoPEx is that it presented the
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Figure 13. Posterior probability maps and example realizations obtained with the Ellipses TI.

most steady convergence compared with ESMDA
and DREAM-ZS, whose scores fluctuated (ESMDA) or
even increased (DREAM-ZS) with the number of it-
erations. PoPEx can also be thought of as the most
“conservative”, as it does not introduce “artifacts”,
e.g. geological features which are unlikely (outside
the informed zone). However, this “conservative” ap-
proach leads to poorer data fit and worse predictions
of the protection zone in certain cases. In the case
of a wrong prior, it rarely performed better than the

other methods.
The advantage of ESMDA is its fast convergence. It

was able to reasonably identify the permeable zones
between the piezometers even with wrong priors,
producing patterns not present in the TI, which was
needed to match the data. But it also indicated with
high certainty some permeability patterns outside
this zone that were incorrect. A surprising point, and
drawback of the method, is that it did not always
place the well in the permeable zone when a wrong
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Figure 14. Convergence of the posterior predictions, as measured by different scores (columns) for every
method (rows). Each plot compares the curves for different TIs.

prior was used. It resulted in overestimated confi-
dence interval for the well data.

DREAM-ZS often matched the data the best and
provided very good protection zone estimates. It was
able to generate realizations that had bifurcation pat-
terns without seeing them in the training set. Out-
side the informed zone, it was often overconfident
in placing geological patterns, even to a greater ex-
tent than ESMDA. However, the good performance of
DREAM-ZS is remarkable, as the reference data was
generated using the MPS tool employed by PoPEx

and ESMDA. Identifying these geometries should be
easier for these methods than for DREAM-ZS. For
a fairer comparison, an additional reference real-
ization generated with GAN could be added, but it
would require repeating the whole study.

Note that, this study might be extended by includ-
ing other methods coupling ESMDA with GAN [Bao
et al., 2020, Canchumuni et al., 2021], which would
be interesting to compare especially with ESMDA +
MPS and DREAM-ZS + GAN. Another point is that
the results are compared to a single reference field,
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and not to a probabilistic reference solution, as for
example done by Jäggli et al. [2017]. However, such a
probabilistic reference solution requires a very large
ensemble of unconditional realizations and depends
on the simulation technique and the prior. Since we
are modifying the prior in our tests, it would be nec-
essary to consider several probabilistic reference so-
lutions to make the comparisons, implying an even
higher computational cost.

More generally, the application of these methods
to real case studies still needs to be explored before
we could give recommendations to the practitioners.
First, one needs to extend the methods to the multi-
categorical case. PoPEx is capable of handling it,
adapting GAN should be straightforward, but ES-
MDA + MPS must be adapted to account for mul-
tiple Gaussian pyramids. In a practical application,
identifying the prior or priors requires geological ex-
ploration and testing the different priors using for
example K-fold cross-validation strategies as shown
in Juda et al. [2020]. This is feasible in theory, but
may not always be possible because of limited time.
Another important unknown is how these different
methods would behave when adding borehole data.
Making such a comparison was not possible, because
the WGAN that we used is not able to generate ge-
ological simulations conditioned by borehole data.
Finding ways to condition efficiently the GAN is still a
research topic. We also did not evaluate how the dif-
ferent methods perform when the quantity of infor-
mation varies. All these questions show that research
on categorical inverse problems is still very open.

To conclude, the approaches presented and com-
pared in this paper include a statistical and spatial
model of a categorical field and a stochastic tech-
nique for generating or identifying a set of realiza-
tions that could match the head data. This is directly
inspired by the philosophy that Ghislain de Marsily
taught us (see companion paper by White and Lav-
enue [2022]). We are still pursuing this track with pas-
sion, but the road is bumpy and the destination is far
from sight.
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