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Abstract. The paper underlines the contributions of Ghislain de Marsily (GdM) to the identification of
aquifers heterogeneity using inverse methods mainly for modeling subsurface flow. Inverse methods
require an objective function to express the goodness of fit of the chosen model, a parameterization
to describe the spatial distribution of model parameters, and a minimization algorithm. The resulting
inverse problem, which consists in seeking model parameters’ values that render model outputs close
to the observations, is usually unstable. GdM developed seminal ideas for the two key inversion issues
that are: to stabilize the inverse problem through regularization, and to parameterize it to reproduce
the natural heterogeneity of the subsurface with a limited number of parameters. GdM conducted
pioneering works that are the basis of current parameterization methods relying upon adaptive
zonation and/or interpolation based on pilot points. We take here the opportunity to highlight the
GdM’s contributions inspiring currently used techniques.

Keywords. Groundwater, Inverse methods, Modelling, Parameter identification, Parameterization.

Quotations. “Verification will certainly never be perfect, but again we are not striving for certainty and
perfection, only to do our level best”. [de Marsily et al., 1992].

Manuscript received 19 April 2022, revised 13 July 2022, accepted 12 September 2022.

1. Introduction

As soon as anyone is tempted to find the causes of
some observations, an inverse problem emerges. We
face inverse problems daily and most of the time,
without being fully aware of this. A quite general def-
inition of an inverse problem is finding the causes of
observations, while the direct (or the forward) prob-
lem would be to assess the effects of some causes.
One of the most popular successes in inverse prob-
lems is probably the discovery of Neptune by Le Ver-
rier [1846]. His manuscript started with “Je me pro-

∗Corresponding author.

pose . . . d’étudier la nature des irrégularités du move-
ment d’Uranus; et de remonter à leurs causes” (I pro-
pose ... to study the nature of the irregularities of the
movement of Uranus, and to retrieve their causes).
Based on observations of unexplained trajectories
of Uranus, Le Verrier applied two inverse methods:
(i) a parameter estimation trying to find the best pa-
rameter set for the mathematical model calculating
the interactions between Uranus, Saturn, Jupiter, and
the Sun; (ii) a change in the model by adding a new
planet (Neptune) and finding its position and mass.
He also questioned the uncertainty of existing data
and their potential impact on his conclusions. In
his quest to explain why Uranus had irregular unex-
plained trajectories, he expressed the two basic is-
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sues arising when formulating an inverse problem:
to find parameters for a given model (parameter esti-
mation), and to find both the model and its parame-
ters (model identification).

Most inverse problems are considered as ill-posed
in that they contradict, to some extent, the principles
of a well-posed problem in the sense of Hadamard
[1902]:

• for all admissible data, a solution exists;
• for all admissible data, the solution is unique;
• the solution depends continuously on data.

It can be noticed that these criteria lack mathemati-
cal rigor. What is “admissible”? What kind of continu-
ity is required? Even worse, in Geosciences, a unique
and stable solution does not need to be a good rep-
resentation of reality. This might be one of the rea-
sons why inverse methods have been mostly initiated
by intuitive reasoning rather than grounded in math-
ematically sound deductions. In fact, an ill-posed
problem should lead to its reformulation. How-
ever, some problems can be considered as “morally
ill-posed” [Jaynes, 1984] due to practical difficulties
such as determining the subsurface structure from
surface seismic data, or because of small sensitivi-
ties such as determining the transmissivity variabil-
ity from piezometric heads in groundwater model-
ing, or because of the complexity (chaotic charac-
ter, i.e., instability) of interactions between individ-
uals or groups such as the mechanics of billiard balls.
Many ill-posed problems are thoroughly described in
Bertrand [1889]. In hydrogeology, we know that a so-
lution usually exists, but whether it depends continu-
ously on data or is unique has been the topic of many
research activities over the last seventy years. The
outcome was that the well-posed character of a prob-
lem greatly depends on how the problem is formu-
lated.

The first attempt of parameter identification
through an inverse method in hydrogeology can be
attributed to Bennett and Meyzer [1952] who used a
flow net approach to estimate transmissivity. Stall-
man [1956] developed the first numerical model for
parameter estimation by relying upon this flow net
approach. This type of approach continued dur-
ing the 1960s, until Emsellem and de Marsily [1971]
showed that the method led to non-unique (arbi-
trary, as we will see) and unstable solutions. They re-
alized that a well-posed problem was needed for reg-

ularization, and that extra information was required
to render the solution realistic. These issues were for-
malized in the GdM’s “thèse d’Etat” [1978], which led
to formulating the inverse problem as an optimiza-
tion procedure minimizing an objective function
that penalizes discrepancies between observations
and model outputs. However, regularization was still
needed.

The goal of regularization is to improve the con-
ditioning of the inverse problem. Numerous ap-
proaches can be adopted. But, to add realism be-
yond conditioning, they should integrate prior infor-
mation (i.e., a knowledge about model parameters
stemming from sources other than head data). The
incorporation of prior information was initially intro-
duced by restricting the size of the domain in the pa-
rameter space where the solution was supposed to
be (i.e., constraints on the parameter values). How-
ever, this led to parameters fluctuating spatially be-
tween their bounds, which inclined Neuman [1973]
to propose an additional “plausibility criterion”. Ti-
honov [1963b,a] had shown that by simply adding the
quadratic norm of the parameters to the objective
function, linear regression could become well-posed.
Even though this added criterion did not include
prior information, it opened the way of using met-
rics accounting for priors. Note that strict Tikhonov
regularization simply promotes smoothness. Carrera
and Neuman [1986b] argue that this limitation is fic-
titious because Tikhonov’s regularization can be used
with any appropriate formulation i.e., Tikhonov’s re-
sults are valid if the regularization term penalizes any
norm of the parameter departures with respect to the
prior information. See Engl et al. [1996] for a general
overview of Tikhonov regularization.

Part of the instability problem results from try-
ing to estimate too many parameters from a limited
amount of data. Therefore, another line of research
has been trying to represent permeability fields with
a limited number of unknown parameters. This is
called parameterization, which can also be seen as
a particular regularization method, in the sense that
it improves the conditioning of the inverse prob-
lem by reducing the number of degrees of freedom
(i.e., the number of parameters to estimate). In fact,
an adequate parameterization allows for incorpo-
rating prior information, both in terms of parame-
ter values and their statistical and spatial distribu-
tions. Parameterization can compile “hard” informa-
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tion such as measured parameter values and subjec-
tive knowledge (“soft” information) coming from the
investigations of different disciplines including geol-
ogy, geophysics, and hydrology. This “soft” informa-
tion may also be the result of field works (geologic
maps, drilling logs, pumping tests, geophysical sur-
veys) that may provide a reasonably good insight into
the acceptable range of parameters and their spatial
distribution. Again, words like “reasonably” and “ac-
ceptable” cover subjective notions which allow for a
lot of creativity. As we will see, this may have been the
most lasting contribution of GdM.

The aim of this paper is not to review parameter
estimation by inverse methods. Numerous excellent
reviews targeting the inverse problem in hydrogeol-
ogy can be found in Yeh [1986], Carrera [1988], Ginn
and Cushman [1990], de Marsily et al. [2000], Carrera
et al. [2005], McLaughlin and Townley [1996], Kitani-
dis [2007], Oliver and Chen [2010], Zhou et al. [2014],
Yeh [2015]. Instead, our goal is to highlight the con-
tributions of GdM in solving the above-mentioned
problems (proper formulation, regularization, and
parameterization), which are keys for model calibra-
tion and predictive uncertainty [Cui et al., 2021].

The paper is organized along two lines. First, we
outline the evolution of the formulation of the prob-
lem. Second, we review the four main parameteri-
zation strategies: zonation, interpolation such as pi-
lot points, embedding geophysical information, and
lithological information from modeling. For each
strategy, we start from GdM’s work and provide a
short review of how his ideas percolated until to-
day. For simplicity (for the readers and the authors),
we will only focus on the identification of hydraulic
transmissivity or conductivity.

2. Formulation of the inverse problem: early
attempts and stability issues

Early modelers of groundwater flow recognized the
need for inversion [Stallman, 1956]. The solution to
the inverse problem was initially posed as obtain-
ing transmissivity, given hydraulic heads, assumed
as known everywhere. In the steady-state case, this
leads to a Cauchy problem [Nelson, 1960], as out-
lined in Figure 1. As mentioned in the introduction,
Hadamard [1902] had stated that, for a problem to be
well-posed, its solution should exist, be unique and
stable. Emsellem and de Marsily [1971] showed in a

very simple way that the last two conditions might
not be met in the estimation of transmissivities by
considering a simple steady-state flow problem, gov-
erned by

∇(T∇h)+q = 0 (1)

where T = T (x) and q = q(x) (x a given location)
are the transmissivity and recharge fields, respec-
tively, and h = h(x) is the head, solution of the flow
problem, if subjected to appropriate boundary con-
ditions. Then, if a field T ′ can be found satisfying

∇(T ′∇h) = 0 (2)

under homogeneous boundary conditions, then T +
T ′ will also satisfy (1). For transient problems, find-
ing T ′ may be difficult, but for steady-state problems
it is not. Therefore, the solution to the problem is
non-unique. Worse, as shown in Figure 1, the solu-
tion obtained with the initial Cauchy method is ar-
bitrary. The calculated solution is defined up to the
multiplication by a constant that can be chosen ar-
bitrarily for each integration flow tube. This leads to
“odd” solutions, like the one in Figure 2.

To overcome these difficulties, Emsellem and
de Marsily [1971] raised and then did three things
that would mark future developments:

• The need for regularization. Since the solu-
tion can lead to arbitrary jumps, one should
adopt a “smoothing” criterion to reduce ar-
bitrariness, while ensuring existence and sta-
bility of the solution (i.e., regularization).

• The need for data other than heads to ensure
resemblance to the actual aquifer i.e., prior
information and adequate parameterization.

• To propose a general solution method based
on minimizing mass balance errors when se-
lecting the T field. While their method still
required a full knowledge of heads, it was
generalized in that it could be applied to
transient problems with internal sinks and
sources (even if uncertain). The full knowl-
edge of heads may sound arbitrary nowa-
days, but one must bear in mind that auto-
matic interpolation was not a standard tool
in the 1960s. Therefore, hydrogeologists were
used to draw piezometric surfaces with hy-
drogeological criteria, so that a good deal
of conceptual understanding went into these
maps.



48 Philippe Ackerer et al.

Figure 1. Early formulation of the inverse problem as integration of the flow equation along streamlines
(picture taken from a lecture of GdM on the topic).

Figure 2. Example of Emsellem and de Marsily [1971] to illustrate the non-uniqueness of the inverse
problem: (a) a medium with homogeneous T zones A and B (A twice as transmissive as B), will yield a
piezometric surface with (b) twice head gradient in B than in A. Any T field as in (c), with along vertical
lines TA = 2TB , will reproduce heads exactly [modified from Emsellem and de Marsily, 1971].

These concepts marked future developments. The
need for regularization was explicitly incorporated by
Neuman [1973], who did two things. First, he for-
mulated the problem in terms of head errors (mini-
mizing the sum of squared errors on heads), which
he termed the indirect formulation of the inverse
problem [see also Yeh, 1975]. Second, he formalized
the smoothing criterion so that inversion became a
multi-objective problem, with a model error criterion
(e.g., the sum of squared errors) and a plausibility cri-
terion incorporating prior information. The work of
many others followed this path. Statistical formula-
tions of the inverse problem were the immediate next
step [Neuman, 1980, Kitanidis and Vomvoris, 1983,

Carrera and Neuman, 1986a, Rubin and Dagan, 1987,
and many others]. These formulations allowed for-
malizing the regularization requirement as a statisti-
cal problem. The issues of existence and identifiabil-
ity were formalized by Carrera and Neuman [1986b].

Still, the instability problem remained. To the
point that the inverse problem of groundwater hy-
drology was purported to be intrinsically unsta-
ble [Yakowitz and Duckstein, 1980], i.e., a “morally
ill-posed” problem. A large part of the problem rested
on trying to estimate T everywhere. The discus-
sions above (and the examples in Figures 1 and 2)
make it clear that trying to estimate T (x) for all lo-
cations x within the domain will lead to an ill-posed
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problem, even if h(x) is accurately known every-
where. Since flow through permeable media is essen-
tially dissipative, heads do not contain sufficient in-
formation about the small scale variability patterns
of hydraulic conductivity. This feature motivated
regularization methods, which initially were seek-
ing smoothness. Obviously, nature is not necessarily
smooth and a smooth solution does not need to re-
semble natural variability, which may become essen-
tial to other problems (notably, solute transport). Ad-
ditional information on the nature of spatial variabil-
ity is needed. Therefore, Emsellem and de Marsily
[1971] sought expressing T (x) in terms of a number
of parameters, while resembling natural variability.
Note that, in doing so, the inverse problem moves
from parameter estimation to model identification.

3. Parameterization

The problem of expressing the complete transmis-
sivity field in terms of a (hopefully small) number
of scalars is termed parameterization. The immedi-
ate option is to divide the aquifer into “zones” based
on geological understanding. And this is still a ba-
sic option. However, this approach encounters nu-
merous difficulties, from both theoretical and practi-
cal points of view. Geology is usually ambiguous, so it
is not easy to define geological units accurately. Even
if this was possible, geological units are not homoge-
neous.

A proper framework to study spatial variability is
geostatistics, the study of random fields, which was
introduced by Matheron [1967]. Two geostatistical
tools are relevant to our problem. The first one, krig-
ing, solves the problem of estimating a random func-
tion at a location, given measurements elsewhere.
Since T (x) is generally assumed to be log-normally
distributed, it is best to work with Y (x) = lnT (x).
Then, the estimate of Y (x) at a location x, assuming
that its values Yi are known at a set of measurement
points xi is:

YK (x) =
N∑

i=1
λi (x,xi )Yi (3)

where the subscript K stands for kriging estimate,
and the “kriging weights”, λi , are usually obtained by
ensuring that YK is a minimum variance unbiased es-
timate of Y (x). The weights can also be viewed as
the Gaussian conditional estimation weights, which

is convenient for generalizing. A problem with con-
ditional estimation is that it yields unrealistically
smooth fields (Figure 3). A second geostatistical
tool is conditional simulation, whose formulation
is similar to the kriging problem, except that in-
stead of seeking the “best” estimate, it seeks a ran-
dom field that is statistically consistent with available
data. These tools are basics for most parameteriza-
tion methods, which are reviewed below.

3.1. Zonation parameterization

Zonation was the first parameterization strategy used
for parameter estimation. It consists in partitioning
the complete domain into zones where the param-
eter variability can be described by the same model
(uniform value, statistical properties, etc.). The most
common zonation for parameters is based on uni-
form values over a given subarea, but varying be-
tween diverse subareas. Pioneer works on zonation
can be found in Jacquard and Jain [1965], and Jahns
[1966]. In the work by Jahns, the inverse problem
was solved using a regression problem (minimiza-
tion of an objective function with a Gauss–Newton
algorithm) based on a cost function as the quadratic
norm of the vector of residuals (i.e., the squared dif-
ference between computed and measured heads).
The number of zones was increased during the iden-
tification procedure and the reliability of the pa-
rameters was discussed in detail, addressing non-
uniqueness due to Lorentz reciprocity in flow [see,
e.g., Delay et al., 2011, Marinoni et al., 2016] and cor-
relations between parameters. Jahns [1966] provided
also computation times: 20 min for the estimation of
10 parameters with a 20×20 grid and 25 time steps.

Emsellem and de Marsily [1971] suggested adding
a regularization term to the objective function by in-
troducing a “smoothing” term in the minimization
procedure to reduce the number of possible solu-
tions. Adaptive parameterization was also described
by successive refinements of the initial zonation. To
our knowledge, for the first time, parameterization
was embedded in the minimization procedure by
adding to the cost function the quadratic norm of the
transmissivity vector multiplied by a weighting coef-
ficient. In this way, the parameterization was auto-
matically accounted for in the inversion through the
minimization procedure. Zonation can also be dif-
ferent for the same inverse problem, according to the
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Figure 3. Schematic description on the pilot points method (PPM). (a) Kriging honors measurements but
not variability away from measurements. (b) The PPM can be viewed as a correction of kriging estimation
that can yield (c) adequate large scale variability (conditional simulation, instead of kriging, can be used
for small scale variability).

type of sought parameters. For example, Zhang et al.
[2014] proposed two different zonations for trans-
missivity and for elastic and inelastic specific storage
parameters.

The main drawback of a raw zonation technique is
the prior definition of the number of zones and their
shape. The number of zones can be increased step-
wise as suggested by Jahns [1966] and Emsellem and
de Marsily [1971]. Carrera and Neuman [1986a], and
Sun et al. [1998] also suggested some metrics to es-
timate the potential benefits of increasing the num-
ber of zones. These metrics were also used by Tung
and Tan [2005] with a zonation based on Voronoï di-
agrams.

Several methods have been developed during the
last twenty years to adapt the shape of the zones and
the parameter values. Ben Ameur et al. [2002], Grim-
stad et al. [2003], and Hayek and Ackerer [2006] sug-
gested the calculation of refinement indicators for
the definition of the shape and the number of zones.
Transmissivity is assumed to be a piecewise constant
space function and unknowns are both the transmis-
sivity values and the shape of the zones. The shape
of each zone is adapted by relying upon refinement
indicators easily computed from the gradient of the
cost function. These refinement indicators define
where to split a zone, rendering then the largest re-
duction in the cost function after the corresponding
estimation. Level-set corrections were suggested by
Lu and Robinson [2006] and Berre et al. [2007], for
example, to deform the boundaries between zones

to obtain a better zonation. The local deformation
of the boundaries is proportional to the permeabil-
ity contrast between the two sides of a boundary, the
sensitivity of heads to transmissivity, and the residual
between the simulated and observed heads.

3.2. Pilot points parametrization

Kriging represents the BLUE (Best Linear Unbiased
Estimator) of Y (x). Therefore, a natural parameteri-
zation consists of extending the kriging equations (3)
beyond the original set of measurement points, xi , by
adding a set of pilot points, xp . The kriging estimate
becomes:

YK (x) =
N∑

i=1
λi (x,xi )Yi +

Np∑
p=1

λp (x,xp )Yp (4)

where λp are the kriging weights of the pilot points
computed at any location x. Obviously, Yp are un-
known. The pilot points method [PPM, de Marsily,
1978] consists of estimating Yp so as to obtain an
optimum fit of simulated heads to head measure-
ments. The PPM can also be viewed as adding a cor-
rection to the kriging estimate, which is more conve-
nient computationally (Figure 3). Obviously, the orig-
inal form of the method suffered several problems.
For instance, the location of the pilot points was
arbitrary and had to be chosen by trial and error
[de Marsily et al., 1984]. This was overcome by Ra-
marao et al. [1995], who sequentially increased the
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number of pilot points by adding new ones in the lo-
cations where they yielded the best improvement to
the objective function.

A second difficulty in the original form was that
pilot point estimates were not regularized, which
caused instability and led modelers to emphasize
both a “prudent” increase in the number of pilot
points, and to bound the values of estimated Yp .
Doherty [2003] included a regularization criterion
penalizing non-homogeneity of the model parame-
ters, while not using prior information [see details
by Doherty et al., 2010]. Neglecting prior informa-
tion results from viewing regularization in a “strict”
Tikhonov sense (recall discussion on Tikhonov reg-
ularization in the introduction). As a consequence,
limiting the number of pilot points remained a bar-
rier and, for a while, it seemed that the method of
choice was the self-calibration approach of Capilla
et al. [1998] and Gómez-Hernández et al. [1997],
which was able to reproduce quite accurately com-
plex fields. The problem with the traditional formu-
lation of the PPM was that direct measurements were
used for the first term of (4), but were disregarded
during the inversion process. Alcolea et al. [2006]
overcame this problem by formulating the PPM in
a fully geostatistical form. They explicitly acknowl-
edged that pilot point estimates were part of the ran-
dom field, which led naturally to a regularization
term without any additional assumption. This for-
mulation also allowed demonstrating that a stable in-
version was possible, regardless of the number of pi-
lot points, provided that a rigorous statistical formu-
lation was adopted. In fact, Kitanidis and Vomvoris
[1983] had already shown, via linearized co-kriging,
that the number of parameters is not the real issue,
but consistent geostatistics is. An additional advan-
tage of the geostatistical formulation of the PPM is
that it leads naturally to conditional simulation tech-
niques, which is advantageous when one is inter-
ested in reproducing small scale variability [Lavenue
et al., 1995].

A great advantage of the PPM is the ease with
which complex problems can be addressed, which
coupled with the flexibility of PEST software [Do-
herty et al., 2010], has allowed an explosion of the
method in several directions. The PPM has been used
with all kinds of equations and phenomena beyond
groundwater flow [e.g., Vesselinov et al., 2001]. It
has also been used in moments equation inversion

[Hernandez et al., 2003], for fractured media [Lav-
enue and De Marsily, 2001], or for multi-point geo-
statistics [Gravey and Mariethoz, 2020, Ma and Jafar-
pour, 2018]. In short, the PPM has become the stan-
dard for non-linear geostatistical inversion. More de-
tails about PPM can be found in White and Lavenue
[2022].

Nevertheless, a practical problem with the tradi-
tional PPM lies on its reliance on the geostatistical
assumptions. It is clear that the PPM can lead to
fully consistent and stable solutions. The question is
whether the usual geostatistical assumptions provide
good representations of geological variability. For ex-
ample, the traditional multi-Gaussian paradigm was
challenged by Gómez-Hernández and Wen [1998],
who suggested that high transmissivity regions tend
to be connected, which has repeatedly proven right.
For example, Pool et al. [2015] compared the PPM
(assuming stationary multi-Gaussian) to zonation on
the basis of a simple geological model (paleo chan-
nels connectivity). They found that, while the PPM
led to better calibrations (smaller calibration errors),
geological zonation was better at predicting seawa-
ter intrusion. The implication is that traditional geo-
statistics is not sufficient and that proper incorpora-
tion of geological understanding is needed.

3.3. Parameterization based on geophysics

The use of geophysical methods such as electrical re-
sistance tomography (ERT), seismic and radar trans-
mission are expected to provide complementary data
related to both the hydraulic parameter values in the
subsurface and their spatial distribution. Measure-
ments are done from the soil surface and are cheaper
than traditional hydrological measurements such as
pumping tests, which require “intruding” in the sub-
surface via wellbores. Furthermore, the acquisition
of geophysical signals can be fairly well extended over
the whole aquifer, which may prove helpful in tack-
ling two main problems plaguing parameter identifi-
cation for hydrogeological models:

• The representative volume of the measured
transmissivity. This volume ranges from lab-
oratory scale to pumping tests scale in hy-
drology. It is rarely consistent with the ele-
mentary modeling scale at which data should
be estimated to document the cell/element
scale of the model grid;
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• The improvement of parameterization. The
geophysical investigations should provide
numerous images/patterns/values of geo-
physical parameters, assumed to be some-
how correlated to hydrological parameters.

In short, the additional information from geophysics
is expected to reduce the number of possible solu-
tions, or at least permit sorting the “hydraulic” so-
lutions that are in good stands with the subsurface
structure evidenced by geophysics.

De Marsily and co-workers nicely highlighted the
contribution of electric resistance measurements
to the estimation of transmissivity. Ahmed et al.
[1988] used the co-kriging of measured transmis-
sivity, specific capacity, and electrical resistivity to
elaborate transmissivity maps. They underlined that
the contribution of electrical resistivity to transmis-
sivity evaluation was important, but the diverse vari-
ables should be measured at a significant number of
common locations to infer reliable cross-variograms.

The use of geophysical data in hydraulic param-
eter estimation was also addressed by Rubin et al.
[1992], who combined head and hydraulic conduc-
tivity measurements at wells with a well-known seis-
mic velocity field. Following the same approach,
Copty et al. [1993] analyzed, in hydraulic parameter
estimations, the effects of measurement errors con-
cealed in the seismic velocity values. In their pa-
rameter estimation procedure, Dam and Christensen
[2003] included the parameters involved in the rela-
tionships (state equations) between hydraulic con-
ductivity and geophysical properties. They also used
PPM for parameterization of both geophysical and
hydrological parameters.

For these three approaches, the relationships be-
tween geophysical data and hydraulic conductivity
were supposed to be known, although these relation-
ships can be complex, often highly non-linear, and
varying over space. Hyndman et al. [1994] circum-
vented this downside by using seismic data to de-
lineate the geometry of lithologic zones. The hy-
drodynamic parameter values were then estimated
for each lithologic zone by minimizing the sum of
squared residuals between measured and computed
tracer concentrations.

Haber and Oldenburg [1997] developed the joint
inversion as a generic approach to invert two data
sets when the underlying models are linked by the
same structural (geological) heterogeneity. The main

advantage of this approach is that it does not need
any assumption about the relationship between the
two data sets. Cardiff and Kitanidis [2009] showed
the interest of the joint inversion via an adaptive
zonation approach based on the level-set method.
Finsterle and Kowalsky [2008] performed the joint
inversion of ground penetrating radar (GPR) travel
times and hydrological data collected during a simu-
lated ponded infiltration experiment. Joint inversion
is nowadays widely studied in hydrogeophysics [see
Linde and Doetsch, 2016, for a review].

In the field of hydraulic parameter estimation
partly relying on geophysical data, the work of de
Marsily and co-workers can be considered as semi-
nal in initiating a promising research field leading to
a new discipline, hydrogeophysics.

3.4. Parameterization based on lithological
models

Solving the groundwater flow inverse problem has
also been applicable in pre-conditioning the inver-
sion by prior guess on the structure of the hetero-
geneity in the subsurface. When the structure is that
of the spatial distribution of hydraulic parameters,
for example, a correlated random field, the precon-
ditioning is similar to a regularization technique,
prescribing an overall distribution of hydraulic con-
ductivities. Inversion and post-conditioning onto
hydrological data can be carried out to add a per-
turbation to the prior parameter field [e.g., Ramarao
et al., 1995].

However, there exist many geological contexts,
in which a smooth field of parameters is not likely
to represent the subsurface geological heterogene-
ity. In these contexts, the simulations of diverse
“facies” distributions have revealed a better option.
Geostatistical techniques contributed to this task by
relying upon truncated Gaussian simulations [e.g.,
Matheron et al., 1987] or indicator sequential sim-
ulations [e.g., Schafmeister and de Marsily, 1994].
In short, both techniques come down to calculate
the probability of occurrence of a given geological
facies at each location of the modeled domain. Nev-
ertheless, the two-point covariance used to simulate
the distribution of these probabilities and to avoid
building a fully random “salt and pepper” image, still
renders relatively continuous representations. These
representations would not match the forecasts of
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geologists for complex systems such as fracture fields
or sedimentary facies distributions in the subsurface
of river floodplains. However, it is worth noting that
improving the geostatistical methods, especially in
developing truncated multi-Gaussian simulations
and non-stationary random functions, renders to
this day more realistic images [e.g., Beucher and
Renard, 2016].

In answer to the question of modeling with less
pain the complex heterogeneity of the subsurface
compartment in floodplains, G de Marsily and his
co-workers elected models of sedimentation, in the
form of a “genesis” model. Those are geared towards
simulating the mechanisms that sequentially oc-
cur over time to build the floodplain. Tetzlaff and
Harbaugh [1989] produced, via simplified equa-
tions of flow and transport, a model simulating river
floodplains and deltas. This model was amended
by Kolterman and Gorelick [1996], and employed to
produce a reference work simulating the sedimenta-
tion over 600,000 years occurring at the east coast of
the San Fransisco bay. The exercise was conditioned
by a detailed history of climate forcing and needed
very heavy computations.

The genesis model built by de Marsily and co-
workers [de Marsily et al., 1998, Teles et al., 2001,
2004] relies upon empirical rules to move, as ran-
dom walkers over a grid, elementary parcels of sed-
iments. The rules are inherited from the literature
in fluvial geomorphology, and adapted as a func-
tion of the successive dynamic episodes that con-
struct the floodplain, mainly: braided systems, me-
andering, and channel incision. These episodes,
even though not well documented for precise hy-
drodynamic conditions, can be detected and dated
along the history of the river by log samples and
geomorphological considerations. Parcels of sedi-
ments are of regular parallelepiped shape, the size
of which depends on the type of sediment con-
veyed. The variety of sediments encountered in
floodplains is simplified into a few classes, e.g., grav-
els, sands, and loam, to keep some relative continu-
ity in the deposited sedimentary bodies, and avoid
complex images that sometimes could resemble
patchworks.

The genesis model was used to reconstruct parts
of sedimentary floodplains of the Rhône and the
Aube rivers (France). In the application to the Aube
river, the structure modeled by the genesis model was

compared to a model of facies build via the sequen-
tial simulation of indicators. For both models, facies
were assigned hydraulic parameters values and for-
ward simulations of flow and solute transport were
performed. Regarding flow, both methods render
very similar results in terms of hydraulic head distri-
butions. It is worth noting that the flow scenario in
the system is strongly conditioned by boundary con-
ditions, and that piezometric heads are “robust” to
parameters in the sense: it needs an important varia-
tion of hydraulic conductivity (or hydraulic diffusiv-
ity) to generate a small variation in heads. As both
models, genesis and indicators, generate very differ-
ent patterns of hydraulic conductivity distributions,
the results pose the question of the identification of
conductivities on the basis of heads only. Regard-
ing transport results, simulations from both mod-
els do not match up at all. Transport (advection), is
very sensitive to the flow patterns, both in terms of
paths followed by the solute and concentration ar-
rival times. The genesis model with its tortuous chan-
nels of high conductivity, guides transport through a
few rapid pathways. For its part, the indicator model
distributes more evenly the hydraulic conductivity
values, with a consequence on transport of more
widespread (diffuse) pathways with slower velocities.

In view of the above results, it goes without say-
ing that parameterizations of the inverse problem in-
heriting from the geological structure of the subsur-
face are worth a try. Inferring or conjecturing this
geological structure can be carried out via near sub-
surface geophysical investigations, process-imitating
models (genesis models) and/or structure-imitating
models (geomodels). At least, “geo-modeling” in its
broad sense could open the equally probable solu-
tions to an inverse flow problem, to solutions more
convincing regarding the structure of the subsurface.
To date, applications of geomodels find their way in
engineering geology [Fookes et al., 2015]. With regard
to hydrogeology, regional aquifers in sedimentary
basins are often targeted [e.g., Ross et al., 2005], in al-
most the same way as for oil reservoirs or subsurface
repositories. The geological model is usually aggre-
gated at a scale rendering flow calculations tractable,
and in this up-scaling process, the geological facies
are directly transformed into a prior guess on hy-
draulic parameters. Along this line, the procedure
looks like a pre-conditioning of inversion exercises
on the basis of geological information.



54 Philippe Ackerer et al.

It must be acknowledged that “genesis” mod-
els, including one developed by de Marsily and
co-workers, did not receive much attention from
the hydrological community. Nonetheless, model-
ing the floodplain construction continued to evolve,
mainly for the purpose of simulating and predicting
the geomorphological evolution of fluvial corridors
[Williams et al., 2016]. Models mimicking either me-
andering [e.g., Pittaluga et al., 2009] or braided mor-
phodynamics [e.g., Williams et al., 2016] continue to
rely upon both a physically-based approach, solving
flow and transport [e.g., Sun et al., 2015, Olson, 2021],
or on conditioned empirical rules [for example, au-
tomata cellular, e.g., Coulthard et al., 2007]. With
the easier access to high-performance computing re-
sources, the physically based models tend to over-
shadow models based on empirical rules.

4. Conclusions

Inverse modeling is widely used today. Regulariza-
tion, incorporation of prior information, and param-
eterization in inverse methods are an art required
for philosophy and a lot of conjectures, i.e., math-
ematical statements that are accepted as valid, but
whose validity have never been proven or disproven.
These conjectures are supported by plausible rea-
soning [Polya, 1954] based on skills, training, and
imitation. The most popular conjecture in inverse
methods has often been: “Simplex sigillum veri”—
simplicity is the sign of truth. This conjecture is
now heavily discussed because inverse methods are
nowadays not only developed for parameter estima-
tion but also for improving model predictions by
quantifying model uncertainty. With the increasing
complexity of models, inversion strategies should fo-
cus not only on the number of parameters, but also
on the smallest possible uncertainty, and in that case,
the principle of parsimony may not hold [Gómez-
Hernández, 2006].

When applying inverse methods for parameter
identification, several problems come up:

• The existing data sets can be complex and
include measures of different support vol-
umes, of different nature, with data span-
ning a broad range of numerical values, and
that are more or less “hard” or “soft”, more
or less “certain” or “uncertain”. Properly
handling these data becomes an important

step in the definition of the model concepts
(physical processes taken into account, ini-
tial and boundary conditions, sink/source
terms, etc.) and linked to the objectives of
the model.

• The general design of the inverse procedure
can be either deterministic or stochastic
(Gaussian, multi-Gaussian) or both [Pool
et al., 2015].

• Additional information (also called multi-
ple source information) on the forecasted
parameter structure inheriting from geolog-
ical and geophysical data should be used as
model constraints. This structure may be
adapted (automatically or not) during joint
inversion.

• The parameterization should be consistent
with the design and the information on the
parameter structure. It should limit the num-
ber of parameters (degrees of freedom) to be
identified by using discrete locations (nodes,
pilot points, master points). These locations
should be defined in an “appropriate way”
and their number increased during the in-
version procedure, while keeping in mind
that there exist techniques and indicators
limiting useless parameterization [Hassane
et al., 2017].

• Parsimony “as simple as possible, but not
simplistic” is a good criterion to calibrate
the model for specific situations i.e. when
the variables lack sensitivity to the parame-
ters (transmissivity estimation for a 2D flow
model for example). However, it is not suf-
ficient to address model uncertainty. Ad-
dressing model uncertainty, often quantified
by parameter distributions and variances,
needs the exploration of the ensemble of
the plausible solutions [Moore and Doherty,
2005, Ackerer and Delay, 2010, Schöniger
et al., 2012].

Research activity tackling the above-mentioned
key features has concentrated on how to address
regularization and to include prior information as
a way to reduce instability of the inverse problem,
including: geostatistical or deterministic methods to
address spatial variability, and variants of PPM to pa-
rameterize this variability. Parameterization is now
conditioned by geophysical data and/or lithology
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coming from field observations or lithology model-
ing. All these topics were introduced or addressed in
the hydrogeological literature by Ghislain de Marsily.
As in many other hydrogeological topics, he did
not quite solve them (no one did it!), but, as “Tom
Thumb”, he marked the path that many of us still
continue to follow.
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