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Abstract. The stream network is a major feature of a landscape, conveying water, sediment, and solute
from hillslopes to the ocean. Noticeably, from a large-scale point of view, the elevation of the talwegs
of perennial streams is an important head boundary condition for both surface and groundwater flow
originating from hillslopes. Assuming a wireframe (1D) representation of talweg lines, the problem of
interpolating elevation between talwegs has received attention for applications such as flood mapping
using Height Above Nearest Drainage (HAND, Nobre et al. [2011]), or groundwater level interpolation
in low-conductivity aquifer systems. In this study we propose an alternate definition of this large-
scale base level concept introduced by Wyns et al. [2004], namely the Basal Envelope Surface of
Talwegs (BEST) and the associated Height Above the Basal Envelope Surface of Talwegs (HABEST),
along with a procedure to compute it using the Analytic Element Method (AEM). It can be defined
as the head distribution satisfying Laplace equation (Darcy flow with vanishing divergence), with
stream segments set as Dirichlet boundary conditions. The BEST is thus the real part of a complex
analytic (holomorphic) function which can be modeled using analytic slit elements, with very low
computational requirements and without the need for kriging, as it is often seen in the literature.
This analytic model is extended to the case of a non-zero, uniform divergence flow (head distribution
satisfying a Poisson equation) which can be useful to analyse groundwater levels at catchment scale.

Keywords. Analytic Element Method, Envelope Surface, Talwegs, Geomorphology, Groundwater,
Hillslope, Diffusive processes.

Manuscript received 1 April 2022, revised 1 August 2022 and 13 September 2022, accepted 14 Septem-
ber 2022.1. Introduction

It is well known since the pioneering work of Dunne
[1969, 1980] and Dunne and Black [1970] that satu-
rated groundwater flow (both subsurface and deep)
plays an important role in forming and sustaining
channelized flow, especially in humid environments.
From this perspective, neither can streams be consid-
ered as merely fixed (Dirichlet) boundary conditions
for the groundwater system, nor can the groundwater
flow feeding the streams be considered a mere “base-
flow contribution”: the energy level in the aquifer sys-
tem and in the streams are strongly related for all flow
conditions.

Wyns et al. [2004] showed that in low conductiv-
ity, shallow aquifer systems (such as weathered crys-
talline basement settings), there is a strong relation
between the groundwater level at a given location,
and the drop in topographic elevation from this loca-
tion to the nearest wet talweg. More precisely, there is
a correlation between the height above a basal enve-
lope surface of talwegs (height labeled a on Figure 1),
and the height of the groundwater level above this
same envelope surface (height labeled b). In such
systems, the low hydraulic conductivity implies a
steepening of groundwater head gradients in order
to convey groundwater from hillslopes to channels.
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Figure 1. Illustration of different potentiometric levels on a topographic/groundwater transect, adapted
from Wyns et al. [2004] in order to show both the Basal Surface of Talwegs and the Elevation of Nearest
Drainage of Nobre et al. [2011].

Obviously, the steepest gradients are achieved when
the groundwater potentiometric surface is close to
the topographic surface, i.e.

b

a
≲ 1.

Interestingly, a parallel concept has been intro-
duced in the field of flood mapping, namely the
Height Above Nearest Drainage (HAND) of Nobre
et al. [2011]. There are a couple of differences be-
tween the two relative elevations defined respectively
by the Height Above the Basal Envelope Surface of Tal-
wegs (HABEST) and the HAND. These differences are
illustrated in Figure 1:

• the HAND computation procedure relies
on a hydrologically-conditioned Digital El-
evation Model (DEM) in which a reference
drainage network is identified using a mini-
mum support area. It then requires a down-
stream drainage allocation of each pixel, so
that it creates a jump at the crossing of a
water divide when two pixels on either side
of the divide are “snapped” to two distinct
drainages. Put differently, the reference po-
tentiometric surface from which the HAND is
computed is not continuous (we should call
it the Elevation of Nearest Drainage, though
it is not explicitly introduced by Nobre et al.
[2011]).

• In contrast, the surface constructed follow-
ing Wyns et al. [2004] is continuous. It is pro-
duced by interpolating point-scale elevation
data in the talweg network.

From the point of view of free surface (channel)
flow, a surface of minimum potential energy joining
all the talwegs is of course, an important reference
level: the transient rise of water during a flood event
corresponds to a relative elevation above the “nor-
mal” drainage level, i.e. a local HAND value [Nobre
et al., 2016].

Since the computation of such a base level has
several applications, there is a need to give a formal
definition and an unambiguous procedure to com-
pute it.

2. A formal definition of the Basal Envelope
Surface of Talwegs (BEST)

Let us consider the vertically-integrated, transient
diffusivity equation for groundwater flow with the
Dupuit–Forchheimer assumption [e.g., De Marsily,
1986]:

S
∂h

∂t
+−→∇ ·−→q = r with −→q =−T (h)

−→∇h (1)

where h is the groundwater head, S the storage co-
efficient, −→q the 2D (vertically-integrated) Darcy flux
density, T the transmissivity (m2·s−1), and r the (pos-
itively defined) recharge rate (m·s−1). Hence,

−→∇ · (T (h)
−→∇h) = S

∂h

∂t
− r (x, y, t ). (2)

Assuming a uniform or slowly-varying transmis-
sivity across the domain, we can take T out of the
divergence operator. In the following, we will assume
a strictly uniform transmissivity T0, hence:

T0∆h = S
∂h

∂t
− r (x, y, t ). (3)



Nicolas Le Moine 81

Figure 2. (Left) Example of an envelope surface, in the form of the canopy of an umbrella; (right)
definition by Häsing [1964].

We can consider a hypothetical situation where
the groundwater level reaches a minimum (∂h/∂t ≈
0) in conjunction with a vanishing recharge rate
(r (x, y, t ) ≈ 0), with the perennial streams still con-
nected with the shallow aquifer. The head distribu-
tion would then satisfy:

∆h = ∂2h

∂x2 + ∂2h

∂y2 = 0

h(x, y) = ztopo(x, y) if (x, y) is in the stream network
(4)

where ztopo denotes the elevation of the topographic
surface. Petroff et al. [2012] as well as Cohen et al.
[2015] have studied in great detail the interaction of
a stream network with a Poisson diffusive field in
the more general case of a nonlinear transmissivity
T (h) = K · (h − B) for an unconfined aquifer, where
B(x, y) denotes the elevation of the underlying im-
permeable layer and K the saturated hydraulic con-
ductivity of the aquifer. In the following, we will re-
strict ourselves to the linear case, as it allows simple
analytic developments based on the superposition
principle. Here, the condition ∆h = 0 means that the
flux density −→q is assumed to have a vanishing diver-
gence under hillslopes (it is a solenoidal vector field).
The resulting piezometric surface is a minimum-
curvature surface joining the 3-dimensional talweg
lines, in a way similar to the gores of an umbrella’s
canopy stretched over the ribs (Figure 2). Such a sur-
face is an envelope surface in the sense of Häsing
[1964], which can be defined in several ways.

Usually [see e.g., Deffontaines, 1990, Wyns et al.,
2004, Yao et al., 2017], this surface is constructed
by kriging of scattered talweg elevation data: a
more straightforward way of constructing it is to

solve (4). In fact, under the assumption of uni-
form transmissivity we can directly model the an-
alytic function using the Analytic Element Method
[AEM, see e.g. Strack, 1989, Steward, 2020], instead
of solving the steady-state equilibrium equation nu-
merically with stream elevations as Dirichlet bound-
ary conditions. As will be shown further, the proce-
dure boils down to a simple linear least-square opti-
mization, without the need for variography.

3. Mathematical modeling with analytic slit
elements

3.1. Vector representation of the talweg graph

The approach proposed in this study relies on a
vector representation of the talweg or stream net-
work. Such representations are usually provided by
national geographic agencies, as it is the case for
the BD Topage in France [Système d’Information sur
l’Eau/Sandre, 2020], but can also be derived from the
analysis of Digital Elevation Models (DEM). The net-
work is a set of links, i.e., sections of a stream chan-
nel connecting two successive junctions, a junction
and the outlet, or a junction and the drainage divide
[ESRI, 2022]. We assume that the topology of the links
is also available in the form of an oriented graph.
This general setting is illustrated in Figure 3. Each
link is a polyline that can be decomposed into seg-
ments, each defined by a start point A j and an end
point B j .
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Figure 3. Vector representation of the talweg or
stream network. It is a collection of elemen-
tary segments/slits, each defined by two end-
points which can be positioned in the complex
C-plane with their complex affix.

3.2. General form of the potential

In AEM, the head distribution is related to a real-
valued potentialΦ [e.g., De Marsily, 1986], such that:

−→q =−−→∇Φ.

For unconfined aquifers such as the shallow
groundwater systems developed in weathered
bedrock, our focus in this study, the general form
of the flux is:

−→q =−K · (h −B)
−→∇h.

In the case of a piecewise uniform elevation B of
the substratum (i.e.

−→∇B = −→
0 by subdomains), we

have the integral form for the potential [e.g., Steward,
2020]: −→∇Φ=−−→q =+K · (h −B)

−→∇h
−→∇Φ= K · (h −B)

−→∇ (h −B) = K

2

−→∇ (h −B)2

⇒Φ= K

2
(h −B)2.

This expression hence leads to a nonlinear relation
between potential Φ (in m3/s) and head h (in m). In
the following, we will linearize the problem and con-
sider a uniform transmissivity T0 of the groundwater
system, independent of h. This linearization is moti-
vated by several considerations:

• first, as weathering develops from the sur-
face down, it is no stronger an assumption
to consider a rather uniform depth for the
lower limit of the transmissive layer, than to
consider a piecewise uniform elevation for
this limit; this amounts to assume a rather
uniform saturated thickness at first order, if
the groundwater table is always close to the
surface;

• second, our objective is to use observed
groundwater levels in boreholes as well as
topographic elevation of streams in order to
infer large-scale hydrodynamic properties of
the system such as, precisely, an “effective”,
large-scale estimate of transmissivity. This is
much easier to do when using groundwater
head h directly as a proxy, linearly related to
potential Φ: it will be clear when we present
the degrees of freedom used to compute the
value of potential Φ using AEM in the next
paragraphs.

With the assumption of a uniform transmissiv-
ity T0, the potential Φ is indeed linearly related to
groundwater head h:

−→∇Φ=−−→q =+T0
−→∇h

Φ= T0h +constant. (5)

In order to model the envelope surface, we will work
in the complex plane C. The start- and end-point
of each segment j in the vector talweg network, A j

and B j , are first given a complex affix in the C-plane
(see Figure 3):

a j = xA j + iy A j affix of start point A j of

element j in the complex plane

b j = xB j + iyB j affix of end point B j of

element j in the complex plane
(6)

with i, a number such that i2 = −1. Hereafter, the
letter z will denote an affix z = x + i y in the com-
plex plane (with the exception of ztopo which will
denote the topographic elevation). In the case of a
divergence-free flux density −→q , the real-valued po-
tential Φ is the real part of a complex-valued poten-
tialΩ:

Ω(z) =Φ(x, y)+ iΨ(x, y)

where Ψ is the associated, real-valued stream func-
tion. The complex potentialΩ(z), which is defined in
the complex plane C and has values also in C, has a
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Figure 4. Illustration of the transformation Z j (z) associated to slit element j , with endpoints A j and B j .
It is obtained by the composition of a similarity ζ j (z), and the Joukowsky transformation Z j (z) =
ζ j (z)+

√
ζ j (z)+1

√
ζ j (z)−1. Both transformations are 2D conformal mappings or holomorphisms: they

preserve angles locally (see red triangle), hence orthogonality (see grid).

distinct property: it is analytic or holomorphic, which
means that the derivative of Ω with respect to the

complex variable z is defined (this is not true in gen-
eral for a function from C to C):

dΩ

dz

∣∣∣∣
z0∈C

= lim
z→z0

Ω(z)−Ω(z0)

z − z0
exists: does not vary

depending on the direction from which

z0 is approached.

Synonymously, it means that the real potentialΦ and
the stream function Ψ satisfy the Cauchy–Riemann
conditions:

∂Φ

∂x
= ∂Ψ

∂y
(i)

∂Φ

∂y
=−∂Ψ

∂x
(ii)

∂2Φ

∂x2 + ∂2Φ

∂y2 =∆Φ= 0 (iii), consequence of (i) and (ii);
the actual property we want

forΦ
∂2Ψ

∂x2 + ∂2Ψ

∂y2 =∆Ψ= 0 (iv), consequence of (i) and (ii).

Contours of the stream function define streamlines;
the area between two streamlines defines a stream
tube, in which the flux is conserved.

Following the approach of Steward [2015, 2020],
we will then consider each segment j of the tal-
weg network as a slit element creating a complex
potentialΩ j (z) at location z, with the form:

Ω j (z) =Q j ×
(

ln Z j (z)

2π
−1

)
+

ncoef∑
k=1

c j ,k Z−k
j (z). (7)
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Q j is the net algebraic discharge (in m3/s) entering
the slit, and the c j ,k are the complex coefficients of a
Laurent series that can be adjusted to match various
boundary conditions. If Q j > 0, the slit is a sink to
the system (it subtracts water from the aquifer) while
if Q j < 0, it is a source (it leaks water to the aquifer).
The mapping function Z j (z) for each slit element is
given by:

ζ j (z; a j ,b j ) = z − 1
2 (a j +b j )

1
2 (b j −a j )

(8)

Z j (z) = ζ j (z)+
√
ζ j (z)+1

√
ζ j (z)−1. (9)

The function Z (ζ) = ζ + √
ζ+1

√
ζ−1 is the

Joukowsky transformation [Joukowsky, 1910]. Fig-
ure 4 illustrates the two steps of the transformation

Z j (z) = ζ j (z) +
√
ζ j (z)+1

√
ζ j (z)−1. The first step

(mapping from z-plane to ζ-plane, Equation (8)) is
just a similarity, i.e. a combination of translation,
rotation and scaling that sends the two endpoints
A j and B j of slit j to affixes −1 and +1 respectively.
Then, the Joukowsky transformation (from ζ-plane
to Z -plane, Equation (9)) maps the R× R plane to
the outside of the unit circle: it amounts to “pop-
opening” the slit segment [A j B j ] conformally, i.e.
with a transformation that conserves angles.

By superposition, the total (complex) potential at
location z in the complex plane is simply the sum of
the contributions of all slit elements in the domain:

Ωtot(z) =Φtot(z)+iΨtot(z) =Φ0−q0 z+
nslit∑
j=1
Ω j (z) (10)

where q0 = q0,x + i q0,y is a complex number giving
the background, regional direction of the flow (“tilt”
in the groundwater table; since it is uniform, it does
not add any divergence to the flux). q0 = q0,x−i q0,y is
its complex conjugate, and Φ0 an offset value for the
real potentialΦ= Re{Ω}.

For each element j , we have (2nc +1) real degrees
of freedom: the sink term Q j , the nc real parts Re{c j ,k }
and nc imaginary parts Im{c j ,k } with c j ,k = Re{c j ,k }+
i Im{c j ,k }. Together with Φ0, v0,x , and v0,y , the total
number of real degrees of freedom is thus N = 3+ns×
(2nc +1).

In Figure 5 we show the general form of the poten-
tial for three cases:

• a pure sink element with Q ̸= 0 and all terms
set to zero in the Laurent series; far from
the slit, the real potential created by such an
element is identical to the well known Thiem

solution h =Φ/T0 = (Q/2πT0) lnr +constant
[e.g., De Marsily, 1986],

• the potential Ω(z) = c1Z−1(z) with a real-
valued c1 coefficient. In this case, the real
potentialΦ (gray levels) is continuous,

• the potential Ω(z) = c1Z−1(z) with a pure
imaginary c1 coefficient. In this case, the
real potential Φ is discontinuous across the
slit.

The two last situations do no produce any net
inflow nor outflow.

Of course, in the general case we have no idea of
the transmissivity of the porous medium; in order
to work directly with head levels/drops we will nor-
malize the expression of the complex potential by the
(unknown) uniform transmissivity T0:

Ω′
tot(z) = 1

T0
Φtot(z)+ i

1

T0
Ψtot(z) =Φ′

0 −q ′
0 z

+
nslit∑
j=1

[
Q ′

j ×
(

ln Z j (z)

2π
−1

)
+

ncoef∑
k=1

c ′j ,k Z−k
j (z)

]
(11)

with the normalized quantities:

Q ′
j =

Q j

T0
normalized discharge extracted by
slit j (depth or drawdown in m)

Φ′
0 =

Φ0

T0

q ′
0 =

1

T0
q0

c ′j ,k = 1

T0
c j ,k .

3.3. Optimization procedure

Given a set of control points {zp }1≤p≤M where we
want to specify a value hp = htot(zp ) = Re{Ω′

tot(zp )} of
the groundwater head, we can build a linear system
to estimate the optimum value of all degrees of free-
dom. With the assumption of a uniform transmissiv-
ity, h is linear with respect to all degrees of freedom
(11) so the regression matrix is simply the [M × N ]
Jacobian matrix:

Jp,l = Re

{
∂Ω′

tot(zp )

∂βl

}
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Figure 5. General form of the potential created by a slit element. In each figure, the gray levels show the
value of Φ = Re{Ω(z)} while the dashed white lines are contours of the stream function Ψ = Im{Ω(z)}.
Black arrows show the flux vector q = −dΩ/dz. (Left) Potential created by a pure sink. (Center)
Potential created by a single, real-valued coefficient in the Laurent series; note that the real potential
Φ is continuous between the “top” and “bottom” of the slit, while the stream functionΨ is discontinuous.
(Right) Potential created by a single, pure imaginary coefficient in the Laurent series; there is now a jump
in the real potentialΦ between the two sides of the slit while the stream function, in turn, is continuous.

where βl is the l-th real degree of freedom. The entry
of the matrix on row p and column l reads as:

Jp,l = 1 if βl =Φ′
0

Jp,l =−Re{zp } if βl = q ′
0,x

Jp,l =+Im{zp } if βl = q ′
0,y

Jp,l = Re
{

ln Z j (zp )
2π

}
−1 if βl =Q ′

j

Jp,l =+Re{Z−k
j (zp )} if βl = Re{c ′j ,k }

Jp,l =−Im{Z−k
j (zp )} if βl = Im{c ′j ,k }.

(12)

The control points are positioned along the seg-
ments of the stream network. Since there are 2nc +1
degrees of freedom for each slit, the system is overde-
termined if we position more control points than
this value along each segment. The vector of opti-
mum values for the parameters (the βl ’s) is the least
squares solution to:

J [β1,β2, . . . ,βN ]T = [Φ′
1,Φ′

2, . . . ,Φ′
M ]T .

Instead of Dirichlet conditions at control points,
we can also specify Neumann conditions on the nor-
malized velocity vector

q = qx + iqy =−
[
∂Φ

∂x
+ i
∂Φ

∂y

]
=−dΩ

dz
.

Using the chain rule

dΩ j

dz
= dΩ j

dZ j

dZ j

dζ j

dζ j

dz
,

the contribution of each slit to the total flux hence
reads:

q j (z) =−dΩ j

dz

= 2

(b j −a j )
√
ζ j (z)+1

√
ζ j (z)−1

[
−Q j

2π
+

ncoef∑
k=1

c j ,k k Z−k
j (z)

]

q j (z) = 2

(b j −a j )
√
ζ j (z)+1

√
ζ j (z)−1

×
[
−Q j

2π
+

ncoef∑
k=1

(Re{c j ,k }− i Im{c j ,k })k Z−k
j (z)

]

or, in the normalized form:

q ′
j (z) = 2

(b j −a j )
√
ζ j (z)+1

√
ζ j (z)−1

×
[
−

Q ′
j

2π
+

ncoef∑
k=1

(Re{c ′j ,k }− i Im{c ′j ,k })k Z−k
j (z)

]
.

This expression is again linear with respect to all
real degrees of freedom.
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Figure 6. Map of the Upper Evel catchment and the nested Coët-Dan subcatchment. The vector stream
network is extracted with a support area of 0.1 km2.

Table 1. List of the degrees of freedom in the least squares problem

Type of
elements

Number of
elements

Number of
sink terms Q ′

j

Number of
Re{c ′j ,k }

Number of
Im{c ′j ,k }

Number of degrees
of freedom

Stream segm. 1562 0 2×1562 0 3124
Boundary segm. 176 0 2×176 2×176 704

Total incl. Φ′
0 3829

4. Two applications of the Basal Envelope
Surface of Talwegs

4.1. Study site: the Evel catchment and Coët-Dan
subcatchment

We illustrate the concepts of the previous section
on a small catchment located in Brittany (West-
ern France), the Coët-Dan catchment, where sur-

veys have been conducted since the early 1970s
[Fovet et al., 2018]. This catchment is developed on
brioverian shale with low hydraulic conductivity. In
order to avoid edge effect, we consider the larger
catchment of the Upper Evel River in which the Coët-
Dan catchment is completely nested (gauging site
J5618322—Evel at Remungol).
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Figure 7. Elevation map of the Basal Envelope Surface of Talwegs (BEST) resulting from the least squares
regression against talweg elevations, with a Neumann condition on the boundary.

4.1.1. Digital elevation model and derived vector
datasets

Figure 6 shows the map of topographic elevation.
The original data is the 1-m resolution RGE ALTI
[Institut Géographique National, 2018]; in order to
speed up the extraction of the hydrographic network
without altering channel elevations, we downscale
this dataset to a resolution of 5 m by keeping the min-
imum elevation on each 5× 5 pixels block. The re-
sulting DEM is then hydrologically conditioned, and
the flow direction and flow accumulation maps are
computed. The stream network is extracted in vector
form from the DEM with a support area of 0.1 km2

[ESRI, 2022]. The boundary of the Evel catchment is

also extracted in vector form, as the segments mak-
ing up this boundary will be assigned a zero nor-
mal velocity condition in the least squares regression.
In order to reduce the geometrical complexity, the
stream links and the boundary polyline are simpli-
fied using the Douglas–Peucker algorithm [Douglas
and Peucker, 1973] with a planar tolerance of 40 m.

4.1.2. Estimation of the Basal Envelope Surface of
Talwegs

The total number of segments in the geometric
setting is given in Table 1, along with the associated
degrees of freedom.

We use ncoef = 2 complex coefficients for the Lau-
rent series on each slit element, that is, up to 4 real
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degrees of freedom per slit. However, we recall that
in order for the real potential Φ to be continuous be-
tween the two “sides” of a slit, the imaginary parts
of these coefficients must be zero: hence there are
only 2 real degrees of freedom for stream slit ele-
ments. This condition of continuity is not required
for boundary slit elements: here we only want the
normal velocity component to be zero on the “inner”
side of each slit. We completely disregard the value
of the real potential outside of the boundary, so we
use both a real part Re{c j ,k } and an imaginary Im{c j ,k }
part for the 2 complex coefficients of each boundary
slit element. We set the background velocity to zero
(v0,x = v0,y = 0), but the constantΦ0 is needed in any
case and yields an additional degree of freedom, ris-
ing this number to 3829.

In order to get a least squares solution for all de-
grees of freedom, we use the overspecification prin-
ciple of Janković and Barnes [1999] with M = 8 con-
trol points on each slit, whose positions are given by:

ζm = cos

(
π

m − 1
2

M

)
(m = 1,2, . . . , M).

The total number of control points is then M ×
nslit = 8 × (1562 + 176) = 13,904, much larger than
the number of degrees of freedom (3829). This re-
sulting system is 13,904×3829, which is rather large,
but still very easily solved by classical linear algebra
packages. If we were to solve an even larger sys-
tem, we could use the iterative solution introduced
by Janković and Barnes [1999], sequentially solving
for the coefficients of each slit to match its boundary
conditions while holding all other coefficients con-
stant for other slits, until convergence is reached [see
also, e.g., Steward, 2020].

Figure 7 shows the resulting envelope surface, that
is, the real part Φ′

BEST of the normalized complex po-
tential Ω′. Elevation ranges from about 50 m a.s.l.
at the outlet to about 140 m in the North of the
catchment.

4.2. HABEST as a continuous substitute of HAND
for flood mapping

Having built a continuous energy level joining all tal-
weg lines, we can now compute the difference be-
tween the Basal Envelope Surface of Talwegs (BEST)
and the topographic surface. This difference can be
coined Height Above the Basal Envelope Surface of

Talwegs (HABEST). It is conceptually the same thing
as the Height Above Nearest Drainage’ (HAND), with
two advantages:

• It is continuous in space. The HAND com-
putation procedure requires a downstream
drainage allocation of each pixel, so it cre-
ates a jump at the crossing of a water divide
when two pixels on either side of the divide
are “snapped” to two distinct drainages;

• if a reference hydrographic network is avail-
able in vector form, there is no need for hy-
drological preconditioning of the DEM (cf.
Section 4.1.1).

Figure 8 shows the resulting index Φ′
HABEST =

(Φ′
topo−Φ′

BEST) = (ztopo−Φ′
BEST). Contours of this sur-

face can be used for flood mapping in the same way
as HAND contours.

4.3. Groundwater level interpolation

4.3.1. Regression using HABEST as predictor

In this section, we use the resulting HABEST index
as a predictor for groundwater level, following the
idea of Wyns et al. [2004]. Figure 9 is a zoom on the
map of Figure 7 on the Coët-Dan subcatchment; it
also shows the location of 74 boreholes in which the
groundwater level was surveyed during the month
of February, 1996 [Pauwels et al., 1996]. The model
reads:

Φ′
GW −Φ′

BEST = a(Φ′
topo −Φ′

BEST)+b (13)

withΦ′
GW = h the groundwater head (or real potential

normalized by T0), andΦ′
topo = ztopo the topographic

elevation.
The result of the regression is shown in Figure 10.

The parameters are:{
a = 0.912
b =−1.74 m

with R2 = 0.962 and a rooted mean squared error
(RMSE) of 1.67 m.

It is worth noting that the estimate of groundwater
level using (13) is not completely insensitive to the
value of the support area chosen for extracting the
channel network. The RMSE obtained for different
values of the support area is shown in Figure 11; we
see that the optimal value is about Ac = 0.4 km2.
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Figure 8. Map of the Height Above the Basal Envelope Surface of Talwegs (HABEST) index, defined as
the difference between topographic elevation ztopo =Φ′

topo and the elevation Φ′
BEST; this index is closely

related to the HAND index.

4.3.2. A non-zero divergence solution with area-sink

The definition of the envelope surface as a har-
monic potential (corresponding to a divergence-
free velocity field) is straightforward, and the result
shown in Figure 7 exactly corresponds to the specifi-
cations so far. However, if we look closer at Figure 9,
we see that slits corresponding to “leaves” in the
network graph often correspond to a maximum of
the envelope surface, just as if the surface was lo-
cally “hanging” from those elements, with the flux
oriented from the slit to the domain (see points de-
noted with a “L”). It is no big issue if we do not want to
give any particular physical meaning to this envelope
surface; however, this is a spurious behaviour if we
want to interpret it, for instance, as a (dry-season)

groundwater level.
We can achieve a slightly more satisfactory inter-

polating surface by computing a non-zero divergence
velocity field, still using AEM. For this we will set a
non-zero sink term Q j for each stream slit, in con-
junction with an area sink [Strack, 2017] with uni-
form infiltration rate. The Laplacian of the poten-
tial now satisfies the following steady-state equation
away from the slits:

T0∆h = T0∆Φ
′ =−r0

where r0 > 0 is a recharge depth per unit time
(positively-defined, source term). As the transmissiv-
ity is unknown, it is again more convenient to rewrite
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Figure 9. Close-up on the elevation map of the Basal Envelope Surface of Talwegs in the Coët Dan
subcatchment (dashed white line). Black squares indicate the location of the 74 boreholes in which the
groundwater level was surveyed during the month of February, 1996.

this equation as:

∆Φ′ =− r0

T0
=+γ0

where the sign of γ0 is set according to the conven-
tion used in Strack [2017]. Just as we normalized
Q ′

j = Q j /T0 for a slit sink term, γ0 = −r0/T0 is a nor-
malized areal extraction rate term which has the di-
mension of the inverse of a depth (e.g., m−1).

Since we add a source term in the system, we need
to add one or several sink term(s) somewhere else:
obviously, it has to be at stream slits. The idea is
to make the sink term Q j for each slit element j a
function of γ0. Let consider the portion of the stream
slit graph shown in Figure 12: if we assume that we
have only very local flow systems, we can consider
that each slit cannot extract more than the amount
of recharge on the subcatchment, it drains. Denoting

dA j the area of this subcatchment, which is a purely
geometric quantity that can be easily computed in a
Geographic Information System (GIS), we will even
consider that the two quantities exactly match:

Q j = r0 dA j

or, equivalently,

Q ′
j =

r0

T0
dA j =−γ0 dA j .

It is worth reiterating the fact that even though Q j

represents a flux extracted from the groundwater sys-
tem, it does not necessarily represent a contribution
to streamflow. A fraction of this flux might as well rep-
resent riparian or wetland evapotranspiration con-
centrated in the vicinity of the talweg, especially
for the smallest streams that often dry up during
summertime.
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Figure 10. Result of the regression of relative
groundwater above the Basal Envelope Surface
of Talwegs, (Φ′

GW −Φ′
BEST), against the Height

Above the Basal Envelope Surface of Talwegs
(Φ′

topo −Φ′
BEST).

Figure 11. Rooted-Mean-Squared-Error (RMSE)
of the regression of (Φ′

GW−Φ′
BEST) against (Φ′

topo−
Φ′

BEST), as a function of the support area used for
extracting the talweg network from the DEM. We
see a slight dependence, with an optimal value of
the support area about Ac = 0.4 km2.

For the sake of brevity, the reader is referred to
Strack [2017] for the expression of Φareal(z) and the
associated velocity vareal(z). Both are linear with re-
spect to the new degree of freedom γ0. Of course,

there is no stream function Ψareal associated with
Φareal: because of the non-zero divergence there is no
holomorphic complex potential. Figure 13 shows the
contours ofΦareal for a unit extraction rate γ0 = 1.

By superposition, the real potential produced by
all elements in the domain finally reads:

Φ′
GW(z) =Φ′

0 +Re{v ′
0z}+γ0Φ

′
areal(z;γ0 = 1)

+
nsink∑
j=1

[
−γ0 dA j Re

{
ln Z j (z)

2π
−1

}
+

ncoef∑
k=1

c j ,k Re{Z−k
j (z)}

]
(stream slit elements)

+
nbound∑

j ′=1

ncoef∑
k=1

Re{c j ′,k Z−k
j ′ (z)}

(boundary slit elements).

Just as before, the coefficients of the Laurent series
c j ,k for stream slits are real-valued in order to ensure
the continuity of Φ′, while the coefficients c j ′,k for
boundary slits can remain complex-valued as long
as we are not interested in computing a potential
outside of the boundary.

The degrees of freedom are better identified with
ancillary potential data at groundwater observation
boreholes. Figure 14 shows the final map; the regres-
sion yields γ0 =−1.19×10−4 m−1.

In Figure 15, we compare the observed versus esti-
mated groundwater level at the 74 observation bore-
holes. In order to narrow down the range of val-
ues we plot the estimated depth, Φ′

topo − Φ̂′
GW as a

function of observed depth Φ′
topo −Φ′

GW. The RMSE
is substantially improved compared to the previous
method (0.70 m versus 1.63 m).

Interestingly, if we have an independent estimate
of recharge rate r0, we can get an estimate of large-
scale, single-layer equivalent transmissivity. Various
estimates of annual effective rainfall can be found in
the literature for the region, ranging from 180 mm
[Mougin et al., 2004] to 393 mm [BRGM, 2019]. Tak-
ing a mean estimate and considering a 50%–50% par-
tition of this amount between surface runoff and
recharge, this leads to a rough estimate of r0 ≃ 4.5×
10−9 m·s−1. We can then estimate the equivalent,
uniform transmissivity T̂0 with:

T̂0 = r0

|γ0|
∼ 3.8×10−5 m2·s−1.

We can compare this conceptual estimate
with values given by aquifer tests: Martelat
and Lachassagne [1995] give the ranges 0.8–
1.5 × 10−3 m2·s−1 for the superficial schist alterite,
and 1.5–3.0 × 10−5 m2·s−1 for the deeper, fissured



92 Nicolas Le Moine

Figure 12. For each stream slit j , we compute dA j the area of the subcatchment drained by the slit,
that is, the difference between the value of the flow accumulation map at the downstream endpoint
of the slit minus the value at the upstream endpoint. For “leaf” slits, dA j is simply set to the drained
areal at the downstream end of the slit. Each slit is then allowed to extract a normalized discharge
Q ′

j = (r0/T0)dA j =−γ0 dA j .

schist. We see that even if it remains conceptual, the
value obtained by regression using the AEM method
could be an interesting proxy for characterizing the
subsurface at large scale.

5. Conclusion and perspectives

In this concluding section we sum up our find-
ings by making a parallel between the decompo-
sition of the topographic surface and that of the
groundwater level. Figure 16 illustrates the following
decomposition:

ztopo =Φ′
topo =Φ′

BEST + (Φ′
topo −Φ′

BEST)︸ ︷︷ ︸
HABEST

h =Φ′
GW =Φ′

BEST + (Φ′
GW −Φ′

BEST)︸ ︷︷ ︸
GW level relative to BEST

As can be seen on the figure, the topographic
height above the envelope surface of talwegs (Φ′

topo −
Φ′

BEST = HABEST) and the relative groundwater level

above this envelope surface (Φ′
GW − Φ′

BEST) have a
very similar behaviour. It comes as no surprise for
geomorphologists as, in the hillslope domain, both
sediment transfer at the surface and groundwater
transfer in the porous medium are ruled by diffusive
processes [Anderson and Anderson, 2010]. It con-
firms that the Basal Envelope Surface of Talwegs is an
interesting energy level for hydrological and geomor-
phological analysis.

From the point of view of catchment hydrologi-
cal modeling, the kind of parsimonious and analyt-
ical reconstruction of the groundwater surface pro-
posed in this study, as well as the identification of a
conceptual, large-scale estimate of transmissivity T̂0,
could provide useful ancillary information for con-
straining the calibration of lumped models, with a
rationale similar to that of, e.g., TOPMODEL [Beven
and Kirkby, 1979]. Only a handful of observation
boreholes are needed: if the observations are avail-
able during both dry and wet seasons, the approach
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Figure 13. Contour map of real potential created by an areal sink of unit normalized extraction rate
γ0 = −r0/T0 = 1. The Laplacian of the potential uniformly equals γ0 inside the polygon (white dashed
line), and it is harmonic outside (∆Φ′

areal = 0). Note the very large magnitude of the values (in the order
of 108): of course, it has to be scaled by a much smaller factor |γ0| ≪ 1 in order to model topographic or
groundwater elevation.

could also yield a large-scale estimate of storage co-
efficient, Ŝ. The two parameters T̂0 and Ŝ can yield
first-order estimates of lumped groundwater storage
and fluxes which can easily be used as state variables
in the model.

Codes used in this study are available in the au-
thor’s Basilisk sandbox at http://basilisk.fr/sandbox/
nlemoine/AEM/envelope/envelope.c.
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Appendix A. List of symbols

See Table A1.

http://basilisk.fr/sandbox/nlemoine/AEM/envelope/envelope.c
http://basilisk.fr/sandbox/nlemoine/AEM/envelope/envelope.c
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Figure 14. Simulated map of the groundwater potential Φ′
GW in the Coët-Dan subcatchment, with the

additional degree of freedom γ0 (normalized areal exfiltration rate). The regression yields γ0 = −1.19×
10−4 m−1 (net infiltration). The error at the 74 observation borehole is represented with graduated
triangles.

Figure 15. Scatter plot of observed versus estimated depth to groundwater level with the additional
degree of freedom γ0 (normalized areal exfiltration rate).
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Table A1. List of symbols used throughout the paper

Symbol Definition Values in Unit
h Groundwater level w.r.t. reference elevation (e.g., sea level) R m

−→∇h 2D gradient vector of h,
−→∇h =

[
∂h/∂x
∂h/∂y

]
R×R Norm ∥−→∇h∥ is a slope

in m·m−1 (∅)
ztopo Topographic elevation w.r.t. reference elevation R m

K Hydraulic conductivity R m·s−1

T (h) Transmissivity R m2·s−1

T0 Uniform value of transmissivity R m2·s−1

S Storage coefficient R ∅
r (x, y, t ) Recharge rate R m·s−1

−→q Vertically-integrated Darcy flux density, −→q =
[

qx
qy

]
=−T (h)

−→∇h R×R Norm ∥−→q ∥ in m2·s−1

q Same vector but represented in a complex plane, q = qx + i qy C Modulus |q| = ∥−→q ∥ in m2·s−1

Φ Real-valued potential such that −→q =−−→∇Φ R m3·s−1

i Complex number such that i2 =−1 C —

z = x + i y Affix of a point in the complex plane C associated with a
given set (x, y) of projected coordinates (e.g.,
Lambert 93)

C |z| in m

Ω Complex-valued potential such thatΦ= Re{Ω} C Modulus |Ω| in m3·s−1

Ψ Real-valued stream function,Ψ= Im{Ω} R m3·s−1

a j Affix of the start point of slit element j : a j = xA j + i y A j C |a j | in m

b j Affix of the end point of slit element j : b j = xB j + i yB j C |b j | in m

Ω j (z) Contribution of slit element j to total potentialΩtot(z) at
location z in the complex plane

C |Ω j (z)| in m3·s−1

Z j (z) Local transformed coordinate (complex affix) w.r.t. to slit j C Modulus |Z j (z)| is ∅
Q j Sink term for slit element j R m3·s−1

c j ,k Coefficient of power term Z−k
j (z) inΩ j (z) C |c j ,k | in m3·s−1 (same as |Ω|)

Ω′ =Ω/T0 Normalized complex potential C |Ω′| in m (head)

Φ′ =Φ/T0 Normalized real potential. Φ′ = Re{Ω′} R m (head)

q ′ = q/T0 Normalized flux density C Modulus |q ′| is ∅
Q ′

j =Q j /T0 Normalized sink term for slit element j R m (head loss)

c ′j ,k Normalized coefficient, for term Z−k
j (z) inΩ′

j (z) C |c ′j ,k | in m (same as |Ω′|)
r0 Uniform recharge rate R m·s−1

γ0 =−r0/T0 Normalized uniform recharge rate R m−1

d A j Area of topographic subcatchment drained by slit element j R m2

Φ′
topo Normalized real potential corresponding to topographic

surface. Φ′
topo = ztopo

R m (head)

Φ′
GW Normalized real potential corresponding to groundwater

level. Φ′
GW = h

R m (head)

Φ′
BEST Normalized real potential corresponding to the elevation

of the envelope surface of talwegs
R m (head)

Φ̂′
GW Estimated groundwater level R m (head)

Symbols are (approximately) listed by order of appearance in the text. The type of each variable is indicated: real
number (in R), 2D vector (in R×R) or complex number (in C).
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Figure 16. Decomposition of topographic elevation (Φ′
topo, top row) and groundwater level elevation

(Φ′
GW, bottom row) using the ancillary level Φ′

BEST. We see that in both cases this level plays the role of a
base level for diffusive processes in the hillslope domain (diffusive sediment transport on the topographic
surface, and diffusive Darcy flow for groundwater).
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