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Abstract. The objective of the paper is to better understand and quantify the flow structure in frac-
tured rocks from flow logs, and to propose relevant indicators for validating, calibrating or even reject-
ing hydrogeological models. We first studied what the inflow distribution tells us about the perme-
ability structure from a series of analyses: distribution of transmissivities as a function of depth, pro-
portion of flowing sections as a function of section scale, and scaling of the arithmetically-averaged
and geometrically-averaged permeability. We then define three indicators that describe few funda-
mental characteristics of the flow/permeability, whatever the scale: a percolation scale ls , the way
permeability increases with scale above ls , and the variability of permeability. A 4th indicator on
the representative elemental volume could in principle be defined but the data show that this vol-
ume/scale is beyond the 300 m investigated. We tested a series of numerical models built in three
steps: the geo-DFN based on the observed fracture network, the open-DFN which is the part of
the geo-DFN where fractures are open, and a transmissivity model applying on each fracture of the
open-DFN (Discrete Fracture Network). The analysis of the models showed that the percolation
scale is controlled by the open-DFN structure and that the percolation scale can be predicted from
a scale analysis of the percolation parameter (basically, the third moment of the fracture size distri-
bution that provides a measure of the network connectivity). The way permeability increases with
scale above the percolation threshold is controlled by the transmissivity model and in particular by
the dependence of the fracture transmissivity on either the orientation of the fractures via a stress-
controlled transmissivity or their size or both. The comparison with data on the first two indica-
tors shows that a model that matches the characteristics of the geo-DFN with an open fraction of
15% as measured adequately fits the data provided that the large fractures remain open and that the
fracture transmissivity model is well selected. Most of the other models show unacceptable differ-
ences with data but other models or model combinations has still to be explored beforerejecting them.
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The third indicator on model variability is still problematic since the natural data show a higher vari-
ability than the models but the open fraction is also much more variable in the data than in the
models.

Keywords. Fracture network, Crystalline rocks, Permeability, Scaling, Indicator, Percolation.
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1. Introduction

In naturally fractured geological reservoirs, fluid-
flow structure is a major question for hydrogeologi-
cal modeling [Neuman, 2005]. Especially for the crys-
talline rocks targeted for energy recovery exploita-
tion, or geological storage of industrial wastes like
CO2 or spent nuclear fuel, fluid flow only takes place
in a tiny part of the whole rock, through the con-
nected network of fractures between hydraulically
active boundaries, while intact rock matrix perme-
ability is considered as negligible. Fluid flow struc-
ture is hence a subpart of the fractured system.

While fractures are ubiquitous in crystalline rocks,
the complexity of their spatial organization pre-
cludes the use of classical methods of homoge-
nization to derive hydraulic properties for equiv-
alent continuous media. Fracture systems result
from long-standing geological histories and fractur-
ing processes, leading to a complex multiscale struc-
ture. Fracture-size scales commonly cover several
orders of magnitudes from fractures smaller than
micrometers to millimeters to tectonic faults larger
than hundreds of meters to kilometers with frac-
ture size distributions adequately modeled by power-
law distributions [Bonnet et al., 2001, Davy et al.,
2013]. Their capacity to be hydraulically active is
dependent on their topological structure (connectiv-
ity, intersections), their openness and transmissivity.
These factors together contribute to present a very
large variability—in space and intensity—of the in-
flows that can be measured at depth from flow log-
ging [Follin, 2008]. In parallel, usual data acquisition
capacities are far from what would be needed to eas-
ily reduce modeling uncertainties for typical site con-
ditions. These aspects contribute to the difficulty to
define relevant models of the fluid-flow structure for
naturally fractured rocks and emphasizes the need to
model the discrete nature of the flow before deriving
any homogenized properties.

Discrete Fracture Network (DFN) approaches
emerged in the late eighties [Cacas et al., 1990a,b,
Long and Witherspoon, 1985, Long and Billaux,

1987]. Since then, they are widely used and devel-
oped, most often for applications that involve hy-
drogeological and hydro-mechanical modeling, e.g.
[Davy et al., 2006, 2018, De Dreuzy et al., 2013, Lei
et al., 2017, Park et al., 2002, Selroos et al., 2022]. As
they realistically reproduce the discrete nature of the
flows—typically spacing between inflows ranging
from a few meters to tens of meters along wellbore—
they are the most suitable for understanding flow
structures in-situ. They also permit aggregation of
various types of data (geological, mechanical, hy-
draulic, etc.) in a multidisciplinary approach where
the DFN is the unifying element, as part of a strategy
to minimize modeling uncertainties [Selroos et al.,
2022].

The major theoretical questions for hydrogeologi-
cal modeling of fractured media, which directly drive
and impact the flow structure modeling, are scale de-
pendence and upscaling or homogenization. The is-
sue of the scale dependence of the hydraulic prop-
erties is widely debated. One of the first compila-
tions on that subject is the seminal paper of Clauser
[1992] which compiled permeability measurements
from lab to regional scales, emphasizing a permeabil-
ity increase with scale increase up to a hundred me-
ters. This conclusion has been questioned by Hunt
[2003b], who posited that although experiments of-
ten indicate an increase in the hydraulic conduc-
tivity with increasing scale, this effect may be ex-
plained by sampling issues rather than intrinsic scale
effect. Other studies, based on field observation [Ill-
man, 2006, Neuman, 2003, Neuman and Di Federico,
2003, Ren et al., 2021] or modeling [de Dreuzy et al.,
2001b, 2002] are in line with the observations from
[Clauser, 1992] and a scale effect emerging from the
fracture network connectivity structure and trans-
missivity distribution. Illman [2006] also observed a
directional permeability scale effect in cross-hole test
results and hypothesizes that the effect is controlled
by the connectivity of fluid conducting fractures. A
scale increase of effective permeability with scale is
also shown in Martinez-Landa and Carrera [2005]
and Ren et al. [2021] from single hole and cross-hole
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pumping tests data and identify a scale dependence
likely site-dependent too. de Dreuzy et al. [2001b,
2002] use a DFN model (in 2D) for which the fracture
length and fracture aperture distributions are power
laws and study the resulting hydraulic properties as
the flow structure and equivalent permeability. They
determine the equivalent permeability scale effects,
characterize the flow structure by a channeling in-
dicator, and establish the relationship with the frac-
ture distributions parameters. Upscaling permeabil-
ity is an active research area in hydrogeology both
for fractured and unfractured media. Upscaling con-
sists of deriving the equivalent permeability from the
smaller scale permeability distribution [de Dreuzy
et al., 2010]. Wen and Gómez-Hernández [1996] and
Renard and Marsily [1997] reviewed the state of the
art on upscaling conductivities in heterogeneous me-
dia. Oda [1985] developed an analytical approach to
define equivalent permeability from a DFN descrip-
tion based on geometric characteristics of fractures
with arbitrary orientations. de Dreuzy et al. [2001b,
2002] develop the relationship between equivalent
permeability and the parameters of multiscale DFN
models in 2D and hence the scale dependency. Chen
et al. [2015, 2018] develop numerical approaches to
compute the equivalent permeability from a DFN de-
scription.

The question investigated in this paper is how to
best use available hydro data for capturing the multi-
scale nature of in-situ flow structures and to derive
manageable and relevant metrics for site modeling
purposes. At the Forsmark area in Sweden, site in-
vestigations have been performed by Svensk Kärn-
bränslehantering AB (SKB), the Swedish Nuclear Fuel
and Waste Management Company, for more than
two decades in view of the future deep repository for
spent nuclear fuel [Follin, 2008, Follin et al., 2007, Sel-
roos et al., 2022]. Follin et al. [2014] use flow logs and
metrics based on the relative proportion of sealed,
open, and flowing fracture frequencies together with
equivalent transmissivity distributions to calibrate
the parameters of DFN models for flow simulations.
Maillot et al. [2016] compare the performance of dif-
ferent DFN models from the comparison of chan-
neling and equivalent permeability indicators. Zou
and Cvetkovic [2020, 2021] also use DFN models
and varying hydraulic boundary conditions to sim-
ulate steady-state pumping tests and derive indica-
tors of cumulative and of complementary cumulative

distributions to evaluate the impact of fracture in-
plane heterogeneities on the flow structure at the
DFN scale.

The first objective of this study is to develop flow-
based metrics adapted to in-situ flow testing capaci-
ties and suited to emphasize the multiscale nature of
the flow structure. To address these issues, the data-
base of fractures and discrete inflows at Forsmark,
which includes flow logging and steady-state pump-
ing tests, was analyzed with metrics revisited from
the former work of Maillot et al. [2016]. The second
objective is to test the capacity of the latter to dis-
criminate between DFN models otherwise calibrated
to similar geological and geometrical observations.
A modeling environment is set up in the software
“DFN.lab” to generate DFN realizations from a pre-
defined range of DFN models and perform numeri-
cal flow simulations in steady-state pumping config-
uration simulations.

The paper is organized as follows: the data and
conditions of the Forsmark site are recalled in Sec-
tion 2. The framework to define the metrics is pre-
sented in Section 3. Data analyses are presented in
Section 4. In Section 5 the DFN models are defined
and finally, several a priori equiprobable DFN mod-
els are compared with each other and with the field
data and the interpretations and comparisons be-
tween data and models are presented. Results and
outcomes of the study are finally discussed in Sec-
tion 6 and summarized in the conclusion. To facil-
itate ease of reading this study, specific parts have
been moved to appendices.

Note that, while the analytical tools and method-
ology are generic, the results are specific to the stud-
ied area (mostly the Nordic granites). It is not pre-
sumed that thresholds and trends are generalizable
to all crystalline rocks [e.g., Dewandel et al., 2006].

2. Site and available data overview

The Forsmark site in Sweden, located in crys-
talline bedrock in south-eastern Sweden and lo-
cated roughly 130 km north of Stockholm, is selected
by the Swedish regulatory authorities to build a nu-
clear waste repository for spent nuclear fuel at 470 m
depth [SKB, 2011]. Svensk Kärnbränslehantering AB
(SKB) is in charge of site investigations, future con-
struction, and long-term safety assessment of the
final repository. The database built over the course
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of the site investigations encompasses data from ge-
ological, mechanical, hydrogeological, geochemical,
etc., aspects. Several tens of boreholes each reach-
ing lengths up to about 1 km have been drilled and
exhaustively logged.

The presented analyses relies on a detailed de-
scription of the fracture transmissivity structure in
the different boreholes that have been extensively
carried out at the Forsmark site by SKB with the Po-
siva Flow Logs (PFL). PFL was originally developed
by Posiva Oy to meet the demand on flow measuring
techniques adapted to sparsely fractured rocks and
low-permeability environments [Öhberg and Rouhi-
ainen, 2000]. The method couples a very low thresh-
old for flow detection (down to 0.1 l/min) and a pre-
cise positioning of the device that allows them to de-
tect single fractures inflow with a depth resolution of
a couple of centimeters. The hydraulic properties of
every cored borehole at the Forsmark site are hence
tested [Rouhiainen and Pöllänen, 2003, Rouhiainen
et al., 2004] by performing a standard hydraulic test
where the applied pressure head and resulting flow
are recorded. The derivation of a transmissivity is
based on the Thiem (or Dupuits) solution for steady-
state radial flow without skin effect, so that the flow
rate Q1 at a borehole test section of size L is equal to:

Q1 = K
2πL

ln
(

R
r0

) (h0 −h1) (1)

with
Q1: measured flow rate in the test section (m3/s)
K : hydraulic conductivity of the test section (m/s)
L: length of the test section limited by packers (m)
R: radius of influence (500 m) (m)
r0: radius of the borehole (m)
h0: undisturbed hydraulic head far from test sec-

tion (m)
h1: pump-induced or natural borehole hydraulic

head (m).
The two unknowns K and h0 can be deduced from

two pairs of hydraulic heads (h1and h2) and resulting
flow rates (Q1 and Q2) provided that K is not depen-
dent on the induced pressure (no hydromechanical
effects).

A combination of sequential and overlapping flow
logging allows identifying water conductive fractures
down to a spatial resolution of 0.1 m and flow rates
down to 30 ml·h−1. This leads to a measurement limit

of approximately T = 10−10 m2/s when expressed in
equivalent transmissivity as defined below.

The transmissivity of a test section, or the fracture
identified by the sequential mode, is defined as:

T = K L =
ln

(
R
r0

)
2π

· (Q2 −Q1)/(h2 −h1) (2)

with R ∼ 500 m it comes that T ∼ ∆Q/∆h. The ratio
∆Q/∆h is also called a specific capacity (in (m2/s)).
Martin and Follin [2011] rightly note that: “The PFL
transmissivity value (T in (2)) reported to SICADA
(the SKB database) will be close to the local value at
the borehole (i.e., the transmissivity of the intersect-
ing flowing fracture), if the local value is less than
the overall transmissivity of the network to which it
is connected. If the local value at the borehole is
greater than the overall transmissivity of the network
to which it is connected, the PFL transmissivity value
represents a “hydraulic choke” (bottleneck) phenom-
enon, which means that it is not the transmissivity of
the intersecting flowing fracture that is determined”.
The PFL transmissivity T (Equation (2)) is not the ac-
tual fracture transmissivity, but rather the transmis-
sivity of the closely connected structure. Other lim-
itations of (1) and (2) are that R in (1) and (2) varies
with time [Perrochet, 2005] and, in case of several
fractures, T or K tends towards the geometric mean
[Meier et al., 1999]. Thus T must be taken as an esti-
mate rather than an exact value of the fracture trans-
missivity, which is correct considering the high vari-
ability of transmissivities (i.e., the distribution of the
estimate gives a faithful measure of the transmissiv-
ity distribution).

In practice, the same set of flow rate measure-
ments is done twice all along a tested borehole:
the first pass is for natural flow rate conditions (no
pumping), and the second one is for a typically im-
posed drawdown of ∆h = 10 m.

The distribution of PFL transmissivities for all
wells is given in Figure 1b. The log average is about
3×10−8 m2·s−1 with values ranging from 2.5×10−10

to 1.3 × 10−3 m2·s−1. The average intensity of PFL
log-transmissivities does not vary significantly with
depth (Figure 1c) in contrast to the density of PFL
fractures, i.e., the number of fractures where a trans-
missivity has been detected, and to the transmissiv-
ity variability (Figure 1a). From these observations,
we identify three main domains: the near surface
(0–200 m), the domain of interest for the repository
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Figure 1. (a) (top left) Number of PFL fractures (i.e., fractures whose transmissivity is detectable with
the PFL flow log) per 20 m depth increment. (b) (top left), Distribution of the decimal logarithm of
PFL transmissivities in m2·s−1; the bars are for the whole domain (100–1000 m) and the solid blue dots
for the target domain between 220 and 520 m. No value smaller than 10−9.5 are observed; the impact
of this threshold, although very low, is discussed in Section 4.3 and in Figure 6. (c) (bottom left), PFL
transmissivity as a function of depth for all the boreholes. (d) (bottom right), Example of a borehole
logging (KFM02A) showing the measured density of fully intersecting fractures (number per borehole
length with sealed and open densities indicated by the solid and yellow dot, respectively) on the left and
the measured PFL transmissivity on the right.

(200–500 m), and a deeper domain (>500 m). The
near surface is highly fractured and highly perme-
able; the density of PFL fractures is 1 PFL every 5 m
on average (Figure 1a). It is characterized by hori-
zontal sheet joints, which makes them distinct from
the deeper parts. The intermediate domain is rather
homogeneous with a density of PFL fractures about
half the near surface. The deep domain is very dry
with only a few PFL fractures, on average 1 every
2T50 m.

The spatial distribution of transmissive frac-
tures varies from one borehole to another but with

common features as clustering in flow zones, pres-
ence of large domains without detectable flowing
structures, and positive correlation between zones of
high fracture density and zones of large PFL trans-
missivities (Figure 1d). Note that the correlation be-
tween fracture density and PFL transmissivity is far
from perfect and many counterexamples exist where
PFL fractures are observed corresponding to zones of
normal fracture density.

In the following, we focus on the domain of in-
terest for the waste repository. We arbitrarily set
the upper and lower depths to 220 m and 520 m,
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respectively, in accordance with the density of the
PFL fractures observed in Figure 1a. The distribution
of PFL transmissivity between 220 and 520 m is not
different from that observed on the whole domain
(100–1000 m), despite the variability in the density of
PFL fractures (Figure 1b).

3. Scaling metrics for flow log interpretation

In what follows, an interpretation framework based
on the PFL data, including the transmissivity values
and their spatial distribution is introduced. This is
done through the prism of scale analysis, where the
in-situ scale-dependent permeability is defined and
evaluated for domains of increasing size.

The primary component of the analysis is the total
inflow through a given core log section:

Ki = 1

Li

ni∑
j=1

Ti , j (3)

where Ki is the equivalent hydraulic conductivity (in
(m/s)) of the core section i of length Li , into which
there are ni positive inflows interpreted as transmis-
sivities noted Ti j , from (2). The core section length Li

will be used to analyze the scale dependency of Ki in
order to highlight fundamental properties of the site
permeability, and in particular, the scaling laws that
govern it. The scale analysis of hydraulic conductiv-
ity relies on the continuous records of all the discrete
inflows (the PFL transmissivities as recalled in Sec-
tion 2) over an entire borehole. The maximum inves-
tigated scale of the analysis is the length of the bore-
hole in the investigated domain. For a given scale
L (i.e., all section length Li = L in (3)) and a given
borehole, the arithmetic average of Ki (L) is exactly
the hydraulic conductivity of the borehole if there is
no overlap between the different sections, or a very
close value, if there is some. In Appendices A and B,
we argue from numerical simulations that this bore-
hole conductivity is representative of the permeabil-
ity of a 3D system with a typical size equal to the sec-
tion length. Hereafter, we use the term permeability
to refer to Ki .

To reveal the flow network organization, we focus
on the distribution of “wet” sections (i.e., sections
containing at least one inflow), as it is done when
determining the fractal properties of a network [Tél
et al., 1989]. Whether a section is dry or wet depends
on the resolution of the inflow measurement. Even if

Figure 2. Schematic evolution of the geomet-
ric average of the permeability K as a func-
tion of the measurement scale L (solid blue
line). The thin red segments indicate the three
main regimes: below the percolation threshold
scale pc (I), between pc and the representative
elementary volume (REV) (II), and above the
REV (III) [Charlaix et al., 1987, de Dreuzy et al.,
2001b, 2002]. See text for an explanation of the
three regimes.

the PFL instrument is extremely sensitive, it is clear
that the transmissivity distribution is not complete
and truncated at the PFL resolution (Figure 1b). This
issue will be discussed further down in the text.

By taking the geometric average of the section per-
meability, as in de Dreuzy et al. [2002], we expect to
identify some important characteristics of the flow
structure (Figure 2): the percolation threshold scale
pc (transition between regime I and II in Figure 2),
the permeability increase above pc (regime II), and
possibly a Representative Elementary Volume (REV)
that indicates the scale above which the permeabil-
ity no longer varies. The correspondence between
the percolation threshold and a scale was established
for fracture networks with a power-law size distri-
bution [Berkowitz et al., 2000, Bour and Davy, 1997,
1998, Darcel et al., 2003b, de Dreuzy et al., 2000].
Compared to networks of constant size, the percola-
tion threshold reflects the connectivity of small frac-
tures and the probability of encountering fractures
larger than the size of the systems that connect the
networks on their own. It is this dual connectivity
that makes connectivity scale-dependent and gives
a correspondence between the percolation threshold
and a given scale. Below the percolation threshold,
the wet sections are likely containing one main frac-
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ture/channel with a permeability that decreases as
K = To/L where To is the channel transmissivity and
L the section length. The permeability increase above
the threshold has been demonstrated by [Charlaix
et al., 1987, de Dreuzy et al., 2002]. It reflects the
distribution of channel transmissivities. Above pc ,
the scale increase results in a merging of different
channels with different transmissivities, and the per-
meability increase with scale reflects the broadness
of the transmissivity distribution [de Dreuzy et al.,
2001b, 2002]. Depending on the transmissivity distri-
bution, it may exist a REV over which systems can be
handled as homogeneous media. The REV is a corre-
lation length of the transmissivity distribution but its
existence is questioned if the distribution of fracture
transmissivities and lengths is too broad [de Dreuzy
et al., 2001b].

To calculate K (L), we subsample each borehole
with section lengths smaller than the total borehole
length obtaining a set of equivalent hydraulic con-
ductivities K j (Equation (3)). We note N>0(L) the
number of core sub-sections containing at least one
positive inflow and hence a positive K j .The first pro-
posed metric, the function Ka(L), is the arithmetic
average of the above-defined equivalent permeabil-
ities derived from the ensemble of flowing core sec-
tions (non-flowing core sections are discarded) for a
size scale L, as summarized in the equation below:

Ka(L) = 1

N>0(L)

N>0(L)∑
i=1

Ki(L). (4)

Since the permeability arithmetic average including
zero-flow sections Ka is independent of L (see sec-
tion following (3)), Ka(L) varies as the inverse of the
percentage of flowing sections:

Ka(L) = N (L)

N>0(L)
Ka . (5)

The second proposed metric, the function Kg (L), is
the geometric average of the same set of elementary
bricks:

Kg (L) = exp

(
1

N>0

N>0∑
i=1

log(K(i )(L))

)
. (6)

This metrics has been proposed by de Dreuzy et al.
[2002] as the most representative mean for a perme-
ability distribution that tends to be log-normally dis-
tributed (Figure 1).

Both Ka(L) and Kg (L) are likely to be depen-
dent on the inflow detection limit estimated at

10−10 m2·s−1 for PFL measurements. Even if this
value is very low, the transmissivity distribution in
Figure 1b suggests that smaller values exist. By arti-
ficially increasing the detection limit, we test in the
following section that the metrics do not depend too
much on its value as long as it remains much in the
lower end of the transmissivity distribution.

To characterize the flow channeling, we also cal-
culate the average number of inflows in all flowing
sections of length L, n(L), and a channeling metric
nQ (L) derived from [Maillot et al., 2016]:

nQ,i =
(∑ni

j=1 Ti j

)2

∑ni
j=1 T 2

i j

(7)

where i refers to the core section i that contains ni

inflows noted Ti j , over the section size Li . The quan-
tity nQ (L) is then the arithmetic average over all flow-
ing core sections of size L, and it can be viewed as
the number of efficient channels in a flowing core
section. If all inflows have the same intensity, nQ is
equal to the number of inflow n, however, in the gen-
eral case with a distribution of inflow intensity, nQ is
smaller than n. The ratios n/L and nQ /L have the
same meaning as the number of fracture intersec-
tions per unit core length, classically referenced as
p10, but only for flowing (n)—or significantly flowing
(nQ )—fractures.

4. Hydraulic data interpretations

In this section, we compute the different metrics
and indicators defined in the previous section for the
datasets listed in Table 1 in the depth range 220–
520 m (see Section 2 for an explanation of this depth
range).

4.1. Permeability averages

The scale evolution of equivalent arithmetic and geo-
metric permeabilities are plotted in Figure 3. From
borehole to borehole and comparable size scale, the
calculated values are spread over 4 orders of magni-
tude. Despite this large dispersion, all the plots dis-
play a similar shape with a L−1 decrease over about
1 to 2 orders of magnitude when increasing scales
until a stable (for Ka) or increasing (for Kg ) regime
is reached with large-scale permeabilities that range
between 2×10−10 and 4×10−7 m·s−1. The transition
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Figure 3. Ka(L) (left) and Kg (L) (right) computed for each borehole dataset listed in Table 1 (grey
symbols) as a function of scale. For both, the yellow dots indicate the average of all boreholes and the
red dots, the permeability average (i.e., Ka for the Kg graph and vice versa). The blue lines represent
power-law fits at small and large scales, respectively. The dark yellow dots in the Kg plot are for KFM08A,
a borehole that will be discussed in the modeling section.

Table 1. List of boreholes (IDCODES in the SICADA database) with PFL data including the total number
of inflows, the depth of the uppermost and lowermost inflow, the smallest and the largest PFL transmis-
sivity

IDCODE Number of
inflows (T > 0)

Uppermost
inflow (m)

Lowest
inflow (m)

Min(T ) (m2/s) Max(T ) (m2/s) Total logged
length (m)

KFM01A 34 105.3 363.4 2.45×10−10 5.31×10−8 891

KFM01D 34 106 571.17 6.59×10−10 2.30×10−6 708

KFM02A 125 101.8 894 6.16×10−10 4.21×10−5 899

KFM03A 71 106.4 994 8.90×10−10 9.21×10−5 896

KFM04A 142 109.6 954.8 7.16×10−10 3.54×10−5 876

KFM05A 27 108.9 720 4.45×10−10 1.23×10−3 897

KFM06A 99 102.4 770.8 2.40×10−10 1.92×10−5 895

KFM07A 23 110.8 261.4 3.57×10−9 7.67×10−5 892

KFM07C 15 98.4 279.8 8.99×10−10 4.81×10−5 413

KFM08A 41 107.6 687 2.48×10−10 2.20×10−6 846

KFM08C 21 102.4 683.6 7.51×10−10 2.95×10−6 848

KFM10A 56 60.3 484.4 1.64×10−9 2.79×10−5 437

between both regimes is at about 30 m for both per-
meability averages.

The evolution of Ka(L) and Kg (L) reflects the or-
ganization of flows along the boreholes. In the first
regime, as long as the length of the core sections is
smaller than the minimum distance between two in-
flows, every element contains only one inflow and
hence the equivalent permeability is inversely pro-
portional to the core section length:

K j =
T j

L
. (8)
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Figure 4. Plot of the average number of inflows per section (left) and of the channeling metrics defined
in (7) (right) as a function of section scale.

As expected, the arithmetic average of K j is larger
than the geometric average but the scaling trends are
similar for this small-scale regime. We note that, for
Ka , the average of all boreholes (yellow dots) seems to
decrease slightly less than L−1, ∝L−0.8. This reflects
a difference between the least and most permeable
boreholes; the latter (KFM02A, KFM03A, KFM04A,
KFM10A) having a less steep decrease with scale
than the former. A basic explanation is that a high
permeability is also associated with a higher density
of inflows. This is not observed for the borehole-
averaged Kg because the geometric average gives a
more distributed weight to all boreholes whatever
their permeability.

When the section length is large enough to gather
several inflows, the permeability stabilizes with scale
for the arithmetic average Ka , or grows as ∼L0.7 for
the geometric average Kg as the result of the trans-
missivity distribution. The transition between both
regimes spans over one order of scale magnitude be-
tween ∼6 and ∼60 m with a critical value at 30 m de-
termined from the intersection of both end-member
regimes (Figure 3). There is no limit to the increase
of Kg with scale in this regime for the observed scale
range (30–300 m), which means that a REV such as
anticipated in Figure 2 is beyond 300 m, if it exists.

The average number of inflows per section con-
firms the trends observed on the permeability aver-
ages (Figure 4, left). For sections smaller than 4–5 m,
only one inflow is observed on average per wet sec-
tion, and then the number increases as L0.75. The
maximum number of inflows for the largest section
of 300 m varies between 10 and 80 with an average

Figure 5. Evolution of the wetting ratio, i.e., the
proportion of “wet” sections, i.e., containing
at least one inflow, with section length scale
L for all the boreholes (grey symbols) and for
the average over all the boreholes (yellow dots).
The scaling is L (dashed line) and L0.3 (solid
blue line).

of 20, except for the two boreholes KFM01A and
KFM07C where only 1 and 2 inflows are recorded, re-
spectively. We also calculate the channeling metrics
nQ (Equation (7)), which quantifies the number of
main channels in each section. nQ shows the same
two-regime scaling trend as the number of inflows
per section but with smaller values, as expected. It
increases above 4–5 m approximately as the square
root of the number of inflows. For the largest sec-
tion (300 m), only 3 main channels on average are
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detected.

4.2. Flow structure organization

We plot in Figure 5 the evolution with L of the ra-
tio of the proportion of “wet” sections—i.e., num-
ber of sections that have at least one inflow divided
by the total number of sections—with scale. This
ratio, hereafter called the wetting ratio rw , controls
the evolution of Ka(L) (see discussion above and (5))

and it can be used to identify a potential fractal na-
ture of the flowing structure as it is classically done
in box-counting methods [Mandelbrot, 1982, Pavón-
Domínguez and Moreno-Pulido, 2022]. In a fractal of
dimension D1D in 1D, the number of wet sections de-
creases as (L/H)D1D with H the investigated borehole
length (here 300 m), and the wetting ratio increases
as rw ∼ (L/H)1−D1D . D1D = 0 is a point-like struc-
ture in 1D corresponding to a plane in 3D. Figure 5
shows the two regimes already described: for scales
smaller than ∼30 m, the wetting ratio increases as L
corresponding to individual flow planes. Above 30 m,
rw = (L/H)0.3 indicating a fractal structure with a 1D
dimension of 0.7 (2.7 in 3D). This complex structure
and the distribution of transmissivity are likely to be
responsible for the increase in the geometric average
of permeability.

4.3. Dependency on the detection threshold of
transmissivity

The previous analysis is potentially dependent on the
flow detection resolution to identify wet and dry (no-
flow detected) sections. Both Ka and Kg rely on the
permeability of “wet” sections defined as the dual of
no-flow sections. If inflows smaller than the detec-
tion limit of transmissivity exist, the number of wet
sections will increase and the average permeability
decreases. Even if the detection limit is very small,
it does not seem to represent the lower bound of the
transmissivity distribution (Figure 1b).

Considering that we cannot decrease the mea-
surement resolution, we first apprise the reader that
the previous scaling analysis is performed with a
transmissivity threshold of 10−10 m2·s−1 and that the
results may depend on this threshold. Then, we per-
formed the same analysis as above but with different
detection thresholds of transmissivity (Figure 6). The
curves are identical for detection threshold (Td ) up
to 10−10 m2·s−1 and similar, i.e., presenting the same
log-shape but with a higher permeability for Td up to
10−8 m2·s−1, which is the mode of the probability dis-
tribution of log-transmissivity. We thus conclude that
the detection threshold is likely to be small enough to
allow for a relevant scaling analysis of the flow struc-
ture, but we will be certain of this conclusion only if
analyses were carried out with an even lower detec-
tion limit.
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Figure 6. Evolution of the permeability averages Ka (left) and Kg (right) as a function of section scales for
different transmissivity thresholds (see text).

4.4. Flow structure indicators

From the previous analysis, we identify a series of
flow structure indicators which could serve as a ba-
sis for testing, and calibration of validating hydro-
geological models. The indicators are best chosen
to be characteristics of the fractured media that are
likely to be controlling the flow properties, that can
be measured, and whose measure is not too much af-
fected by the conditions of the experiment. The 4 in-
dicators listed below and in Figure 7 are chosen to be
the measures of transmissivity distribution and flow
structure.

For each borehole, the equivalent geometric per-
meability average (6) with scale L can be character-
ized by a V shape (Figure 7) with a scattering from
one borehole to another. These trends are basic to
the definition of our 4 indicators.

The first indicator is the scale at which network
percolates, which is about 30 m in the studied area.
This scale also represents the average distance be-
tween inflows or inflow clusters. The evolution of
Kg (L) below the percolation is representative of sec-
tions in which the number of inflows does not in-
crease with scale, which explains the L−1 scaling.

The second indicator is the increase of the geo-
metric permeability average with scale above the
percolation threshold. It reflects the spatial distri-
bution of inflows and the probability to encounter a
flow path of large intensity when increasing the sec-
tion scale. The slope of this increase is characteristic
of the flow organization, a steeper slope indicating a
higher heterogeneity of flows. Note that the increase
of permeability with scale is long debated in the hy-

Figure 7. Representation of the 4 indicators
(number in circles) described in the text with
a graph which superposes the data of Figure 3
and the schematic scaling evolution of Figure 2.
The first is the percolation threshold scale, the
second is the permeability increase above the
percolation threshold, the third is the distribu-
tion of transmissivities, and the fourth is the
REV scale.

drogeological literature [Hunt, 2003a,b, Illman, 2006,
Neuman, 2005, 1994, 2003, Neuman and Di Federico,
2003].

The third indicator is the dispersion of the bore-
hole curves around the L−1 decrease. From borehole
to borehole and comparable size scale, the calculated
values are spread over 3 orders of magnitude (Fig-
ure 7). At sizes L smaller than the minimum distance
between two inflows dmin, Kg (L) is simply equal to
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the geometric average of the set of individual trans-
missivities divided by L:

Kg (L)L<dmin = 1

L
×

(
N∏

i=1
Ti

) 1
N

= Tg

L
. (9)

A borehole of total investigated length H is thus char-
acterized by a set of N transmissivities Ti drawn from
the full transmissivity distribution of the whole site
with a geometric average Tg . Both N and the dis-
tribution of Ti —and thus Tg —are indicators of the
full transmissivity distribution. Note that the distri-
bution of Tg must vary with the investigated borehole
length H around the geometric average of Tg (yellow
dots in Figure 3).

In theory, it exists a fourth indicator which is
the representative elementary volume (REV), above
which the permeability becomes scale independent.
Figure 3 shows that the REV scale, if it exists, is larger
than the investigated section length of 300 m.

5. Calibration/validation of DFN models

This section aims at testing the relevance of the indi-
cators to calibrate, validate or reject DFN models. It
should be taken as an illustration of the potential of
the indicators and not as an in-depth analysis of the
modeling.

The DFN modeling process presented here is in
line with the DFN methodology defined in Selroos
et al. [2022], where the definition of a DFN model for
a hydrogeological application involves several steps.
In the first, geological and geometrical data are used
to define the DFN model of all the fractures, what-
ever their internal properties may be (by convenience
hereafter referred to as geo-DFN). The second one
is an in-between between geometric and hydraulic
modeling steps. It consists in defining the DFN
model of all open and partly open fractures, as a sub-
part of the geo-DFN model (by convenience here-
after referred to as open-DFN). Before even assign-
ing transmissivity properties to the fractures of the
open-DFN model, and hence defining the hydro-
DFN model, the structure of the open-DFN model
is critical for the flow: having a connected path of
open fractures between hydraulically active bound-
aries is the prerequisite to define hydraulic proper-
ties. In each step of the modeling process, data are in-
tegrated with prior models and hypotheses and eval-

uated in a cycle of Sensitivity Analyses, Calibration,
and Rejection tests Selroos et al. [2022].

In this section, we present only a small part of
this modeling process which focuses on the integra-
tion of hydrological data analyzed in Section 4. The
other parts are only briefly described. The analysis
focuses on the fracture domain FFM01 [Follin et al.,
2014, Olofsson et al., 2007], which is the target geo-
logical formation for the spent nuclear fuel reposi-
tory [SKB, 2011]. Models are compared with the bore-
hole KFM08A (Figure 3b, dark yellow dots) that is rep-
resentative of FFM01.

5.1. Description of the selected models

The geo-DFNs rely on site investigations and data in-
terpretations at the Forsmark site [Darcel et al., 2009,
Fox et al., 2007, Olofsson et al., 2007]. The frac-
ture density and fracture orientation distributions
are measured from borehole logging and core map-
ping. The number of fractures fully intersecting the
boreholes per unit core length P10 is converted into
total surface of fracture per unit volume P32 by means
of stereological rules [Dershowitz and Herda, 1992,
Darcel et al., 2003a, Davy et al., 2006, Piggott, 1997].
The values of P32 for the different orientation poles
recorded in Forsmark are given in Table 2 with refer-
ences therein.

The multiscale organization of fracture networks
is a critical attribute for fracture connectivity and
flow [Bonnet et al., 2001, Bour and Davy, 1998, Davy
et al., 2006]. It results in fractal properties and power
law fracture size distributions, which are confirmed
by the analysis of outcrop and lineament trace maps
[Darcel et al., 2009]. Davy et al. [2010] have shown
that the outcrop data in Forsmark are consistent with
a kinematic model of fracture nucleation, growth and
arrest (hereafter called the UFM model). The result-
ing fracture-size distribution is a double power law
with a scaling exponent close to −4 above a critical
fracture size lc and −3 below. The geo-DFN relies on
the genetic UFM model with rules given in Davy et al.
[2013]; it is characterized by the critical fracture size
lc , which fixes the fracture density P32; the larger is lc ,
the smaller is P32.

The open-DFN is a subset of the geo-DFN where
only open fractures—i.e., fractures with a non-nil
open aperture—are represented. The only data avail-
able is the surface ratio of open fractures (hereafter
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Table 2. List of the different fracture sets for the FFM01 fracture domain at depths between −200 and
−400 m with their intensity P32 and the Fisher parameters that define their orientation distributions

Set name P32 (m2/m3) Fisher distribution parameters

Trend (°) Plunge (°) Kappa (-)

NS 1.292 292 1 17.8

NE 1.733 326 2 14.3

NW 0.948 60 6 12.9

EW 0.169 15 2 14.0

HZ 0.624 5 86 15.2

P32 values are taken from Tables 6–33 in Glamheden et al. [2010] and Fisher parameters from Table C-1
in Follin [2008].

Figure 8. Density distribution (left) and open fraction (right) as a function of the fracture size for the
Geo-DFN, lc -open, α-open and pp-open models, respectively.

Table 3. Parameters of the open-DFN models

Model Open fraction pP32 borehole scale Fracture size distribution

Geo-DFN 0 4.6 UFM size model, lc = 3.2 m

lc -open 25% 0.25 1.2 UFM size model, lc = 17.6 m

lc -open 21% 0.21 1 UFM size model, lc = 21.7 m

α-open 0.25 1.2 UFM size model, lc = 3.2 m

pp-open 0.21 1.02 Power-law, exponent −3.4

The open fraction and P32, which are scale-dependent parameters, are calculated for a fracture size of
0.076 m equivalent to the borehole diameter. Both parameters are thus comparable to field measure-
ments. For all the models, the smallest fracture for flow calculation is 2 m, and the system is a cube of
150 m side. The number of fractures is between 37,000 and 70,000 depending on the open-DFN model.

referred as the open fraction fop), which is vary-
ing between 0.15 and 0.25 in the geological forma-
tion [Follin et al., 2014, Olofsson et al., 2007] with
a value around 0.15 for the target fracture domain
FFM01 [Doolaeghe Wehowsky, 2021]. fop can be
measured from the core logging by identifying open

and partially-open fractures and measuring the ra-
tio of fractures presenting open voids, but this is a
bulk ratio that does not indicate how the fractures are
opened individually or depending on their character-
istics. We suspect that the relationship between the
open fraction and the fracture attributes (size or ori-
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entation) is a key parameter to define the hydraulic
properties of the open-DFN.

We analyze different models for the distribution of
the open fraction in the network, whose parameters
are given in Table 3. In all the models, we assume
that fractures are either completely open or sealed.
The first two models—further referred as “lc -open”—
are built as genetic UFM models [Davy et al., 2013]
with a larger critical fracture size lc than the geo-
DFN to account for the decrease of fracture density
P32. The first and second models differ by the pro-
portion of open fraction. The second model—further
referred to as α-open, is a geo-DFN for which a num-
ber of fractures have been removed to account for
the open fraction independently of their size (Fig-
ure 8b). The last model, originally presented in Follin
et al. [2014], relies on a different approach where the
geo-DFN step was skipped and a open/hydro DFN
was directly generated with only a single power-law
fracture size distribution and no genetic base but
only Poisson-point processes (no spatial correlations
between fractures), with the orientation of Table 2
[Follin et al., 2014]. For simplicity, this last model
is named pp-open (pp for poisson-point). The size
distribution and the open fraction of the Geo-DFN,
lc -open, α-open and pp-open models are given in
Figure 8 and the other model characteristics summa-
rized in the legend of Table 3.

Although the 4 DFN models are consistent with
the same data, they are very different in terms of
connectivity, as highlighted by the analysis of the
percolation parameter p as a function of system size
L (Figure 9). This parameter measures the degree
of connectivity of the networks and is expressed as
[Charlaix et al., 1984, de Dreuzy et al., 2000]:

p(L) =
∫ L

lmin

π2

8
l 3n(l )dl (10)

where n(l ) is the density distribution of fracture size
l per unit volume, and lmin is the smallest value of
the distribution n(l ). Bour and Davy [1998] demon-
strate that the percolation parameter increases with
scale and that the percolation threshold marks the
limit scale above which statistically networks are
connected by several fractures. The larger the perco-
lation threshold, the larger the number of connected
paths in a system. Figure 9 shows that the connection
scale ranges from 10 to 50 m for the studied models,

Figure 9. Evolution of the percolation parame-
ters as a function of the system size for the Geo-
DFN, lc -open, α-open and pp-open models.
The expression of p is given by (10). The dashed
rectangle indicates the percolation threshold
for the prescribed orientations.

and that lc -open models are better connected than
α-open and pp-open model.

The Hydro-DFN is defined by assigning a trans-
missivity for each fracture. We define 4 different
transmissivity models:

• all fractures have the same transmissivity
(T = 1)—in this case, the resulting perme-
ability is called the effective connectivity
[de Dreuzy et al., 2001a]—;

• fracture transmissivity is proportional to the
fracture size (T = l ), which is the standard
model studied by Frampton and Cvetkovic
[2010] for similar geological formations;

• fracture transmissivity is a function of the
normal stress applied to the fracture (T =
f (σn)); it mimics the closure of fractures by
the normal stress to the fracture plane σn ;
in practice, σn is calculated from the projec-
tion of the remote stress tensor σ given in
Glamheden et al. [2007]; the transmissivity-
stress function is derived from Follin and
Stigsson [2014] as:

f (σn) = exp

(
−σn

σc

)
with σc = 4 MPa;
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• fracture transmissivity is assumed to be the
product of the two previous relationships,
i.e., fracture size and stress: T = l f (σn).

This list does not cover the whole range of model
possibilities but it gives good examples of the types
of transmissivity relationships that could be inves-
tigated for a site modeling. Note that, in these re-
lations, the transmissivities are relative with respect
to a reference value that must be calibrated to the
data. The following analysis is independent of this
reference.

5.2. Comparison models/data, and sensitivity
analysis

Flow simulations are performed with the computa-
tional suite “DFN.lab” [Le Goc et al., 2019], according
to the setup described in Appendices A and B. Results
are averaged from 10 realizations for Kg (6) and the
value is normalized by the permeability calculated
first for a scale of 0.5 m: K ∗

g (L) = Kg (L)/Kg (L = 0.5).
Figure 10 shows the effects of the transmissivity

model on the evolution of K ∗
g . The first part of the

curve is similar for all the transmissivity models with
a L−1 decrease. After the percolation threshold, K ∗

g
stabilizes around a constant value for T = 1 (constant
fracture transmissivity), and it grows for all other
transmissivity models. The permeability increase af-
ter threshold is primarily induced by a size depen-
dency of fracture transmissivity (see the models T = l
and T = l · f (σ)); it is also induced, even though to
a lesser degree, by a dependence of the transmissiv-
ity on stress (T = f (σ)) and thus on orientation. The
combination of fracture size and stress/orientation
dependency of fracture transmissivity (T = l · f (σ))
has an effect on permeability scaling that is more
than each of the property effects taken separately.
This illustrates that the flow variability inducing the
permeability increase is not a linear juxtaposition of
effects.

The transition scale between both regimes has
been estimated from the intersection of the end-
member regimes at small and larges scales: K ∝ L−1

at small scales, and K ∝ Lα at large scales with α de-
pendent on the transmissivity model. The transition
is about independent of the transmissivity model
around 4–4.5 m for the lc -open model with an open
fraction of 21% (Figure 10a) and around 10 m with
15% (Figure 10b). It is slightly larger than—but still

consistent with—the percolation scale for this model
estimated from Figure 9.

These simulations are merely indications of the
possible effects associated with the transmissivity
models. A more complete study is needed to derive
general laws. Note also that the normalization by the
first point of the curve removes the variability from
one model to another and from one realization to an-
other. This point is discussed later.

How the permeability scaling reveals the open-
model is presented in Figure 11 for two transmissiv-
ity models: T = 1 (left) and T = l f (σ) (right). The
trends are similar to those presented in Figure 10,
and the differences between the different open mod-
els mostly lie in the scale at which the transition be-
tween both two end-member regimes occurs. The
increasing order of the different transition scales is
in agreement with the evolution of the percolation
parameter with the scale: lc -open models first, then
pp-open model andα-open. Even the crossing of the
curves of the last two models observed on K ∗

g is pre-
dicted by the percolation parameter. A comparison
with the borehole data of KFM08A is made in Fig-
ure 11 (right). None of the presented open models
correctly reproduce the increase of permeability with
scale after the transition scale for the two transmis-
sivity models presented, T = 1 and T = l f (σ). The α-
open model is too weakly connected at large scale ir-
respective of the fracture transmissivity model, while
pp-open model is slightly too connected at small
scales. The lc -open model with an open fraction
of 15% and fracture transmissivity that scales with
the fracture size is a good candidate to reproduce
the permeability scaling at small and large scales
(Figure 10b).

In Figure 12, we present an attempt to estimate the
model variability (third validation indicator in Sec-
tion 4.4). We calculate the lognormal standard de-
viation of the geometric average permeability σln(Kg )

for 10 realizations for models, and in-between bore-
holes for data. σln(Kg ) is dimensionless and does
not depend on the unit of the fracture transmissiv-
ity, which makes it a useful indicator for comparing
models and data. σln(Kg ) has been calculated for 10
realizations for each combination between an open
model and a transmissivity model. Figure 12 shows
the evolution of σln(Kg ) with scale for different trans-
missivity models and lc -open 15% (left), and for dif-
ferent open models and T = l f f (σ) (right). Not sur-
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Figure 10. Evolution of the geometric averaged permeability as a function of scale for the lc -open model
21% (left) and 15% (right) with the various transmissivity models (see the list above). An approximate
power law fit for the different regimes of scaling is provided for all the models. The fit exponent is
an indication of the intensity of the permeability with scale for large scales. The permeability scaling
measured at KFM08A (yellow dots) and the fit for large scaling (grey dashed lines) are also indicated for
comparison.

Figure 11. Evolution of the normalized geometric-averaged permeability for the different open-models
and two transmissivity models: T = 1 (left) and T = l · f (σ) (right). The symbol colors and line types are
similar to the one used in the Figure 9. The yellow dots on the right plot indicate the KFM08A scale
analysis.

prisingly, the transmissivity model with the largest
variability is T = l f f (σ), i.e., when the transmissiv-
ity depends both on stress and fracture size. This is
the only model that shows an increase in variabil-
ity with scale above 10–20 m. This trend is also ob-
served in the data but to a lesser degree. For all other
transmissivity models, the variability is about con-
stant with scale and it is not very different from
one model to another except for the model with a
constant transmissivity which has a lower variabil-
ity (Figure 12a). This result must be confirmed by a
larger number of simulations.

The impact of the open model on σln(Kg ) is pre-
sented in Figure 12b. The α-open model has the
largest variability, probably because it is largely con-
trolled by a few big fractures. The pp-open model is
the only one where the variability does not increase
with scale for this transmissivity model.

Note that the comparison between model and
data is not fair because the boreholes mix domains
that can be quite heterogeneous, in particular, in
terms of open fraction, while models are built with a
constant open fraction. The σln(Kg ) values are there-
fore likely to be overestimated for the data compared
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Figure 12. Evolution of the standard deviation for 10 realizations of the lognormal distribution of
permeability as a function of scale. Left: comparison of the different open-DFN models, all with the
transmissivity model T = l ; right: comparison of the different transmissivity models, all with the lc -open
DFN model.

to the models and a correction may be necessary to
make a true comparison.

6. Discussion

The four indicators defined in the Section 4.4 turn
out to be useful to validate or calibrate models. All
the models presented are consistent with the data,
but no all of them can reproduce the data indica-
tors. We discuss here the ability of the indicators
to constrain both the structure that carries the flow
and the transmissivity model that is applied to that
structure.

All the models—again, calibrated on the data from
Forsmark—reproduce the V-shape scaling curve of
the permeability geometric average observed in data.

• The first indicator is the scale which marks
the transition between the L−1 scaling at
small scale and the transmissivity scaling at
large scale. This scale is closely related to
a connectivity threshold of the open-DFN
structure. Indeed, for open-DFN, whose dis-
tribution of the largest fractures follows
a power law, the connectivity increases
with scale and the percolation threshold
is reached at a given scale which can be
predicted by the evolution of the percola-
tion parameter with the scale. For all the
tested models, the transition/percolation
scale seems to be independent of the trans-
missivity model.

• The second indicator is the increase of the
geometrically-averaged permeability with
scale. It can be modeled by a power-law
scaling whose exponent gives the increase
in intensity. This indicator reveals the trans-
missivity model and a large increase is likely
associated with a dependency of fracture
transmissivity with fracture size. A high vari-
ability in fracture transmissivity, even with-
out this transmissivity scaling effect, can also
create an increase in permeability but to a
lesser extent.

• The third indicator is the variability of
geometrically-averaged permeability from
one well to another (data) or from one re-
alization to another (models). It has been
quantified as the standard deviation of the
logarithm of permeability, which is a di-
mensionless parameter that relies on the
likely lognormal permeability distribution.
This indicator is much more sensitive to the
structure model (open-DFN) than the trans-
missivity model with the exception of the
extreme transmissivity model T = l · f (σ),
where the variability is high and scale de-
pendent above the transition scale (i.e., 2nd
indicator) as it is the case for the data. We
do not want to draw definitive conclusions
on this indicator because it would require
many more models and realizations, and a
comparison taken on more homogeneous
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data.

Although the analysis is far from exploring all the
structure and transmissivity models of DFN, we can
draw few preliminary conclusions on the capacity of
the chosen models to reproduce the indicators.

• In the DFN modeling workflow, an under-
constrained critical point is the way in which
the open fracture fraction is distributed in
the network. Only the total open fraction
cannot be retrieved from flow logs. If the
open fraction is uniformly distributed over
all fractures regardless of their size or ori-
entation, as it is for the α-open model, the
network is less connected than other mod-
els, and probably the natural networks, what-
ever the assigned transmissivity model may
be (see Figure 8a). On the other hand, if
the open fraction is large at small scale, as
it is for the pp-open model, the network is
more connected than other models and data
at these scales. This highlights the primary
importance of properly defining what frac-
tures are sealed and the proportion of open
fractures per fracture size.

• The transmissivity model T = 1 (i.e., constant
transmissivity for each fracture) cannot not
reproduce the V-shape of Kg vs scale. This
model is obviously unrealistic, however we
suspect that any transmissivity model, whose
variability from one fracture to another is too
low could not reproduce the permeability in-
crease with scale as observed in data above
∼10 m. On the other hand, the transmissivity
model combining fracture size and normal
stress T = l f (σ) predicts permeability in-
crease with scale too sharp compared to data.
It is not certain to find an unequivocal so-
lution between the transmissivity model and
the observed permeability scaling by playing
on the fracture size and orientation/stress
dependence, but this indicator still reduces
the field of possibilities.

• It is difficult to know at present whether a
model should be rejected altogether (e.g., the
α-open or pp-open models) or whether it
is still possible to modify some of their pa-
rameters to fit the data. This exercise is

however necessary to limit the field of pos-
sible models.

• The best-fit model among those tested is lc -
open with a transmissivity model T = l but
it is not totally satisfactory, particularly in
terms of the variability it induces (3rd indi-
cator), which is too low and does not depend
on the scale.

Note that the fourth indicator, which is the existence
of a representative elementary volume, is not ob-
served in the data where the permeability geometric
average increases continuously with the scale.

7. Conclusion

The objective of the paper is to better understand and
quantify the flow structure in fractured rocks from
PFL flow logs, and also to propose relevant indicators
for validating, calibrating or even rejecting hydrolog-
ical models. The data consists of a series of inflows
along each borehole with an equivalent transmissiv-
ity measured from pumping tests. We first studied
what the inflow distribution tells us about the perme-
ability structure from a series of analysis: distribution
of transmissivities as a function of depth, proportion
of flowing sections as a function of section scale, scal-
ing of the arithmetically-averaged and geometrically-
averaged permeability. We argue that the perme-
ability scaling evolution provides more information
on the flow structures than macroscopic values (i.e.,
large scale permeability), the latter being too integra-
tive.

We thus define three indicators of the flow struc-
ture from the scale evolution of the permeability geo-
metric average that highlight intrinsic properties of
the flow structure:

• a percolation scale ls ,
• the way permeability increases with scale

above ls ,
• the permeability variability, measured as the

standard deviation of the permeability loga-
rithm for different boreholes or model real-
izations, as a function of scale.

A 4th indicator on the representative elemental vol-
ume could in principle be defined but the data
show that this volume/scale is beyond the 300 m
investigated.
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We tested a series of numerical models by running
flow simulations on generated DFNs to compute the
same indicators on synthetic data. Most of the mod-
els are built from the DFN methodology with three
steps: the geo-DFN based on the observed fracture
network, the open-DFN which is the part of the geo-
DFN where fractures are open, and a transmissivity
model applying on each fracture of the open-DFN.
The analysis of the models showed that the perco-
lation scale is controlled by the open-DFN structure
and that the percolation scale can be predicted from
a scale analysis of the percolation parameter (basi-
cally, the third moment of the fracture size distri-
bution that provides a measure of the network con-
nectivity). For the same geo-DFN, the distribution
of the open fraction with fracture size is the criti-
cal parameter that controls the percolation param-
eter and the percolation threshold. The way per-
meability increases with scale above the percolation
threshold is controlled by the transmissivity model.
We have tested several of them with a dependence
of the fracture transmissivity on either the orienta-
tion of the fractures via a stress-controlled transmis-
sivity or their size or both. Although size dependence
induces the greatest effect on permeability increase,
the variability due to orientation (i.e., stress) depen-
dence also has a non-negligible effect that is en-
hanced when the two dependencies are combined.

The comparison with data on the first two indica-
tors shows that a model that matches the character-
istics of the geo-DFN with the measured open frac-
tion of 15% adequately fits the data, provided that
the large fractures remain open and that the fracture
transmissivity model is well selected. Most of the
other models shows unacceptable differences with
data, however other models or model combinations
still have to be explored before rejecting them.

The third indicator on model variability is still
problematic since the natural data show a higher
variability than the models but the open fraction
is also much more variable in the data than in the
models.

By characterizing the flow structure in terms of
permeability scaling and variability, and by defin-
ing three indicators that describe some fundamen-
tal characteristics of the flow/permeability whatever
the scale may be, we bring a new way to calibrate
and/or validate models or at least to reduce the field
of model possibilities.
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Appendix A. DFN geometrical model
definition

We consider the fractured rock mass as a set of frac-
tures represented by discrete elements embedded
in a linear elastic media, as commonly described
by the Discrete Fracture Network (DFN) methodol-
ogy. In 3D, fractures are represented by surfaces
(usually disks), embedded in a volume. We here-
after refer to two types of DFN models, the Poisson
Point process-based and the genetic (Universal Frac-
ture Model) UFM ones.

The Poisson Point process-based DFN model—
named Poisson DFN model—relies only on statistics-
based fracture generation. The DFN properties are
predefined by statistical distributions (density distri-
butions of fracture sizes and orientations) and frac-
tures are generated from a random sampling of ge-
ometrical properties (Poisson Point process-based),
where each fracture position, size, and orientation
are independent of the other fractures, but the aver-
age density is predetermined.

The UFM DFN model introduced by Davy et al.
[2013] belongs to the range of genetic DFN models,
introducing a fracture hierarchy between fractures by
mimicking the fracturing process. The UFM model
produces fracture size distributions and fracture in-
tersections that are consistent with observations, us-
ing simple rules (N–G–A) for:

• Nucleation: fractures are introduced in the
system at a constant nucleation rate ṅN , with
a nuclei size of ln .

• Growth: once created, fractures grow follow-
ing a power-law relationship that describes
the crack tip velocity v(l ) = C l aG , with l the
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Figure 13. Clipped view along a vertical central plane going through the vertical borehole for PFL-like
boundary conditions (a) flow rate (in m3/s) and (b) head (in m) fields.

fracture size, C the growth rate, and aG the
growth exponent.

• Arrest: while growing, fractures stop if they
encounter a larger one, which is a first-order
approximation of mechanical interactions.

While the DFN fracture size distribution is imposed
from the beginning in a Poisson DFN model, it nat-
urally arises from the growth and arrest processes in
the UFM, as part of a spatially organized structure.
For constant nucleation rate and growing fractures,
there is a stationary solution for the fracture size dis-
tribution (referred to as the dilute regime) described
by nG (l ) = ṅN /C · l−aG , while the arrest rule is re-
sponsible for the emergence of a quasi-universal self-
similar fracture size distribution (referred to as the
dense regime) described by nA(l ) = DγD l−D+1, with
D the topological dimension associated to fracture
centers, and γ, a geometrical parameter dependent
on fracture orientations. The model thus results in a
two power-law size distribution, where the transition
size lc between nG and nA is both the scale at which
the network is connected and the average size of frac-
ture blocks. Moreover, the arrest rule is responsible
for the emergence of T intersections, where a fracture

abuts on another one. The fracture spatial organiza-
tion introduced by the UFM framework has an im-
pact on both the network topology [Hope et al., 2015]
and its hydrogeological behavior [Maillot et al., 2016].

Appendix B. Numerical set-up

The DFN and flow simulation volume is a generic
3D cubic domain. Boundary conditions are assigned
all over the domain sides, either fixed heads or no
flow and possibly along a generic borehole (like a
1D line) added in the cube. Steady-state flow tests
are defined with PFL-like conditions to mimic the in-
situ Posiva Flow Log (PFL) tests done at the Forsmark
site and described in Section 2. A head drawdown of
−10 is imposed at a vertical borehole at the center of
the domain to simulate the constant head pumping,
while zero heads are imposed on the vertical sides
and the top and no-flow on the bottom. The steady-
state flow-field was calculated using DFN.lab, and
the inflows to the borehole at each connected open
fracture intersected by the borehole were retrieved.
The borehole itself was represented by a vertical line.

The first step of the flow simulation is to iden-
tify the set of fractures of the DFN that constitute a
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connected path between the defined active hydraulic
boundaries. If there is no connected path, there is
simply no flow simulation. Once the set of con-
nected fractures is identified, it is cleaned up from its
dead-ends (we assume that a fracture with only one
intersection to the connected cluster or hydraulic
boundary does not contribute to flow). This cleaned
fracture cluster can be called a flow backbone. Fi-
nally, fractures of the flow backbone are meshed, and
flow is solved using a mixed-hybrid finite-element
scheme in steady-state conditions. (Figure 13).

For each intersection of the borehole with a flow-
ing fracture f , one defines the observed fracture
transmissivity TPFL, f as:

TPFL, f =
QPFL, f

2π∆h
· ln

(
c · R

rm

)
(11)

with QPFL, f the flow rate at the borehole intersection,
rm/c (with c equal to 10) the equivalent borehole ra-
dius and R the radial distance between the borehole
and the boundary conditions. c is a correction factor
that accounts for numerical artifacts relative to the
borehole type condition and meshes element shape
(triangle). With this definition, the transmissivity of
an isolated fracture connected to the borehole and
the system limits can be inferred from the simulated
values of QPFL,l and ∆h. If the intercepted fracture
is not isolated, measured equivalent transmissivity
rather reflects the flow capacity of the closely con-
nected cluster of fractures around the intercepted
one rather than the transmissivity of the intercepted
fracture itself.

The transmissivity TPFL(s), of a borehole section of
size s, including potentially several flowing fractures.
It is defined from (11) with QPFL(s) the sum of the flow
rates over the individual fractures of the section.

The equivalent hydraulic conductivity of the frac-
ture network (in m/s) estimated from a borehole sec-
tion is equal to the sum of inflow transmissivities di-
vided by the section length.

References

Berkowitz, B., Bour, O., Davy, P., and Odling, N.
(2000). Scaling of fracture connectivity in geolog-
ical formations. Geophys. Res. Lett., 27(14), 2061–
2064.

Bonnet, E., Bour, O., Odling, N. E., Davy, P., Main, I.,
Cowie, P., and Berkowitz, B. (2001). Scaling of frac-
ture systems in geological media. Rev. Geophys.,
39(3), 347–383.

Bour, O. and Davy, P. (1997). Connectivity of ran-
dom fault networks following a power law fault
length distribution. Water Resour. Res., 33(7), 1567–
1583.

Bour, O. and Davy, P. (1998). On the connectivity of
three-dimensional fault networks. Water Resour.
Res., 34(10), 2611–2622.

Cacas, M. C., Ledoux, E., de Marsily, G., Barbreau, A.,
Calmels, P., Gaillard, B., and Margritta, R. (1990a).
Modeling fracture flow with a stochastic discrete
fracture network: Calibration and validation: 2.
The transport model. Water Resour. Res., 26(3),
491–500.

Cacas, M. C., Ledoux, E., de Marsily, G., Tillie, B., Bar-
breau, A., Durand, E., Feuga, B., and Peaudecerf, P.
(1990b). Modeling fracture flow with a stochastic
discrete fracture network: calibration and valida-
tion: 1. The flow model. Water Resour. Res., 26(3),
479–489.

Charlaix, E., Guyon, E., and Rivier, N. (1984). A crite-
rion for percolation threshold in a random array of
plates. Solid State Commun., 50(11), 999–1002.

Charlaix, E., Guyon, E., and Roux, S. (1987). Perme-
ability of a random array of fractures of widely vary-
ing apertures. Transp. Porous Media, 2, 31–43.

Chen, T., Clauser, C., Marquart, G., Willbrand, K.,
and Hiller, T. (2018). Upscaling permeability for
three-dimensional fractured porous rocks with the
multiple boundary method. Hydrogeol. J., 26(6),
1903–1916.

Chen, T., Clauser, C., Marquart, G., Willbrand, K., and
Mottaghy, D. (2015). A new upscaling method for
fractured porous media. Adv. Water Resour., 80, 60–
68.

Clauser, C. (1992). Permeability of crystalline rocks.
Eos, Trans. Am. Geophys. Union, 73(21), 233–238.

Darcel, C., Bour, O., and Davy, P. (2003a). Stereologi-
cal analysis of fractal fracture networks. J. Geophys.
Res., 108(B9), 13–1–13–14.

Darcel, C., Bour, O., Davy, P., and de Dreuzy,
J. R. (2003b). Connectivity properties of two-
dimensional fracture networks with stochastic
fractal correlation. Water Resour. Res., 39(10), ar-
ticle no. 1272.

Darcel, C., Davy, P., Le Goc, R., Bour, O., and



688 Philippe Davy et al.

de Dreuzy, J. R. (2009). Statistical methodology for
discrete fracture models – including fracture size,
orientation uncertainty together with intensiy un-
certainty and variability. Technical Report R-09-38.
Retrieved from Stockholm: http://www.skb.com/
publication/1983611/R-09-38.pdf.

Davy, P., Bour, O., De Dreuzy, J.-R., and Darcel, C.
(2006). Flow in multiscale fractal fracture networks.
In Fractal Analysis for Natural Hazards, volume 261
of Geol. Soc. London, Spec. Publ., pages 31–45. Ge-
ological Society of London.

Davy, P., Darcel, C., Le Goc, R., Munier, R., Selroos, J.-
O., and Mas Ivars, D. (2018). DFN, why, how and
what for, concepts, theories and issues. In Paper
presented at the 2nd International Discrete Frac-
ture Network Engineering Conference. OnePetro,
Richardson, TX.

Davy, P., Le Goc, R., and Darcel, C. (2013). A model
of fracture nucleation, growth and arrest, and con-
sequences for fracture density and scaling. J. Geo-
phys. Res. Solid Earth, 118(4), 1393–1407.

Davy, P., Le Goc, R., Darcel, C., Bour, O., de Dreuzy, J.-
R., and Munier, R. (2010). A likely universal model
of fracture scaling and its consequence for crustal
hydromechanics. J. Geophys. Res., 115(B10), 1–13.

de Dreuzy, J. R., Davy, P., and Bour, O. (2000). Per-
colation parameter and percolation-threshold esti-
mates for three-dimensional random ellipses with
widely scattered distributions of eccentricity and
size. Phys. Rev. E, 62(5), 5948–5952.

de Dreuzy, J. R., Davy, P., and Bour, O. (2001a).
Hydraulic properties of two-dimensional random
fracture networks following a power law length dis-
tribution 1. Effective connectivity. Water Resour.
Res., 37(8), 2065–2078.

de Dreuzy, J. R., Davy, P., and Bour, O. (2001b).
Hydraulic properties of two-dimensional random
fracture networks following a power law length dis-
tribution 2. Permeability of networks based on log-
normal distribution of apertures. Water Resour.
Res., 37(8), 2079–2096.

de Dreuzy, J. R., Davy, P., and Bour, O. (2002).
Hydraulic properties of two-dimensional random
fracture networks following power law distribu-
tions of length and aperture. Water Resour. Res.,
38(12), 12–1–12–9.

de Dreuzy, J. R., de Boiry, P., Pichot, G., and Davy, P.
(2010). Use of power averaging for quantifying the
influence of structure organization on permeabil-

ity upscaling in on-lattice networks under mean
parallel flow. Water Resour. Res., 46(8), 1–11.

De Dreuzy, J. R., Pichot, G., Poirriez, B., and Er-
hel, J. (2013). Synthetic benchmark for modeling
flow in 3D fractured media. Comput. Geosci., 50,
59–71.

Dershowitz, W. S. and Herda, H. H. (1992). Interpre-
tation of fracture spacing and intensity. In Paper
presented at the The 33th US Symposium on Rock
Mechanics (USRMS). OnePetro, Richardson, TX.

Dewandel, B., Lachassagne, P., Wyns, R., Marechal,
J. C., and Krishnamurthy, N. S. (2006). A general-
ized 3-D geological and hydrogeological concep-
tual model of granite aquifers controlled by sin-
gle or multiphase weathering. J. Hydrol., 330(1–2),
260–284.

Doolaeghe Wehowsky, D. (2021). Colmatage des
réseaux de fractures, modèles et conséquences hy-
drologiques. PhD thesis, University of Rennes 1,
Rennes.

Follin, S. (2008). Bedrock hydrogeology Forsmark,
Site descriptive modelling, SDM-Site Forsmark.
Technical Report R-08-95, Svensk Kärnbränsle-
hantering AB (SKB), Stockholm, Sweden.

Follin, S., Hartley, L., Rhén, I., Jackson, P., Joyce, S.,
Roberts, D., and Swift, B. (2014). A methodology
to constrain the parameters of a hydrogeological
discrete fracture network model for sparsely frac-
tured crystalline rock, exemplified by data from the
proposed high-level nuclear waste repository site
at Forsmark, Sweden. Hydrogeol. J., 22(2), 313–331.

Follin, S., Leven, J., Hartley, L., Jackson, P., Joyce, S.,
Roberts, D., and Swift, B. (2007). Hydrogeologi-
cal characterisation and modelling of deformation
zones and fracture domains, Forsmark modelling
stage 2.2. Technical Report R-07-48, Svensk Kärn-
bränslehantering AB (SKB), Stockholm, Sweden.

Follin, S. and Stigsson, M. (2014). A transmissiv-
ity model for deformation zones in fractured crys-
talline rock and its possible correlation to in situ
stress at the proposed high-level nuclear waste
repository site at Forsmark, Sweden. Hydrogeol. J.,
22(2), 299–311.

Fox, A., La Pointe, P., Hermanson, J., and Öhman, J.
(2007). Statistical geological discrete fracture net-
work model. Forsmark modelling stage 2.2. Techni-
cal Report R-07-46, Svensk Kärnbränslehantering
AB (SKB), Stockholm, Sweden.

Frampton, A. and Cvetkovic, V. (2010). Inference

http://www.skb.com/publication/1983611/R-09-38.pdf
http://www.skb.com/publication/1983611/R-09-38.pdf


Philippe Davy et al. 689

of field-scale fracture transmissivities in crystalline
rock using flow log measurements. Water Resour.
Res., 46(11), article no. W11502.

Glamheden, R., Fälth, B., Jacobsson, L., Harrström,
J., Berglund, J., and Bergkvist, l. (2010). Counter-
force applied to prevent spalling. Technical Report
TR-10-37, Svensk Kärnbränslehantering AB (SKB),
Stockholm, Sweden.

Glamheden, R., Fredriksson, A., Roeshoff, K., Karls-
son, J., Hakami, H., and Christiansson, R. (2007).
Rock mechanics Forsmark. Site descriptive mod-
elling Forsmark stage 2.2. Technical report,
Swedish Nuclear Fuel and Waste Management,
Sweden.

Hope, S. M., Davy, P., Maillot, J., Le Goc, R., and
Hansen, A. (2015). Topological impact of con-
strained fracture growth. Front. Phys., 3, article
no. 75.

Hunt, A. G. (2003a). Reply to comment by S. P. Neu-
man on “Some comments on the scale dependence
of the hydraulic conductivity in the presence of
nested heterogeneity”. Adv. Water Resour., 26(11),
1215.

Hunt, A. G. (2003b). Some comments on the scale de-
pendence of the hydraulic conductivity in the pres-
ence of nested heterogeneity. Adv. Water Resour.,
26(1), 71–77.

Illman, W. A. (2006). Strong field evidence of direc-
tional permeability scale effect in fractured rock. J.
Hydrol., 319(1–4), 227–236.

Le Goc, R., Pinier, B., Darcel, C., Lavoine, E.,
Doolaeghe, D., De Simone, S., de Dreuzy, J.-R., and
Davy, P. (2019). DFN.lab: software platform for Dis-
crete Fracture Network models. In Paper presented
at the AGU Fall Meeting 2019. American Geophysi-
cal Union, Washington, DC.

Lei, Q., Latham, J.-P., and Tsang, C.-F. (2017). The use
of discrete fracture networks for modelling coupled
geomechanical and hydrological behaviour of frac-
tured rocks. Comput. Geotech., 85, 151–176.

Long, J. and Billaux, D. M. (1987). From field data to
fracture network modeling: an example incorpo-
rating spatial structure. Water Resour. Res., 23(7),
1201–1216.

Long, J. C. S. and Witherspoon, P. A. (1985). The rela-
tionship of the degree of interconnection to perme-
ability in fracture networks. J. Geophys. Res., 90(B4),
3087–3098.

Maillot, J., Davy, P., Le Goc, R., Darcel, C., and

de Dreuzy, J. R. (2016). Connectivity, permeability,
and channeling in randomly distributed and kine-
matically defined discrete fracture network mod-
els. Water Resour. Res., 52(11), 8526–8545.

Mandelbrot, B. B. (1982). The Fractal Geometry of
Nature. W.H. Freeman, New-York.

Martin, D. and Follin, S. (2011). Review of possible
correlations between in situ stress and PFL fracture
transmissivity data at Forsmark. Technical Report
R-08-69, Svensk Kärnbränslehantering AB (SKB),
Stockholm, Sweden.

Martinez-Landa, L. and Carrera, J. (2005). An
analysis of hydraulic conductivity scale effects in
granite (Full-scale Engineered Barrier Experiment
(FEBEX), Grimsel, Switzerland). Water Resour. Res.,
41(3), article no. W03006.

Meier, P. M., Carrera, J., and Sanchez-Vila, X. (1999).
A numerical study on the relationship between
transmissivity and specific capacity in heteroge-
neous aquifers. Groundwater, 37(4), 611–617.

Neuman, S. (2005). Trends, prospects and chal-
lenges in quantifying flow and transport through
fractured rocks. Hydrogeol. J., 13(1), 124–147.

Neuman, S. P. (1994). Generalized scaling of perme-
abilities. Geophys. Res. Lett., 21(5), 349–352.

Neuman, S. P. (2003). Comment on “Some comments
on the scale dependence of the hydraulic conduc-
tivity in the presence of nested heterogeneity” by
A. G. Hunt. Adv. Water Resour., 26(11), 1213.

Neuman, S. P. and Di Federico, V. (2003). Multifaceted
nature of hydrogeologic scaling and its interpreta-
tion. Rev. Geophys., 41(3), 4–1–4–31.

Oda, M. (1985). Permeability tensor for discontinu-
ous rock masses. Géotechnique, 35(4), 483–495.

Öhberg, A. and Rouhiainen, P. (2000). Posiva ground-
water flow measuring techniques. Technical Re-
port 2000-12, Posiva Oy, Helsinki, Finland. Re-
trieved from Helsinki.

Olofsson, I., Simeonov, A., Stephens, M., Follin, S.,
Nilsson, A., Röshoff, K., Lindberg, U., Lanaro, F.,
Fredriksson, A., and Persson, L. (2007). Site de-
scriptive modelling Forsmark, stage 2.2. Technical
Report R-07-15, Svensk Kärnbränslehantering AB
(SKB), Stockholm, Sweden.

Park, B. Y., Kim, K. S., Kwon, S., Kim, C., Bae, D. S.,
Hartley, L. J., and Lee, H. K. (2002). Determination
of the hydraulic conductivity components using a
three-dimensional fracture network model in vol-
canic rock. Eng. Geol., 66(1), 127–141.



690 Philippe Davy et al.

Pavón-Domínguez, P. and Moreno-Pulido, S. (2022).
Sandbox fixed-mass algorithm for multifractal un-
weighted complex networks. Chaos Solitons Frac-
tals, 156, article no. 111836.

Perrochet, P. (2005). A simple solution to tunnel or
well discharge under constant drawdown. Hydro-
geol. J., 13(5), 886–888.

Piggott, A. (1997). Fractal relations for the diameter
and trace length of disc-shaped fractures. J. Geo-
phys. Res., 102(B8), 18121–18125.

Ren, S., Zhang, Y., Jim Yeh, T. C., Wang, Y., and
Carr, B. J. (2021). Multiscale hydraulic conductivity
characterization in a fractured granitic aquifer: the
evaluation of scale effect. Water Resour. Res., 57(9),
article no. e2020WR028482.

Renard, P. and Marsily, G. d. (1997). Calculating
equivalent permeability: a review. Adv. Water Re-
sour., 20(5–6), 253–278.

Rouhiainen, P. and Pöllänen, J. (2003). Forsmark
site investigation Difference flow logging of bore-
hole KFM01A. Technical Report P-03-28, Posiva Oy,
Helsinki, Finland.

Rouhiainen, P., Pöllänen, J., and Tec-Oy, P. (2004).
Forsmark site investigation: Difference flow log-
ging in borehole KFM06A. Technical Report P-05-
15, Posiva Oy, Helsinki, Finland.

Selroos, J.-O., Ivars, D. M., Munier, R., Hartley, L.,

Libby, S., Davy, P., Darcel, C., and Trinchero, P.
(2022). Methodology for discrete fracture network
modelling of the Forsmark site. Part 1—concepts,
data and interpretation methods. Technical Report
R-20-11, Svensk Kärnbränslehantering AB (SKB),
Stockholm, Sweden.

SKB (2011). Long-term safety for the final reposi-
tory for spent nuclear fuel at Forsmark. Main Re-
port of the SR-Site Project. Technical Report TR-11-
01, Svensk Kärnbränslehantering AB (SKB), Stock-
holm, Sweden.

Tél, T., Fülöp, A., and Vicsek, T. (1989). Determination
of fractal dimensions for geometrical multifractals.
Phys. A: Stat. Mech. Appl., 159(2), 155–166.

Wen, X.-H. and Gómez-Hernández, J. J. (1996). Up-
scaling hydraulic conductivities in heterogeneous
media: An overview. J. Hydrol., 183(1), ix–xxxii.

Zou, L. and Cvetkovic, V. (2020). Inference of trans-
missivity in crystalline rock using flow logs un-
der steady-state pumping: impact of multiscale
heterogeneity. Water Resour. Res., 56(8), article
no. e2020WR027254.

Zou, L. and Cvetkovic, V. (2021). Evaluation of flow-
log data from crystalline rocks with steady-state
pumping and ambient flow. Geophys. Res. Lett.,
48(9), article no. e2021GL092741.


	1. Introduction
	2. Site and available data overview
	3. Scaling metrics for flow log interpretation
	4. Hydraulic data interpretations
	4.1. Permeability averages
	4.2. Flow structure organization
	4.3. Dependency on the detection threshold of transmissivity
	4.4. Flow structure indicators

	5. Calibration/validation of DFN models
	5.1. Description of the selected models
	5.2. Comparison models/data, and sensitivity analysis

	6. Discussion
	7. Conclusion
	Conflicts of interest
	Acknowledgements
	Appendix A. DFN geometrical modeldefinition
	Appendix B. Numerical set-up
	References

