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Abstract. The Laopanga hot spring deposits along the “Cameroon Volcanic Line” (CVL) are distinc-
tive in being both siliceous sinter and travertine, made up of immature amorphous silica and mainly
calcite, and associated with detrital deposits such as claystone, sandstone and conglomerate. Their
age range from Plio-Pleistocene to Actual. Sr concentrations (17 to 2304 ppm) suggest an enrichment
by epithermal outflows. δ13C and δ18O values, ranging respectively from 1.5‰ to 2.9‰ V-PDB and
−10.1‰ to −6‰ V-PDB, reflect a high temperature of the parent solution (40 °C) related to an ele-
vated geothermal gradient. The europium anomalies values (Eu/Eu*: 0.54–1.78) indicate the temper-
ature variation of precipitated deposits related to distance of the deep hot water flow. The chemical
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compositions of the lithofacies show the diversity of the spring deposits related to complex phenom-
ena of internal migration of mineralized hot water and the tectonic controls during the Precambrian
fault reactivations.

Keywords. Plio-pleistocene to actual, Cameroon volcanic line, Laopanga basin, Central Cameroon
shear zone, Precambrian fault.
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1. Introduction

Numerous hot springs are located along the
“Cameroon Volcanic Line” (CVL) which is a mega-
structure with oceanic and continental volcanic
fabrics from Pagalu Island to Lake Tchad display-
ing a “swell and basin” structure [Tchoua, 1974,
Tchuimegnie Ngongang et al., 2016]. Some of these
hot springs have travertine deposits near or far from
the water source as for the Bongongo (near Mount
Cameroon) and the Ngol (near Mount Manengouba)
springs [Le Maréchal, 1976, Tchoua, 1977, Bisse et al.,
2018, Tchouatcha et al., 2018]. The study area (Fig-
ure 1) concerns a small-sized (<0.15 Km length)
sedimentary basin with thermogenic depositions.
The deposits are atypical and made up of an alter-
nation of detrital (conglomerates, sandstones and
claystones) and chemical (travertines and siliceous
sinters) facies (Figure 2). The case of alternation of
travertine and detrital deposits is also reported in
southern Tunisia [Henchiri et al., 2017].

Travertines and sinters are typical hydrothermal
deposits in geothermal fields, and like “CVL”, they
are usually associated with recent volcanic eruptions
[Suh et al., 2003]. Two origins have been suggested
for the travertine formation [Magnin et al., 1991,
Pentecost and Viles, 1994, Pentecost, 2005, Ollivier
et al., 2009]: (i) hydrothermal and (ii) fresh water or
meteoric. Moreover, Pentecost [2005], Gandin and
Capezzuoli [2008] and Capezzuoli et al. [2014] dis-
tinguish the travertine and tufa deposit, based on
the following characteristics such as the precipita-
tion water temperatures (high in for the travertine
deposits and ambient for the tufa deposit), the fab-
ric (mainly regularly bedded to fine laminated in
the travertine deposits and mainly poorly bedded
in the tufa deposits), the δ13C values (−1 to +10 V-
PDB for the travertine deposits and <0 V-PDB for
the tufa deposits) or the primary porosity (generally
low in the travertine deposits and high in the tufa
deposits). Meanwhile, according to Della Porta et al.
[2017a] travertine can be very porous indicating the

complexity of the hot spring carbonate deposits
nomenclature.

The CVL travertines have been subject of many
studies that led to their deep origin [e.g. Bisse et al.,
2018, Tchouatcha et al., 2018] from hot springs, [31–
49 °C, Le Maréchal, 1976]. Chemical elements such
as Li, Ba, Sr and Sr in the host spring waters are
commonly associated with CO2 ranging from 500 to
1050 mg/l [Le Maréchal, 1976]. The high tempera-
ture parent solution with δ18O (−8.4‰ to −6.4‰
V-PDB) and δ13C (0.4‰ to 0.5‰ V-PDB) values at
Ngol, and δ18O (−5.8‰ to −5.9‰ V-PDB) and δ13C
(1.1‰ to 2‰ V-PDB) values at Bongongo, belong-
ing to the CVL, reflect a mixture of hydrothermal and
meteoric fluids for the genesis of travertines [Bisse
et al., 2018]. This suggests a mixture between inor-
ganic CO2 and soil CO2 from plant respiration [e.g.,
Giustini et al., 2017]. The heavy mineral content of
these deposits reveals that the deep fluids crossed
varied types of rocks such as plutonic and metamor-
phic rocks [Tchouatcha et al., 2018]. Gastropods and
leaves occurring in the travertines suggest present-
day climate conditions [Tchouatcha et al., 2018]. De-
spite the genetic link between travertine deposits and
climate is well established [Kronfeld et al., 1988, Os-
mond and Dabous, 2004, Weisrock et al., 2008, Toker
et al., 2015, Berardi et al., 2016, Vignaroli et al., 2016,
Mancini et al., 2021], tectonics can also be determi-
nant [Faccenna et al., 2008, De Filippis et al., 2013a].
The link between travertines and active tectonics has
been established [Tchouatcha et al., 2016, 2018] and
well known elsewhere [Altunel and Hancock, 1993,
Altunel and Karabacak, 2005, Mesci et al., 2008, Brogi
et al., 2012, 2020, 2021a,b, De Filippis et al., 2013b,
Kanellopoulos et al., 2017, Matera et al., 2021].

Sinter or siliceous hot spring deposits are surface
chemical precipitates related to geothermal systems,
they are largely produced in near-neutral pH alkali
chloride fluids oversaturated with silica [Hamilton
et al., 2019]. Fluid composition may evolve to form
acid-sulfate (–chloride), or bicarbonate springs re-
lated to alkali chloride parent fluids that migrated
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Figure 1. Geological context; (A) Location of the Cameroon map in Africa; (B) Location of the studied
area in the Cameroon Volcanic Line. (C) Geological map of the studied area [modified from Lasserre,
1961, 1962, Temdjim et al., 2004, 2010].
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Figure 2. Synthetic litho-stratigraphic log in
the study area with location of samples. Ab-
breviations: Cl = Clay; S = Sand; Cg = Con-
glomerate. Collected sample names: TLT02,
TLT0, TLT01, TLT04, TLT1, TLT2, TLT3, TLALI,
TLAS, TLAS1, TLTSB, TLTSV (Chemical sam-
ples) and TLAN, TLANb, TLMGF, TLMGFb,
TLMGA, TLMGAb (Detrital samples).

laterally before exiting in distal outflow zones
[Giggenbach et al., 1994, Handley et al., 2005, Schin-
teie et al., 2007, Hamilton et al., 2018, 2019]. Thermo-
genic travertines may therefore have been deposited
from the hot spring surface distal from epithermal
up-flows [Renaut and Jones, 2011].

The microtextures of hot spring precipitated de-
posits are much diversified and record the condi-
tions of precipitation [e.g., Della Porta et al., 2017a,
Tchouatcha et al., 2018, Hamilton et al., 2019]. They
are widely described in the literature: for the traver-
tine deposits; e.g., Kele et al. [2011] (branching or
layered textures), Kanellopoulos [2012] (shrub-like,
laminated, botryoidal or spicular textures), Pola et al.
[2014] (porous, laminated or feather-like laminated
textures), Gandin and Capezzuoli [2008] (dendritic,
fibrous or plume-like textures), Della Porta [2015],
Croci et al. [2016], Della Porta et al. [2017a,b] (tabular,
clotted peloidal, prismatic, dendritic, fibrous, porous
or columnar textures) and sinter deposits, e.g. Hamil-
ton et al. [2019] (acicular needle-like growths, lam-
inated, crenulated concentric, layered feathering or
varved textures).

The textural characteristics (e.g., massive crys-
talline, vugular or coated textures) of hydrothermal
deposits depend on fluid composition and CO2 con-
centration [e.g., Folk et al., 1985, Pentecost, 2005,
Tchouatcha et al., 2018]. For example, they display a
diagenetic continuum of the silica phase from amor-
phous silica to hexagonal microcrystalline quartz
[Herdianita et al., 2000, Rodgers et al., 2004].

According to Sillitoe [1993] and Guido and Camp-
bell [2011], sinter deposits occur at the intersection
of water table and Earth’s surface, in subaerial vol-
canic fields where heat input is sufficient to move hy-
drothermal flow of ground water from deep-seated
reservoirs.

The world geography of mineralized hot springs
is largely dominated by travertine facies. Although
travertine-siliceous sinter coexistence is rare, it is
however reported in the Yellowstone National Park,
USA [Fouke et al., 2000, Braunstein and Lowe, 2001,
Chafetz and Guidry, 2003, Lowe and Braunstein,
2003, Hinman and Walter, 2005] and at southern Lake
Bogoria, Kenya [Renaut et al., 2017].

In this study, the geochemical (major and trace el-
ements, stable carbon and oxygen isotopes) and min-
eralogical (XRD and heavy minerals) analyses of var-
ied hydrothermal deposits are presented, with the
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aim to constrain the origin of fluids and dissolved ele-
ments for the hydrothermal deposits in the Laopanga
area, and their conditions of deposition and chemi-
cal variations. A correlation with other CVL hot spring
deposits will be established.

2. Geological setting

The CVL (Figure 1A), on which is located the study
area, is a volcanic megastructure [Benkhelil, 1982,
Fitton, 1983] comparable to the Benue trough
[Fitton, 1983, Dunlop, 1983]. Its origin is attrib-
uted to the rejuvenation of the Central Cameroon
Shear Zone (CCSZ) and Precambrian faults [Burke
et al., 1971, Ngangom, 1983, Browne and Fairhead,
1983, Tchouatcha, 2011]. From Niger-Nigeria to
Cameroon, the interaction between the Precam-
brian faults and hot spots controlled the magmatic
expression during the Phanerozoic times [Ngako
et al., 2006]. Precambrian tectonic rejuvenation
during Phanerozoic times are well documented
[Le Maréchal and Vincent, 1971, Ngangom, 1983,
Dumont, 1984, 1987, Njike Ngaha, 1984, Tchouatcha
et al., 2010, 2016, 2018]. They induced the Cenozoic
thermo-metamorphism [Ngangom, 1983] that af-
fected the basal Cretaceous conglomerates along
the CCSZ in Djerem-Mbere [Tchouatcha, 2011,
Tchouatcha et al., 2016] and are also related to
the South Atlantic Ocean opening. In this particular
context, the CVL represents a N30E megasplit stress
related to the Pan African N70E leap reactivation
[Cornacchia and Dars, 1983, Moreau et al., 1987,
1994, Deruelle et al., 1991, Montigny et al., 2004].

The study area is located on the Adamawa Plateau
near the Ngaoundere region (Figure 1B), and var-
ied basement and volcanic rocks, consisting of pre-
Pan African granitoids and metamorphic formations
are exposed in this area [Tchameni et al., 2006], Fig-
ure 1D). The granitoids are intensively deformed and
metamorphosed under the amphibolite-facies. Mon-
azite dating is not conclusive, but strongly indicates
pre-magmatic monazite inheritance at ca. 926 Ma
[Tchameni et al., 2006]. The volcanic rocks com-
posed of mafic lava flows (basanites, alkali basalts
and hawaiites) dated at 7.8± 1.4 Ma to 6.5± 0.2 Ma
are associated with abundant phonolite and trachyte
domes and plugs dated from 10.9 ± 0.4 Ma to 6.2 ±
0.2 Ma [Marzoli et al., 1999, Temdjim et al., 2004].

Our field work at Laopanga shows that the sed-
imentary basin is crossed by hot spring (40 °C)
which lead to the formation chemical precipitates
(travertines and siliceous sinters) alternating with
detrital deposits containing varied volcanic debris
(conglomerates, sandstones and claystones) from
continental erosion, indicating the post-volcanic de-
posits, probably the Plio-Pleistocene to Actual age,
according to the geochronological data of volcanic
rocks [Marzoli et al., 1999, Temdjim et al., 2004]. In-
tense fracturing and shearing affecting the granitic
basement overlain in unconformity by these de-
posits, indicate the important role of tectonics con-
trol on the deep fluids and their circulation. The
other hot springs, with only travertine deposits, are
known along the CVL such as at Ngol (29 °C) near
Mount Manengouba with a cascade morphology
and Bongongo (49 °C) near Mount Cameroon in a
swampy area [Bisse et al., 2018, Tchouatcha et al.,
2018].

3. Methods

The study area is located in a mall depression
(<0.15 Km length) near Laopanga village. Twenty-
five representative samples of various rock types (de-
trital and chemical facies) were collected on an 8 to
10 m stratigraphic spacing, were subjected to petrog-
raphy, geochemistry (major and trace elements, REE
and carbon and oxygen isotopes) and mineralogy
(XRD and heavy minerals).

Twenty polished thin sections (sandstone, clay-
stone, travertine, calcareo-siliceous sinter and sinter)
were prepared at Langfang Rock Detection Technol-
ogy Services Ltd in Hebei (China). Their microscopic
study was carried out using a polarized microscope at
the Laboratory of Petrology and Structural Geology of
the University of Yaoundé 1 in Cameroon.

X-ray diffraction patterns were obtained from a
Bruker D8-Avance Eco 1 Kw diffractometer (Copper
Kα radiance, λ= 1.5418 Å, V = 40,125 KV, I = 25 Ma)
with Lynxeye Xe energy dispersive detector in the
laboratory of “Argiles, Géochimie et Environnements
Sédimentaires (AGES)” at the University of Liège in
Belgium. The analyses were carried out on the non-
oriented powder with grinded particles <50 µm of
bulk material of eleven (11) representative chemical
samples (travertine, calcareo-siliceous sinter and
sinter).
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Geochemical analyses of eighteen whole rock
samples were carried out at Bureau Veritas Com-
modities, Vancouver, Canada. Prepared samples (ho-
mogenized powder) were mixed with LiBO2/Li2B4O7
flux. Crucibles were fused in a furnace at 1000 °C. The
cooled bead was dissolved in ACS grade nitric acid.
Trace elements (including rare earth elements=REE)
were determined by the inductively coupled plasma
mass spectrometry (ICP-MS). Major elements oxides
were obtained by inductively coupled plasma-atomic
emission spectrometry (ICP-AES). Loss on ignition
(LOI) was determined by igniting a sample split then
measuring the weight loss. The assays uncertainties
varied from 0.1% to 0.04% for major elements, 0.1 to
0.5% for trace elements and 0.01 to 0.5 ppm for rare
earth elements. Accuracy for REE is estimated at 5%
for concentrations >10 ppm and 10% when lower.
The analyzed samples concern twelve (12) pure
chemical samples (travertine, calcareo-siliceous sin-
ter and sinter) and six (06) detrital samples with
chemical binder (claystone and sandstone).

Chemical deposits from study area are highly
dominated by siliceous facies. The carbonate beds
differ from sinter beds in colour and structure, and
contained enough carbonates to be analyzed for sta-
ble isotopes. Nine samples (09) from carbonate beds
(<1 m-thick for the total) were used for stable iso-
tope analyses. They were micro-drilled from cut sur-
faces corresponding to areas subjected to thin sec-
tion study. Analyses were performed at the University
of Erlangen (Germany). Samples were reacted with
100% phosphoric acid [density > 1.9; Wachter and
Hayes, 1985] at 75 °C using a Kiel III online carbon-
ate preparation line connected to a Thermo-Finnigan
252 mass spectrometer. All values are reported in per
thousand (‰) relative to V-PDB. Reproducibility was
checked by replicate analysis of laboratory standards
and was better than ±0.04‰ (for δ13C) and 0.07‰
(δ18O).

The method for heavy minerals analysis is that
of Parfenoff et al. [1970]. After crushing (detrital de-
posits: sandstone and conglomerate matrix) and de-
calcification by HCl (travertine deposits), the heavy
minerals (d > 2.89) of six (06) samples were extracted
using “bromoform” (heavy liquid). Their identifica-
tion and proportions were carried out using a polar-
ized microscope at the Laboratory of Petrology and
Structural Geology of the University of Yaoundé 1 in
Cameroon.

4. Results

4.1. Field results and facies description

The studied outcrops, located in a vegetated river val-
ley (Figure 1C), extend over 50 m and has a height
varying from 8 to 10 m. From bottom to top, the
succession consists of an alternation of precipitated
(travertine and sinter) and detrital (claystone, sand-
stone and conglomerate) facies that overlain the
sheared and fractured granitic basement (Figure 2),
the contacts between these lithologies are well vis-
ibles but sometimes buried. Their thicknesses vary
from 50 cm to 4 m and 20 cm to 1.5 m respectively.

4.1.1. Precipitated deposits

They are represented by three lithofacies based on
CaCO3 and SiO2 concentrations. They are as follows:

• Siliceous sinter lithofacies with SiO2 > 90%
(between 90.2 and 94.8%), CaCO3 < 3% (be-
tween 0.14 and 2.7%);

• Calcareous–siliceous sinter lithofacies with
SiO2 > 50% (between 63–67%), CaCO3 < 50%
(between 28.59 and 29.91%);

• Travertine lithofacies with CaCO3 > 50%
(between 54 and 83%), SiO2 < 40% (between
9.1 and 39.1%).

The main characteristics of the deposits of each of
the three groups are as follows:

Calcareo-siliceous sinter deposits. The deposit is
located near the actual hot spring with thickness
<25 cm and stacked leafs (Supplementary Figure 1).
They are whitish grey to yellowish grey, laminated
with abundant bioclasts (plant debris fossils), com-
pact and less porous than the previous deposits,
sometimes showing varied and vertical composi-
tion or lithology (calcareous siliceous sandstones
and mudstones). They are very rich in well pre-
served gastropods and leafs of varied shapes. Under
the microscope, they show various microstructures
such as clastic (Supplementary Figure 1) or bioclas-
tic (Supplementary Figure 1) microstructures, with
rare angular and infra-millimetric quartz grains and
pores. Bioclasts are mainly represented by plant de-
bris (cuticles, tissues, tiny leaves). The laminae are
thin (millimeter to infra-millimeter), sigmoid or hor-
izontal. The pores have variable sizes and shapes
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(millimeter to pluri-millimeter, elongated and sub-
spherical). Ooids are very rare.

Travertine deposits. The travertine thickness range
from about 1 to 120 cm. Their surface generally bears
dissolution marks (Supplementary Figure 1), with
sometimes botryoidal fabric made of calcite crys-
tals. Their color is grey-yellowish and they are ei-
ther compact or wavy laminated and porous. Under
the microscope, the facies is laminar with rare oo-
lites (<0.2 mm in diameter) and abundant bioclasts
(cuticles, tissues and small-sized leaves, sometimes
>2 mm size) in a porous matrix. The pores are plen-
tiful, sometimes >50%, and vary in size and shape.
The laminae are horizontal or wavy. Quartz grains
are rare. The laminar fabric is highlighted by ori-
ented calcite grains. The main diagnostic features of
the travertine microfacies are the branching sparitic
(Supplementary Figure 1), crystalline sparitic (Sup-
plementary Figure 1) and sometimes fibrous sparitic
crystals.

Siliceous sinter deposits. The siliceous sinter de-
posits is the dominant precipitated deposits with 80
to 150 cm thick. Their colors vary from greyish to
black. They are distorted laminated with elongate
voids (Supplementary Figure 1), displaying erosional
horizontal or vertical contacts with the detrital facies
(conglomerates), thin and irregular laminated, rough
bedded affected by vertical thin mud cracks with cal-
cite filling (Supplementary Figure 1), showing some-
times variation between compact and porous aspects
and vertical color variation linked to varied chem-
ical composition. Under the microscope, they are
laminar with ooids (<2 mm in size), bioclasts mixed
with detrital grains (quartz grains mainly). Siliceous
laminae are infra-millimetric and of variable shapes
with wavy fabrics, anastomosed and folded, hori-
zontal and sometimes exhibit radial structure with
syntaxial needles (Supplementary Figure 1). Spheri-
cal to sub-spherical ooids or oncoids are sometimes
abundant and most often agglutinated. Bioclasts are
numerous and diversified with millimetric to pluri-
millimetric plant debris (cuticles, tissues) and small-
sized (<2 mm) gastropods and ostracods (Supple-
mentary Figure 1). The pores can be very abun-
dant, with variable shapes and sizes (<1 cm). Detri-
tal grains are essentially angular quartz grains asso-
ciated with highly weathered minerals.

4.1.2. Detrital deposits

Detrital deposits consist of three main facies
(claystone, sandstone and conglomerate) enclosing
terrigenous debris (metamorphic, plutonic, volcanic
detritus and sometimes sinter fragments in the upper
part of the sequence) and sillicicalcareous binder. As
the chemical deposits, they outcrop on both sides of
Mambere stream that crosses the basin (Supplemen-
tary Figure 2). The main sedimentary structures af-
fecting these facies are the bedding (Supplementary
Figure 2) and lamination (Supplementary Figure 2).
They are as follows:

• Black claystone with about 50 cm thick, is
rich in organic matter (Supplementary Fig-
ure 2) with abundant angular quartz and
feldspar grains, in a very fine to fine-grained
fabric (Supplementary Figure 2);

• Pink sandstone rich in feldspars (micro-
cline essentially associated with plagioclase
and orthoclase) and quartz associated with
ferricrusts, basalts, granites, gneiss debris,
siliceous/calcareous binders and sometimes
clayey matrix in a fine to coarse-grained fab-
ric (Supplementary Figure 2). The thickness
range between 25 to 100 cm;

• Pink conglomerates with same mineralogi-
cal composition as the previous sandstones
associated with pebbles of same lithology
(ferricrusts, basalts, granites, gneiss) but in
a medium to very coarse-grained fabric, and
the thickness varying from 60 to 200 cm.

4.2. Geochemistry

The precipitated materials (Supplementary Ta-
bles 1, 2, and 3) were divided into two groups:
(i) travertine/carbonate group (T: CaCO3 > 50%),
and (ii) siliceous sinter group (ST: SiO2 > 50%). An
additional detrital sedimentary rocks (DSR) is also
recognized and will allow comparisons with purely
chemical facies.

4.2.1. Major elements

Normalized to PAAS [Post Archean Australian
Shale, McLennan, 2001] (Figure 3), ST samples are,
as expected, more enriched in SiO2 which is depleted
in the T group. ST and T samples are enriched in
CaO, mainly in the T group, and depleted in the
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Figure 3. Stick diagram of average major
elements normalized to PAAS [McLennan,
2001] Abreviations: ST = siliceous sinter and
calcareo-siliceous sinter; T = travertine; DSR =
detrital sedimentary rock.

Figure 4. Stick diagram of average trace el-
ements normalized to PAAS [McLennan,
2001]. Abreviations: ST = siliceous sinter and
calcareo-siliceous sinter; T = travertine; DSR =
detrital sedimentary rock.

DSR group. This latter is enriched in TiO2 which is
depleted in the two other groups. The three groups
(T, ST, and DSR) are depleted in all the remaining
elements (Al2O3, Fe2O3, MgO, Na2O, K2O, P2O5 and
MnO).

4.2.2. Trace elements

Normalized to the PAAS [McLennan, 2001] the T
samples are more enriched in Sr, and ST and DSR
samples are enriched in U (Figure 4). The main re-
maining elements (Ba, Ni, Cs, Hf, Nb, Ta, Th and Zr)
are depleted in the precipitated facies and enriched
in the detrital ones, except for Sc, Co, Ga, Rb, V and

Figure 5. Distribution patterns of rare ele-
ments normalized to PAAS (A) and Chondrite
(B) after McLennan [2001] and McDonough
and Sun [1995] respectively.

Y depleted. Th contents vary from 3.2 to <0.2 ppm in
the precipitated deposits and from 9.4 and 31.1 ppm
in the detrital facies, with U concentrations ranging
from 1.1 to 13.3 ppm and 3 to 12.1 ppm respectively.
Sr varies from 17.5 to 2304.1 ppm (17.5 to 2304.1 ppm
and 184.1 to 455.9 ppm respectively in precipitated
and detrital facies). The dominant elements in the
studied facies are Sr, Ba and Zr.

4.2.3. Rare earth elements

PAAS and chrondrite-normalized [McLennan,
2001 and McDonough and Sun, 1995 respectively]
REE pattern show that the precipitated deposits
are more depleted in REE than the detrital deposits
grouped upwards (Figure 5A and B). The precipitated
sample TLALI from ST group is more enriched in
high REE probably linked to a contamination from
the detrital deposits. The precipitated sample TLTO
from ST group shows a negative Pr anomaly. The



Milan Stafford Tchouatcha et al. 287

Figure 6. Vertical X-ray diffraction from the chemical deposits (see Figure 2 for stratigraphic position of
the studied samples).

fine-grained sediments (TLAN and TLANb) from
DSR facies are more enriched than those of coarse-
grained.

4.3. Mineralogy

4.3.1. X-ray diffraction (XRD)

Amorphous silica is characterized by a diffuse
peak in all samples from 10 to 30° angular limits (XRD

diagrams) typical of non-crystallized silica [Biswas
et al., 2018]. The strong intensity of the peaks indi-
cates a high proportion of amorphous silica, cristo-
balite [Le Maréchal, 1976] in the siliceous samples
from ST group) except for samples rich in calcite
samples from T group (Figure 6).

In the ST group, the remaining samples (TLTO,
TLTSV and TLTSB) contain calcite. The composi-
tion is strongly dominated at the base of the pro-
file by silica (sample TLO2), then occurs a slight
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silica depletion (sample TLT0), followed by an impor-
tant depletion of silica and an enrichment of calcite
(samples TLT01, TLT1 and TLT3). Finally, an enrich-
ment in silica (samples TLALI and TLAS) with a slight
depletion and enrichment in silica and calcite re-
spectively (samples TLTSB and TLTSV) occur at the
top of the profile.

4.3.2. Heavy minerals

Heavy minerals from chemical and detrital sam-
ples reveal a great diversification with kyanite, epi-
dote, tourmaline, zircon, hornblende and oxides
(Supplementary Figure 3). However, the mineral as-
semblages present a strong heterogeneity despite,
as a general rule, oxides dominate. Meanwhile, tour-
maline is rare to absent in the detrital samples and
basaltic hornblende is present in the detrital sam-
ples and absent in the chemical deposits. Their grain
shapes are very angular to angular.

4.4. Stable carbon and oxygen isotopes

Carbon and oxygen isotope compositions of nine
samples are given in Supplementary Table 4. The car-
bon and oxygen isotope values are perceptibly sim-
ilar or very close, with δ13C varying from 1.54 to
2.90‰ V-PDB and δ18O from −10.1 to −6‰ V-PDB
or 20.50 to 24.34‰ SMOW. These values are compa-
rable with the average carbon and oxygen isotopic
compositions of hot spring deposits out and from
Cameroon (Figure 7) [Della Porta et al., 2017a].

5. Discussion

5.1. Origin of deposition

The water origin is given by stable isotopes [Craig,
1953, Minissale et al., 2002, Kele et al., 2011,
Della Porta et al., 2017a, Bisse et al., 2018, Matera
et al., 2021] and the solute give idea on the fluid rock
[Le Maréchal, 1976].

5.1.1. Stable isotope and hot spring composition in-
terpretations

Although only nine oxygen and carbon isotopic
compositions have been recorded from the studied
stratigraphic column, they are representative of the
series because they cluster around values that are
very close to each other. Carbon isotopes are widely

used to characterize the origin of travertine deposits
[Craig, 1953, Turi, 1986, Cerling et al., 1991, Kele et al.,
2011, Bisse et al., 2018], as their isotopic compo-
sitions are essentially controlled by δ13C values of
parental CO2 sources. These values can be super-
ficial (atmospheric and soil gas) or of deep origin;
crustal metamorphism, magma/mantle degassing,
ancient deep crystallized igneous melt or hydrocar-
bon [Ohmoto and Rye, 1979, Hoefs, 1987, Pentecost
and Viles, 1994]. Pentecost and Viles [1994] have, for
example, differentiated thermogenic or hydrother-
mal travertine from meteoric deposits or ambient
temperature deposits (tufa) according to the carbon
origin. These travertines are characterized by δ13C
values that vary from 0‰ to −11‰ while the ther-
mogenic ones range from −4‰ to +8‰ [Turi, 1986,
Pentecost, 2005, Guo and Chafetz, 2014]. Accord-
ing to Jones and Renaut [2010], Rodríguez-Berriguete
et al. [2012] and Pentecost [2005], the positive car-
bon isotopic signatures are characteristic of thermo-
genic travertines. The δ13C values from our studied
samples are positive and vary from 1.54‰ to 2.90‰,
very low than other values such as those from the
travertine in the Central Italy [e.g., Della Porta, 2015,
Della Porta et al., 2017b] indicating likely the down-
stream CO2 degassing while thermal water is flowing
and the low effect of dissolved substrate carbonate
[e.g., Gonfiantini et al., 1968, Minissale et al., 2002,
Della Porta, 2015, Della Porta et al., 2017a] that could
be mainly the Precambrian magmatic and metamor-
phic rocks as indicate the hot water source compo-
sition [Le Maréchal, 1976]. Also, the combined plot
of carbon and oxygen isotopic compositions indi-
cates a thermogenic origin, in agreement with data
of Gandin and Capezzuoli [2008], Pola et al. [2014],
Della Porta et al. [2017a].

The hot spring compositions from which pre-
cipitated deposits have been used to characterize
the origin of various travertines [Bisse et al., 2018,
Tchouatcha et al., 2018]. Spring of the study area
is warm (40 °C), highly mineralized (1680 mg/l),
with slight acidity (pH = 6) and rich in dissolved
CO2 (560 mg/l) [Le Maréchal, 1976], characteris-
tic of deep-derived endogenic water as suggested
by Crossey et al. [2006]. The hot nature of this
spring suggests therefore a thermogenic origin the
travertines [Casanova, 1981, Magnin et al., 1991]. This
quite weak temperature (40 °C) is lower than the one
expected for water heated by a magma chamber and
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Figure 7. Combined plot of δ18O‰ (PDB) δ13C‰ (PDB) values from travertines presently forming in
terrestrial environments [slightly modified Della Porta et al., 2017a]. The δ18O and δ13C of our studied
samples fall in the upper part of the diagram confirming a geothermal provenance of the depositing
parental water.

could be explained by the consequent heat loss dur-
ing the water rising toward the subsurface. δ13C val-
ues (1.54‰ to 2.90‰) point effectively to a mixture
of deep and fresh waters [Crossey et al., 2006].

The presence of a thin layer of travertine in the
siliceous sinter deposit can be related to late-stage

fluid deposits of different composition [Drake et al.,
2014, Guido and Campbell, 2017, Campbell et al.,
2019], on the one hand, and on the other hand,
deposition of both silica and calcite is likely con-
trolled by microchemical conditions and local tem-
perature gradient [Campbell et al., 2002], moreover,
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the evidence of the Cyanobacteria and other bacteria
role in calcite and aragonite nucleation in hot springs
(40 °C for Laopanga hot spring) as the thermophilic
microbes have long been implicated in the forma-
tion of travertine and siliceous sinter [e.g., Renaut
and Jones, 2000, 2011, Giggenbach et al., 1994, Schin-
teie et al., 2007, Della Porta et al., 2022]. The vertical
variation of some characteristic chemical minerals is
given in Supplementary Figure 4 showing the same
evolution between CaO and Sr curves from the bot-
tom to the top, contrary to the SiO2 evolution, and the
same evolution between δ13C and δ18O curves from
the bottom to the top.

5.1.2. Geological hypothesis

Main mineral/water rock genetic types in the
Earth’s crust related to recent volcanic and thermo-
metamorphic activities have been described by
Ivanov et al. [1968]. Their data have been ap-
plied in the Mbere sub-basin exposing travertines
[Tchouatcha et al., 2016] along the active CVL
[Suh et al., 2003]. Relationships between CVL and
CCSZ (Central Cameroon Shear Zone) [Tchouatcha
et al., 2016], and several reactivations of the Pre-
cambrian faults indicate that an intense fractura-
tion was associated with exsurgence and resurgence
phenomena in CVL related to a deep endogenic
spring [Tchouatcha et al., 2018]. The weak thermos-
metamorphism that affected the Cretaceous con-
glomerates along CCSZ indicates a Cenozoic reac-
tivation of these faults [Ngangom, 1983, Dumont,
1987, Tchouatcha et al., 2010, 2016, Tchouatcha,
2011]. Many authors have established a link be-
tween travertines (hot spring deposits) and active
tectonics [Pentecost, 1995, Tchouatcha et al., 2016,
2018]. In Cameroon, some compounds appear to
be specific to the geological environment; in the
hot spring, chlorine (Cl) element is generally linked
to volcanic phenomena and sulphur (SO4) to tec-
tonic phenomena, while carbon dioxide (CO2) ap-
pears to be ubiquitous, although its dominant activ-
ity in a volcanic environment [Le Maréchal, 1976].
These values are 1054.72 mg/l (Cl), 40.30 mg/l (SO4)
and 500 mg/l (CO2) at Bongongo, 5.67 mg/l (Cl),
7.20 mg/l (SO4) and 1050 mg/l (CO2) at Ngol, and
12.40 mg/l (Cl), 41.79 mg/l (SO4) and 560 mg/L
(CO2) at Laopanga respectively [Le Maréchal, 1976];
at Laopanga, the SO4 value (41.79 mg/L) is high
than that of Cl (12.40 mg/L) and those of Bongongo

(40.30 mg/L) and Ngol (7.20 mg/L) hot springs, in-
dicating the important role of tectonics control on
Laopanga hot spring deposits, as the cases in Turkey
[e.g., Altunel and Hancock, 1993, Altunel and Karaba-
cak, 2005, Mesci et al., 2008], Italy [e.g., Brogi et al.,
2012, De Filippis et al., 2013a; and Greece Kanel-
lopoulos et al., 2017]. Moreover, the variety of hy-
drothermal deposits grow in the cooling geothermal
system when and where outflow from distal silica-
rich chloride parent fluids or deep alkali chloride
parent fluids upflow are replaced by CO2-rich fluids
leads to the deposits of travertine [Renaut and Jones,
2011].

Heavy mineral distribution in the chemical de-
posits indicates that the deep water flowed across
metamorphic (such as gneisses) and plutonic rocks
(such as granites). The reported epidote is proba-
bly derived from hydrothermal alteration of plutonic
rocks through which flowed the hot water. Kyanite in-
dicates metamorphic sources while zircon, tourma-
line, garnet and hornblende are from both plutonic
and metamorphic sources. Meanwhile, the presence
of basaltic hornblende in the detrital deposits indi-
cates the erosion of volcanic source rocks.

Non-crystalline or amorphous silica in the chem-
ical deposits is related to diagenetic immaturity ac-
cording to Campbell et al. [2001] and Rodgers et al.
[2004] and can be explained by the lack of lattice re-
ordering and structure water preservation, with con-
servation of low density and abundant porosity.

5.2. Evidence of deep hydrothermal migration
and tectonic control

The morphological types of the studied deposits are
not easy to recognize. Field observation indicates a
concatenation of chemical and detrital deposits. The
main preserved outcrops of chemical deposits are
related to intense erosion giving sometimes galleries
and one main stream crossing the deposits.

The Sr, δ18O and δ13C values have used to depict
the origin of chemical deposits [e.g., Kele et al., 2011,
Bisse et al., 2018]. In this study, the Sr concentrations
values range from 17.5 to 2304.1 ppm suggest a depo-
sition far (low values of Sr) and close (high values of
Sr) to paleosprings [Kele et al., 2011]. The Sr values in-
dicate that the travertine deposits for Bongongo and
Ngol areas are respectively close and far from the pa-
leosprings [Bisse et al., 2018]. Meanwhile, Sr values
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generally increase or decrease following SiO2 values
(See Supplementary Figure 4), low in high siliceous
deposits and high in low siliceous deposits, suggest-
ing that the silica enrichment could be derived from
chemical alteration of saturated bedrock with silica
during distal hot water flows.

Moreover, the δ13C values (varying from 1.5 to
2.9‰ V-PDB), the fabrics (bedding, lamination, . . . )
or some characteristic microstructures (shrubs, . . . )
indicate that the study chemical deposit were mainly
precipitated directly from hot water.

Meanwhile, some deposits with high porosity,
compact structure and with snail’s preservation
could indicate the periodic precipitations from
cooled thermal water [Capezzuoli et al., 2014].

Positive Eu anomalies are the signatures of the
hydrothermal fluids [Bau et al., 1996]. The PAAS-
normalized patterns of the studied precipitated de-
posits display negative and positive Eu anomalies,
but mainly >1 (Eu/Eu*: 0.54–1.78). These values
range from 0.54 to 1.78 in the travertine facies and
0.67 to 1.66 in the siliceous to calcareous siliceous fa-
cies indicating the temperature variation of precipi-
tation related to the distance of the deep hot water
circulation. Moreover, these values are >1 and range
from 1.21 to 1.27 in the detrital deposits suggesting
likely the thermogenic effect from precipitated de-
posits as they constitute the matrix of these facies.

Furthermore, the black claystones associated with
the laminations and bedding that affected the basal
conglomerates point to more reduced environment
created by tectonics. The presence towards the upper
part of the sequence of a distorted bed of siliceous
sinter suggests a filling up period. So, sedimenta-
tion and precipitation took place in an active paleo-
tectonic basin (Figure 8). Evidence of the reactivation
of old faults is reported both on the basement and
ancient sedimentary deposits of the Cretaceous age
[Ngangom, 1983, Dumont, 1987, Tchouatcha, 2011].

5.3. Age of deposition

The Laopanga Basin is located in the volcanic zone
of the Ngaoundere area. The basal detrital deposits
of this basin contains the volcanic rock debris as
indicated above (heavy minerals data). The presence
of siliceous and carbonated cements in this basal
deposits, on the one hand, and on the other hand,
the vertical contact between the basal detrital and

Figure 8. (A) Location of the Laopanga Basin in
a faulted corridor [modified from Le Maréchal,
1976] and evidence of relationship with
the Precambrian faults (CCSZ) reactivation.
(B) Schematic geological sketch and interpre-
tative depositional model between detrital
and chemical deposits and showing intense
fault networks affecting the Precambrian
basement and recent deposits indicating the
Post-Precambrian or Recent faults reactivation.

chemical deposits, suggests approximately the same
age of deposition for these deposits. Moreover, the
basal deposit of the Laopanga Basin is discordant
on granite affected by a N60°E trending fault similar
to the CCSZ and these two faults are believed to be
contemporaneous.

In the Ngaoundere area, mafic lava flows (basan-
ites, alkaline basalts and hawaiites) are dated at
7.8 ± 1.4 to 6.5 ± 0.2 Ma, with abundant trachyte
and phonolites domes and plugs emplaced at 10.9±
0.4 to 6.2 ± 0.2 Ma [Marzoli et al., 1999, Temd-
jim et al., 2004] indicating a Mio–Pliocene volcanic
activities in this area. The age inferred from the
palynological data as well as on the detrital de-
posits [Plio-Pleistocene, Tchouatcha et al., 2010] and
that of travertine deposits [Pleistocene Holocene,
Tchouatcha et al., 2016] in the Mbere Basin located
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along the CCSZ, and the ages of volcanic rocks in
the studied area [Marzoli et al., 1999, Temdjim et al.,
2004] suggest a Plio-Pleistocene to Actual age for the
Laopanga hot spring deposits.

6. Conclusion

• According to the major elements chemical
composition, and the Sr concentrations, the
hot spring deposits of Laopanga vary from
travertines to siliceous sinters, and are likely
related to the upflow and outflow of parental
fluids, and The Eu/Eu* values indicate the
temperature variation of precipitated de-
posits related to distance of the deep hot
water flow;

• δ13C and δ18O isotope values of carbonates
fall in the values typical of a thermogenic
source for the deposits, although they are
very far from the isotopic composition of
magmatic carbon, because there is isotopic
fractionation during water rising. The carbon
isotope value (>0‰) suggests that the de-
posits are from deep and hot waters rich in
CO2;

• The location of the study area in a volcanic
zone belonging to the Cameroon volcanic
line, the relationship between the Cameroon
volcanic line and the Central Cameroon
Shear Zone, and the intense fracturing and
shearing affecting the granitic basement in-
dicate the important role of tectonics control
on the Laopanga deposits;

• The variation between the siliceous sin-
ter and travertine, indicate likely intense
geothermal up-flow and outflow along the
CVL, and the age of Laopanga deposits
ranges from Plio-Pleistocene to Actual ac-
cording to the volcanic rocks age in the stud-
ied area and the relationship between these
volcanic rocks and deposits.
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