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Abstract. The theoretical relationships between simple and cross-covariances of the transmissivity
and the hydraulic head, deduced from the linearisation of the flow equation are used for cokriging
transmissivity field with data from one then two quasi steady-state flows. First a non-exhaustive
historical review of geostatistical modelling based on flow equations in a simplified case is given.
Then original results show that the estimation of the logtransmissivity by cokriging with head data
from two flows is improved compared with the case of head data from a single flow. The estimation
in the presence of a transmissivity barrier is thoroughly investigated. Practical conclusions are drawn
and perspectives based on the recent numerical variogram are proposed.
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1. Introduction

In four decades on inverse problem in hydrogeology,
de Marsily et al. [2000, see also de Marsily et al., 1999]
observe that “in hydrogeology, there are a great num-
ber of competing methods for solving the inverse
problem”. Kitanidis [1995] notes: “although the con-
sensus is that the linear method is appropriate only
when the variance of log conductivity is less than 1,
in my experience the method may work reliably for
larger variances provided that the variation happens
to be gradual or in the direction perpendicular to the
streamlines”. However, referring to the comparison
of methods for solving the inverse problem carried
out by several teams on four synthetic data sets,

∗Corresponding author.

Zimmerman et al. [1998] point out “the evident su-
periority of the nonlinear methods as compared with
linear ones”. In a more recent review of the inverse
problem, Illman [2014] presents the evolution of ap-
proaches for mapping heterogeneity.

In this paper, we come back to the early cok-
riging of the transmissivity from transmissivity and
head measurements, based on the linearisation of
the flow equation linking head and transmissivity
fluctuations. First a non-exhaustive historical review
of geostatistical modelling based on the linearisa-
tion of flow equations is given. The relationships be-
tween simple and cross-covariances of transmissiv-
ity and head fluctuations for two quasi-steady state
flows established by Zhang and Neuman [1996] in
another context are applied to the inverse problem.
On synthetic cases original results show the interest
of crossing two quasi-steady-state flows to improve
the estimation of transmissivity. The restrictive hy-
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potheses used for the linearisation of the flow equa-
tion are then discussed, as well as the practical appli-
cation of cokriging of log-transmissivity.

The present paper does not give an extensive re-
view of “geostatistical inversion”, even for methods
based on the linearisation of the flow equation. For a
substantiated analysis of the difficulties posed by the
spatial variability or the heterogeneity of subsurface
reservoir properties for flow and transport modelling,
the reader is invited to refer to de Marsily et al. [2005].
Neuman’s feedback [2020] also states the importance
of spatial variability of parameters. A recent non-
exhaustive review of methods for constraining geo-
statistical estimation by flow physics can be found
among others in de Fouquet et al. [2023].

2. Steady state linear flow

2.1. Linearisation of the flow equations

For steady state flow without recharge, the diffusivity
equations in two dimensions is written

div(T ·Grad H) = 0 (1)

where T represents the transmissivity and H the hy-
draulic head.

Delhomme and de Marsily [2005] observe that
Equation (1) can be written

∆H =−Grad(lnT ) ·Grad H (2)

making “it clear that the gradient of lnT was intrin-
sically involved in the flow equation, regardless of
whether T is lognormally distributed or not”.

Let now x = (x1, x2) denote a point in the plane.
In the simplified case with a macroscopic head ori-
ented in the

−−→
Ox1 direction with constant modulus J ,

and constant scalar transmissivity T (x) = T0, the hy-
draulic head h is linear:

h(x) = h0 − J x1

where h0 is an arbitrary constant (since the hydraulic
head is a potential).

For a transmissivity field with spatial variability,
for example when the transmissivity is lognormal
T (x) = T0eΘ(x), let us denote Φ the associated head
perturbation: H(x) = h(x)+Φ(x).

When only the first order perturbations are re-
tained, Equation (1) becomes:

∆Φ= J∂Θ/∂x1. (3)

The hypothesis that the transmissivity is lognormal
is here not necessary, Equation (3) being based on
the first order expansion of the transmissivity in
Equation (1).

The initial models of Mizell et al. [1982] and Ki-
tanidis and Vomvoris [1983] linking the covariances
of the perturbations Θ and Φ were based on sta-
tionarity assumptions. Dagan [1985] calculated a
second-order approximation of the covariance of
the hydraulic head, observing that “the first-order
approximation is very robust and even for a log-
conductivity variance equal to unity, the second-
order correction of the head variances is smaller than
10% of the first-order approximation”.

Dong [1990] wrote the solution of Equation (3)
as follows, since transmissivity cannot generally be
assumed to be differentiable:

JΘ=∆Z and Φ= ∂Z /∂x1. (4)

This equation shows that head and transmissivity do
not have the same degree of stationarity. Indeed,
Matheron [1973] showed that, if Θ is a stationary
random function of order two, the solution Z of the
Poisson equation

JΘ=∆Z

is an Intrinsic Random Function of order 1 (IRF-1),
twice differentiable. More generally, if Θ is an IRF-k,
Z is an IRF-(k +2).

Matheron also showed that if Z is an IRF-1, the
solutionΦ of the partial differential equation

Φ= ∂Z

∂x1

is an anisotropic intrinsic random function (IRF-0).
According to these results, if the transmissivity is
stationary of order two (i.e. mean and spatial co-
variance are stationary), the head perturbation Φ is
an anisotropic IRF-0, and the head is an IRF-0 with
a linear drift (following the first coordinate in this
particular case).

The generalised simple and cross covariances be-
tween transmissivity and head perturbations which
are solution of Equation (4) verify the following
relationships, with h = (h1,h2):

J 2CΘ =∆2CZ ; CΦ =− ∂2

∂h2
1

CZ ; JCΘΦ =∆ ∂

∂h1
CZ .

(5)

The simple (generalised) covariances are even. The
cross-covariance is odd, and thus equal to zero for
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h = 0. The anisotropic variogram of the head pertur-
bation is generally unbounded.

Dong [1989, 1990] and Roth [1995] give the ex-
plicit expressions of the generalised covariance of
head perturbations as well as the cross-covariance
between transmissivity and head perturbations, for
usual various models of the variogram of transmis-
sivity. These expressions allow an estimate of the
head consistent with Equation (4). Above all they
allow estimating transmissivity by co-kriging from
head and transmissivity measurements, providing a
linearised approximation of the solution of the in-
verse problem.

In this model, boundary conditions (fixed head,
zero flow) are rejected to infinity and occur via the
macroscopic gradient of the head. In the cokriging
these conditions are introduced as data only at the
locations where they are known, and not necessarily
all around the modelled field.

The literature presents several applications of this
cokriging for solving the inverse problem. Rubin
and Dagan [1987] consider that the spatial simple
and cross covariances of transmissivity and head de-
pend on a parameter vector θ which cannot be de-
termined with certainty from the data. They develop
the analytical expressions for the conditional covari-
ances when θ is determined by a maximum likeli-
hood procedure.

Ahmed and de Marsily [1993] perform the cokrig-
ing with an approximated but consistent model (en-
suring the positivity of variances) of the simple and
cross-covariances of head and transmissivity, cali-
brated to the sample simple and cross-covariances.
On a synthetic case approaching a real one, they
show that cokriging improves transmissivity estima-
tion compared with kriging. Taking into account the
local head gradient rather than the regional one im-
proves the estimation of the transmissivity.

Hernandez et al. [2003] confirm that geostatisti-
cal inversion by co-kriging hydraulic head and log-
conductivity improves predictions of head and flux
compared with conditioning on conductivity or head
data alone.

Moreover the expressions (5) of simple and cross
covariances between transmissivity and head per-
turbations can be used for the direct geostatistical
simulation of transmissivity, head and flow when
linearisation assumptions are valid [de Fouquet,
2000, Mariotti et al., 2000].

2.2. Case of two flows

Zhang and Neuman [1996] observed that “even lo-
cally uniform gradients tend to show seasonal fluc-
tuations in magnitude and direction”. An example is
given in Verley et al. [2003] for the nappe de la Beauce,
locally.

Zhang and Neuman examine the effects, on the
longitudinal and transverse dispersion respectively,
of these temporal fluctuations in the magnitude and
direction of the mean velocity by developing the auto
and cross-covariances of velocity, head and log con-
ductivity. The previous first-order approach is gen-
eralised considering quasi steady-state flow at two
times. These expressions of auto and cross covari-
ances of head and log conductivity can also be used
for geostatistical inversion by “crossing” two flows, in
order to improve the estimation of transmissivity.

Let us revisit their developments. Two macroscop-
ically linear flows, indexed by 1 and 2, are first consid-
ered in the same transmissivity field, following two
orthogonal directions Ox1 and Ox2. To simplify the
presentation, the module J of the macroscopic gradi-
ent is assumed to be the same in the two cases. How-
ever this hypothesis can be relaxed. Based on the re-
lationships (4), the solutionsΦi are written:

JΘ=∆Z ; Φi = ∂Z

∂xi
. (6)

The simple and cross covariances between transmis-
sivity and head perturbations are deduced from (6)

J 2CΘ =∆2CZ ; Cφi =− ∂2

∂h2
i

CZ ;

JCΘφi =∆
∂

∂hi
CZ and CΦ1Φ2 =− ∂2

∂h1∂h2
CZ .

(7)

For a flow with the same macroscopic head gradi-
ent J and any angle α with the first coordinate axe,
the head perturbation is deduced from the linearity
of Equation (6), putting

Φα =φ1 cosα+φ2 sinα. (8)

The simple and cross covariances of transmis-
sivity and head perturbations are derived from
Equations (7).

However it is simpler to choose a base such that−−→
Ox1 = −−→

Oxα. Denoting β the angle between the two
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macroscopic flows, the expressions of the simple and
cross covariances are simplified:

C (Φ1,Φβ) = cosβC (Φ1,Φ1)+ sinβC (Φ1,Φ2);

C (Θ,Φβ) = cosβC (Θ,Φ1)+ sinβC (Θ,Φ2)

and C (Φβ,Φβ) = cos2βC (Φ1,Φ1)

+2cosβsinβC (Φ1,Φ2)

+ sin2βC (Φ2,Φ2).

(9)

Because of the linearisation, when the head data
points are identical for the two flows (assumed not
to be parallel) the cokriging results (transmissivity or
head) do not depend on the angle β between the two
flows.

Always because of the linearity of the equations,
the head of a third flow is expressed as a linear com-
bination of the first two. The co-kriging system with
head data from three flows is therefore singular, un-
less measurement errors are introduced in the vari-
ogram of the head data, typically via nugget effects.

3. Example: comparison of cokriging the
transmissivity from one or two flows

3.1. Construction of synthetic cases

Cokriging tests are classically performed as follows:
(i) geostatistical simulation of a transmissivity field;
(ii) flow calculation on this field (using a flow sim-
ulator, here Visual Modflow), the fixed macroscopic
gradient is imposed via conditions on the boundaries
of a larger field; (iii) data extraction far enough from
these boundaries; (iv) kriging and cokriging with data
from one or two flows.

Several areas are specified (Figure 1):

• the transmissivity is simulated on a “simu-
lated area” of 1600 m × 1600 m;

• the “study area” is 500 m × 500 m from which
the data are taken.

The first zone is large enough to fix the boundaries
conditions of the various flows. These boundaries
conditions define an “intermediate area” of 1100 m ×
1100 m, in which the heads are calculated. However,
in order for the head data to be far enough from
the boundaries, the “study area” is smaller than the
“intermediate area” (Figure 1).

The log-transmissivity is simulated with a spher-
ical variogram with a range equal to 70 m and a sill
of 0.5. Three flows with a macroscopic gradient with
unit module are calculated

Figure 1. Definition of the three areas: simu-
lated area for transmissivity simulation, inter-
mediate area for setting boundary conditions,
and study area. The arrow indicates the main
flow direction for the represented boundary
conditions.

Figure 2. Location of the transmissivity (+)
and head (•) data.

• North to South (NS)
• Northwest to Southeast (NW–SE)
• West to East (W–E)

Initial tests have shown that isolated head data re-
duce only slightly the estimation variance of trans-
missivity, while in the vicinity of two close head data,
this estimation variance decreases significantly. This
is consistent with the known observation that “head
variations due to heterogeneity are small, whereas
those of velocities and travel time are large” [Math-
eron and de Marsily, 1980].

The co-kriging by two flows is therefore examined
with a significant number of close head data (20),
cf. Figure 2.

The different estimations of transmissivity are
compared according to the following four criteria,
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where N denotes the number of meshes

• the mean absolute error MAE:

(1/N )
N∑

i=1
|(log(Ti ))∗− log(Ti )|

• the mean absolute standardised error MASE:

(1/N )
N∑

i=1
(|(log(Ti ))∗− log(Ti )|/σK

i )

• the root-mean-square error RMSE:√√√√(1/N )
N∑

i=1
((log(Ti ))∗− log(Ti ))2

• and the root-mean-square standardised er-
ror RMSSE:√√√√(1/N )

N∑
i=1

(((log(Ti ))∗− log(Ti ))2/(σK
i )2)

where (log(T ))∗ denotes the estimate of log(T ) and
σK the standard deviation of the estimation (kriging
or cokriging) error. The RMSSE criterion based on
the standardised error allow verifying the expected
improvement of accuracy by cokriging.

3.2. Comparison between one and two flows

The values in Tables 1 and 2 are given on the decimal
logarithm.

The mean deviation MAE and the RMSE show
that cokriging improves the estimation accuracy of
transmissivity compared with kriging, and even more
when crossing two flows. However, the standardised
deviations are rather stable between kriging and cok-
riging with one flow, and slightly increase for two-
flows cokriging. The RMSSE are close to unity, which
shows that the uncertainty is correctly quantified,
and somewhat overestimated by kriging or cokriging
with one flow.

3.3. Detection of a transmissivity barrier

The second test field presents a low transmissivity
barrier of 10−6 m2·s−1 compared to a previous av-
erage value of 10−4 m2·s−1. The variogram model
of transmissivity remains unchanged, because no
transmissivity data is located in the barrier.

The test is performed with only four transmissivity
data. The quality criteria are first calculated on a
small area of 100 m × 100 m, centred on the anomaly

Figure 3. Location of the heterogeneity, repre-
sented by an ellipse. Central square: local area;
dashed square: extended area.

(Figure 3), in order to verify if cokriging helps detect
the heterogeneity.

The MAE and the RMSE (Table 2a) show that the
N–S or NW–SE flows, which are yet little impacted
by the transmissivity barrier, improve the estimation.
Logically the W–E flow, which crosses the barrier, in-
forms the best on the transmissivity field: the mean
deviation MAE and the RMSE decrease by almost
60%. Note that, with a mean deviation of 0.347, the
combination of the N–S and NW–SE flows gives an
estimation accuracy comparable to that of the W–
E flow, with a mean deviation of 0.365. The lowest
errors (MAE, RMSE) are obtained by cokriging us-
ing the N–S and W–E flows, which both cross the
barrier.

The standardised deviations are large: the method
allows detecting the heterogeneity, but with only four
transmissivity data located outside it, the estimation
accuracy remains poor. However, the increase in the
variance of the transmissivity field was not taken into
account in the modelling.

These results are consistent with Kitanidis remark
[1995] cited in the introduction according to which
“the method may work reliably [. . .] provided that the
variation happens [. . .] in the direction perpendicular
to the streamlines”.

The results are less satisfactory on a larger scale.
In the extended area of 300 m × 300 m, bounded by
dashes lines on the figure, the head data improve
or on the contrary deteriorate the MAE, depending
on the configurations, but in all cases the RMSE de-
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Table 1. Estimation of log-transmissivity on the 500 m × 500 m study area (2601 meshes)

MAE MASE RMSE RMSSE

Kriging 0.238 0.760 0.306 0.971

Cokriging 1 flow
N–S 0.223 0.760 0.288 0.970

NW–SE 0.220 0.754 0.286 0.967

W–E 0.223 0.766 0.290 0.983

Cokriging 2 flows
N–S; NW–SE 0.218 0.805 0.285 1.034

N–S; W–E 0.214 0.790 0.281 1.015

NW–SE; W–E 0.218 0.804 0.284 1.028

Values are given on the decimal logarithm.

creases compared with kriging. The estimations are
poorly improved by the head data of the N–S flow,
which is visible on the estimation maps (Figure 4):
the low transmissivity barrier is detected, but the
surrounding area shows large transmissivities that
do not exist. Once again, the head data from the W–E
flow improve greatly the precision, and to a lesser
extent, it is the same for the NW–SE flow. The MAE
and RMSE criteria are minimal when crossing these
two flows (Table 2b). In all cases, the RMSSE remains
greater than one, for the same reason as on the local
area.

The results remain similar on the study zone (Ta-
ble 2c): with head data from the N–S flow, the MAE
and the RMSE increase compared with kriging and
they decrease sharply with head data from the W–E
flow only. Once again, MAE and RMSE are minimal
by crossing W–E and NW–SE flows. For all configu-
rations, the RMSSE is lower than for the homologous
case for the extended area.

However on these three heterogeneous areas, the
available data do not allow estimating the transmis-
sivity accurately.

3.4. Interpreting the results

The improvement of the precision of the transmissiv-
ity with head data from two flows can be explained by
returning to the stream lines. It is known [Emsellem
and de Marsily, 1971, de Marsily et al., 2000] that the
solution of the inverse problem for the steady-state

flow equation, including a recharge or pumping, is
written

ln
T (s)

T0
=−

∫ h(s)

h0

∆h

|∇h|2 dh,

where the integration is made along a stream-tube,
T0 is the transmissivity and h0 the hydraulic head at
point s0 of the tube, and T (s) the transmissivity at
point s where the head h(s) is measured.

The transmissivity at any point of this stream-tube
can thus be deduced from the transmissivity at s0.
Formally, knowing the transmissivity along a line in-
tersecting all the stream-tubes allows deducing the
transmissivity everywhere in the field. In the case of
two flows with nonparallel stream lines, knowing the
transmissivity in a single point allows deducing the
transmissivity everywhere in the field; see for exam-
ple Castelier [1995].

In practice, the head is not known exhaustively but
estimated, and the same for the stream-tubes. The
estimate of transmissivity is therefore uncertain.

3.5. Practical conclusions from these synthetic
cases

This synthetic example leads to practical conclu-
sions on estimating transmissivity field:

(i) sufficiently close head measurements allow
estimating the head gradient, which is more
useful for the accuracy than isolated head
values;

(ii) “crossing” two steady-state flows improves
the accuracy of transmissivity estimation;
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Table 2. Estimation of the log-transmissivity in the heterogeneous case, (a) in the local area (121 meshes),
(b) on the extended area (961 meshes) and (c) in the study area

(a) Local area 100 m × 100 m

MAE MASE RMSE RMSSE

Kriging 0.916 2.667 1.077 3.138

Cokriging 1 flow
N–S 0.703 2.434 0.870 3.013

NW–SE 0.612 2.184 0.758 2.716

W–E 0.365 1.281 0.450 1.576

Cokriging 2 flows
N–S; NW–SE 0.347 1.486 0.416 1.781

N–S; W–E 0.305 1.296 0.374 1.579

NW–SE; W–E 0.326 1.393 0.406 1.747

(b) Extended area 300 m × 300 m

Kriging 0.300 0.905 0.462 1.372

Cokriging 1 flow
N–S 0.317 1.079 0.436 1.494

NW–SE 0.289 0.986 0.393 1.358

W–E 0.260 0.879 0.336 1.134

Cokriging 2 flows
N–S; NW–SE 0.319 1.211 0.398 1.513

N–S; W–E 0.316 1.193 0.408 1.532

NW–SE; W–E 0.247 0.938 0.321 1.225

(c) Study area 500 m × 500 m

Kriging 0.274 0.809 0.379 1.114

Cokriging 1 flow
N–S 0.301 0.964 0.390 1.264

NW–SE 0.270 0.871 0.351 1.149

W–E 0.247 0.794 0.314 1.013

Cokriging 2 flows
N–S; NW–SE 0.317 1.114 0.400 1.417

N–S; W–E 0.301 1.059 0.382 1.352

NW–SE; W–E 0.239 0.840 0.305 1.078

Values correspond to decimal logarithm.

(iii) this flow crossing is useful for detecting het-
erogeneities of a transmissivity field. How-
ever, transmissivity data have to be numer-
ous enough for precisely delineating the het-
erogeneities;

(iv) since the accuracy of the estimation depends
on the main flow direction, the same applies
to the “optimal” implantation of the data.

4. Conclusive remarks

4.1. Towards more complex flow conditions

In many cases, the hypothesis of a macroscopically
linear two-dimensional flow is unsuitable.

Roth et al. [1998] developed a flexible and general
approach in order to avoid excessive simplifications.
The principle is to come back to conventional hydro-
geological modelling, using a flow simulator. A set of
geostatistical (non-conditional) simulated transmis-
sivity fields is used as input of a flow simulator. The
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Figure 4. Decimal logarithm of Transmissivity field. (a) Estimation from N–S flow; (b) estimation from
NW–SE flow; (c) estimation from the two N–S/NW–SE flows; (d) “real” field.

set of associated output results (head, concentration)
is used to calculate the explicitly nonstationary co-
variance C (x, x ′) or variogram γ(x, x ′) of the variable
of interest. These nonstationary “numerical” simple
and cross covariances or variograms of transmissivity
and head are used to estimate by cokriging the trans-
missivity from transmissivity and head data. How-
ever an anamorphosis or at least a logarithmic trans-
formation allows avoiding negative transmissivity es-
timates. Pannecoucke [2020] generalised this “nu-
merical variogram” to transient flow, for mapping ra-
dionuclide activity.

To account for the non-linearity between con-
centration and hydraulic conductivity field, Schwede
and Cirpka [2010] show that a Monte-Carlo approach
is preferable for conditioning hydraulic conductiv-
ity fields by steady-state concentration measure-
ments.

4.2. Back transformation of estimated
log-transmissivity

According to de Marsily et al. [2005] “One also
needs to apply Kriging with some rigor on the log-
transformed transmissivity values, in order to es-
timate geometric mean values and not arithmetic
means. Back-transforming the kriged lnT into T
values must also be done correctly, i.e. simply as
T = exp(lnT ) without any additional factor using
the variance of the estimation error to supposedly
correct an assumed estimation of the median rather
than of the mean, as is sometimes erroneously done”.

Another question is that of the support of the es-
timate: is kriging “punctual”, that is to say that the
transmissivity has to be estimated on the same sup-
port as the transmissivity data, or is a larger support
chosen, in which case an equivalent transmissivity is
sought? However, except in the very special case of a
stratified medium with a flow parallel to the stratifi-
cation, the permeability is not additive. The equiv-
alent block-permeability lies within the harmonic
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and the arithmetic mean of sub-block permeabil-
ities [Matheron, 1993, Delhomme and de Marsily,
2005]. In the special case of lognormal transmissiv-
ity with isotropic variogram, and with some addi-
tional hypotheses, Matheron [1967] has shown that
the equivalent transmissivity is the geometric mean.
Coming back to the estimated transmissivity sim-
ply consists thus to exponentiate the estimated log-
transmissivity.

In practice, the regularisation similarly has to be
carried out on the log-transmissivities, and the re-
sult is simply exponentied. The bounds of the un-
certainty interval can be calculated in the same way
from the bounds of this interval on logarithmic esti-
mates.

In a more thorough approach, tensor transmissiv-
ity fields should be estimated.

4.3. Biased flow predictions computed on
estimated transmissivity fields

However it is known that the (co)kriging “smoothes”
map of the estimated values, whose spatial variability
therefore differs from that of the real values. The non-
linear calculations performed on an estimated trans-
missivity field (by (co)kriging or any other estimator,
linear or not) is biased. A simulation based approach
is then required.

The cokriging of log-transmissivity by log-
transmissivity and head measurements however
allows the direct conditioning of log-transmissivity
simulations to these data. When the validity of the
linearisation of the flow equation is not verified,
especially when the head gradient cannot be as-
sumed to be constant at the macroscopic scale, the
simple and crossed “numerical variogram” between
log-transmissivity and head (perturbations) pro-
vides a consistent bivariate model, which is com-
patible with the boundary conditions where these
are known [Schwede and Cirpka, 2010, Pannecoucke
et al., 2020]. However, the results shown here in the
simplified case of the linearized flow equation re-
main useful in the general case: “crossing” two quasi
steady-state flows (two seasonal situations for ex-
ample) should improve characterising transmissivity
heterogeneities.
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