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Abstract. Planetary cores are the seat of rich and complex fluid dynamics, in which the effects of
rotation and magnetic field combine. The equilibria governing the strength of the magnetic field
produced by the dynamo effect, the organisation and amplitude of the flow, and those of the density
field, remain debated despite remarkable progress made in their numerical simulation. This paper
describes an approach based on the explicit consideration of the variation of time scales τwith spatial
scales ℓ for the different physical phenomena involved. The τ–ℓ diagrams thus constructed constitute
a very complete graphic summary of the dynamics of the object under study. We highlight the role of
the available convective power in controlling this dynamics, together with the relevant force balance,
for which we derive a very telling τ–ℓ translation. Several scenarios are constructed and discussed for
the Earth’s core, shedding new light on the width of convective columns, and on the force equilibria
to be considered. A QG-MAC scenario adapted from Aubert [2019] gives a good account of the
observations. A diversion to Venus reveals the subtlety and relativity of the notion of “fast rotator”.
We discuss scaling laws and their validity domain, and illustrate “path strategies”. A complete toolbox
is provided, allowing everyone to construct a τ–ℓ diagram of a numerical simulation, a laboratory
experiment, a theory, or a natural object.
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1. Introduction

Enormous progress has been achieved in the mod-
eling and understanding of the magnetic dynamo
at work in the core of the Earth and other planets
since the first 3D numerical simulations of Glatz-
maier and Roberts [1995] and Kageyama et al. [1995].
It rapidly appeared that the magnetic fields produced
by such numerical simulations met the main char-
acteristics of the long-term magnetic field observed
on Earth, such as its dipolarity, the presence of high-
flux patches at high latitudes, and symmetry proper-
ties [Christensen et al., 1999, Olson and Christensen,
2006, Christensen et al., 2010]. Magnetic intensity
scaling laws for planetary and stellar dynamos were

∗Corresponding author.

obtained by combining an analysis of the dominant
terms of the governing equations with results of an
extensive survey of numerical simulations [Chris-
tensen and Aubert, 2006, Christensen, 2010].

In the meantime, shorter timescale manifesta-
tions of the geodynamo were unveiled, such as a
large-scale off-centered anticyclone [e.g., Pais and
Jault, 2008], and torsional waves (geostrophic Alfvén
waves) with periods of a few years [Gillet et al., 2010].
These new observations prompted efforts to run nu-
merical simulations at more extreme parameter val-
ues [Schaeffer et al., 2017, Aubert et al., 2017, Aubert,
2023], increasing the role of rotation by decreas-
ing the Ekman number down to Ek = 10−7, and in-
creasing the convective forcing up to Ra/Rac = 6300,
where Ra is the Rayleigh number, and Rac its critical
value. These extreme simulations of the geodynamo
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successfully account for fast dynamics retrieved from
observations.

In view of this remarkable progress, it might seem
that most problems are solved. In fact, hot debates
are still roaming on several crucial issues. One of
them concerns the dominant length-scale of con-
vective structures in Earth’s core. Column widths of
100 m are suggested by Yan and Calkins [2022] while
Guervilly et al. [2019] advocate 30 km. Extrapolat-
ing force-balances from numerical simulations and
laboratory experiments to natural systems is another
issue [Aurnou and King, 2017, Schwaiger et al., 2019,
Teed and Dormy, 2023]. The relevance of scenar-
ios with weak and strong magnetic field branches
is also hotly debated [Dormy, 2016]. One extreme
viewpoint being expressed by Cattaneo and Hughes
[2022] who claim that Earth would not have been
able to produce a magnetic field as strong as today
without Moon’s help.

There is room for such diverging views because
the distance from numerically accessible parame-
ters to expected planetary values remains vertigi-
nous. Laboratory experiments somewhat enlarge
the accessible range but are limited to non-dynamo
regimes, making the link with numerics and obser-
vations difficult.

This is the motivation for exploring a different
route: instead of extrapolating available simulations
to core conditions, start from the actual expected
properties of the core, and patch scenarios of turbu-
lence that correspond to different regimes encoun-
tered at different scales. This leads to the construc-
tion of τ–ℓ regime diagrams of turbulence, as briefly
introduced by Nataf and Schaeffer [2015].

Our experience is that this approach is an excel-
lent intuition-booster. It provides a simple graphical
support that can greatly help deciphering and testing
more mathematically-motivated approaches. How-
ever, we observe that it has not yet received an au-
dience, perhaps because it clearly advocates a “fuzzy
physics” method, and also because it was originally
published in a limited-access collection.

In this article, we present a largely renewed and
extended version of the τ–ℓ regime diagrams we orig-
inally proposed. We detail the steps for constructing
such diagrams, providing examples of application to
numerical simulations and laboratory experiments.
Key properties of τ–ℓ diagrams are highlighted and
illustrated by simple examples.

The central part of the article is devoted to an
application to the Earth’s core. We propose sce-
narios for a non-magnetic rotating convective core,
and for a dynamo-generating rotating convective
core. The resulting diagrams are compared with the
predictions of several scaling analyses [Christensen
and Aubert, 2006, Christensen, 2010, Davidson, 2013,
Aubert et al., 2017].

Nataf and Schaeffer [2015] were building scenar-
ios from the observed large-scale flow and magnetic
field, and testing how they were compatible with the
expected available power. In this article, our τ–ℓ di-
agrams are constructed to satisfy a given constraint
on the convective or dissipated power, a key property
of turbulent flows. Comparison with the observed
flow and magnetic field (when available) is used as
a validation test. This is a more challenging exercise,
which leads us to consider the various force balances
that could govern the dynamics of the object. We de-
rive the τ–ℓ translation of the main relevant force bal-
ances (CIA, QG-CIA, MAC, QG-MAC, IMAC). It turns
out that these translations and their graphical repre-
sentations are very telling.

This should facilitate the construction of τ–ℓ dia-
grams for planets, exoplanets and stars for which no
direct observation of the large-scale flow velocity and
magnetic field is available. Indeed, planets are ther-
mal machines and their thermal evolution is proba-
bly what we can estimate best. Liquid cores of plan-
ets cool down on geological timescales, generating
convective motions. Convective power, which can
be estimated from the planet’s thermal history [e.g.,
Stevenson et al., 1983, Lister, 2003, Nimmo, 2015,
Landeau et al., 2022, Driscoll and Davies, 2023], sus-
tains fluid flow and magnetic field. Dissipation of
this power by either momentum or magnetic diffu-
sion, or both, controls the regimes of turbulence the
system experiences.

We present and illustrate the construction rules
and key properties of τ–ℓ regime diagrams of turbu-
lence in Section 2. Section 3 introduces the physical
phenomena at work in planetary cores, and relates
τ–ℓ diagrams to classical dimensionless numbers.
Section 4 presents τ–ℓ regime diagrams for a non-
magnetic rotating core. τ–ℓ diagrams of the present-
day geodynamo are built in Section 5. Both sections
emphasize the crucial role of the available convective
power and force balances. The discussion Section 6
illustrates how τ–ℓ diagrams bring a new light on
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several ongoing debates. Limitations and perspec-
tives are outlined in Section 7, and we conclude in
Section 8. Appendix A provides rules for converting
spectra into τ–ℓ language. Simple Python programs
used to build τ–ℓ diagrams are given as supplemen-
tary material, together with examples from numeri-
cal simulations and laboratory experiments.

2. Construction rules and key properties of τ–ℓ
diagrams

This section presents the rules used to construct τ–ℓ
diagrams. Turbulent systems display a wide range of

length-scales and timescales. Timescales of physical
phenomena such as diffusion or wave propagation
depend upon the length-scale at which they operate.
For example, timescale τν of momentum diffusion at
length-scale ℓ can be written as τν(ℓ) = ℓ2/ν, where
ν is the kinematic viscosity. Similarly, turnover time
τu of a vortex of radius ℓ is given by τu(ℓ) = ℓ/u(ℓ),
where u(ℓ) is the vortex fluid velocity. We build τ–ℓ
regime diagrams by plotting timescales τx as a func-
tion of length-scale ℓ in a log–log plot, for all the dif-
ferent physical phenomena x that govern the fluid
flow in a given system.

Construction rules of τ–ℓ regime diagrams
τ–ℓ regime diagrams are “object-oriented”. They are built following these steps:

• Identify physical phenomena that play an important role in the object under study.
• Document relevant physical properties (viscosity, thermal diffusivity, rotation rate, etc).
• Build and draw lines τ(ℓ) that control dissipative and wave propagation phenomena.
• Identify different turbulence regimes the object might experience.
• Construct and draw lines τ(ℓ) of fields (velocity, buoyancy, magnetic field) that describe the

object’s turbulent behaviour, given a dissipated power Pdiss.
• Compare predictions with observables such as large-scale flow velocity and magnetic field,

when available.

2.1. A simple example: Kolmogorov’s universal
turbulence

We first illustrate the construction rules of τ–ℓ dia-
grams with the simple example of Kolmogorov’s uni-
versal turbulence [Kolmogorov, 1941]. Although this
is not the kind of turbulence we expect in planetary
cores, we pick a range of length-scales and timescales
typical of the Earth core. Figure 1 is a log–log plot of
timescales spanning a range from 10 s to 32,000 years
versus length-scales from 1 cm to Ro = 3480 km, the
radius of the core.

2.1.1. τν(ℓ) line

We pick a viscosity value ν = 10−6·m2·s−1 and
draw the τν(ℓ) viscous dissipation line:

τν(ℓ) = ℓ2/ν. (1)

2.1.2. τu(ℓ) line

In Kolmogorov’s universal turbulence, kinetic en-
ergy cascades down from large length-scales to small
scales, from the energy injection scale down to the
viscous dissipation scale. The range in between is

called the inertial range. The kinetic energy den-
sity spectrum E(k) in the inertial range obeys Kol-
mogorov’s law:

E(k) =CK ϵ
2/3k−5/3, (2)

where k is the wavenumber, ϵ is the energy injection
(and dissipation) rate per unit mass, and CK is Kol-
mogorov’s dimensionless constant, of order 1.

To build line τu(ℓ), we need to convert kinetic en-
ergy density into velocity. It is common to define an
“eddy turnover time” as τu(ℓ) = ℓ/u(ℓ), with u2(ℓ) ∼
E(k)k and ℓ∼ 1/k (see Appendix A.1). This translates
into:

τu(ℓ) ≃ ℓ3/2[E(ℓ−1)]−1/2. (3)

Dropping prefactor CK , Kolmogorov’s law yields:

τu(ℓ) ≃ ϵ−1/3ℓ2/3. (4)

We draw this τu(ℓ) line in Figure 1, assuming that
the energy injection length-scale is Ro , and choosing
an injection timescale, which will be discussed later.
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2.1.3. ℓ-scale Reynolds number

We terminate line τu(ℓ) where it hits viscous
line τν(ℓ). This intersection yields Kolmogorov mi-
croscales (ℓK ,τK ), for which τK ≡ τu(ℓK ) = ℓ2

K /ν, i.e.,
u(ℓK )ℓK /ν = 1. Defining an ℓ-scale Reynolds num-
ber Re(ℓ) = u(ℓ)ℓ/ν, we note that the intersection of
the eddy turnover time line τu(ℓ) with the viscous
line τν(ℓ) occurs at Re(ℓ) = 1. It marks the transition
from the inertial cascade at large scale to the viscous
dissipation regime at small scale.

2.1.4. Power dissipation markers

In Kolmogorov’s theory, the energy injected at
large scale cascades down with no loss to small scales
at which viscous dissipation takes place. This dissi-
pation range starts at the intersection of lines τu and
τν, where Re(ℓ) ∼ 1, which defines Kolmogorov mi-
croscales (ℓK ,τK ). From Equations (1) and (4), we de-
duce:

ϵ= ℓ2
K

τ3
K

= ν

τ2
K

= u2(ℓK )

τK
, (5)

where the last expression shows that dissipation rate
per unit mass ϵ equals kinetic energy at the mi-
croscale divided by eddy turnover time at that scale.
We also see that we can attribute to each τν value

a dissipation rate per unit mass. Multiplying by the
mass of the system, we obtain the total dissipated
power. In Figure 1, we thus draw power markers
along the viscous dissipation line, using the mass of
the outer core Mo = 1.835×1024 kg. Markers are a fac-
tor of one thousand apart and are labeled. In Figure 1,
the timescale for energy injection at length-scale Ro

was chosen to yield a dissipated power Pdiss = 3 TW,
marked by the blue arrow.

2.1.5. Energy

In Kolmogorov’s universal turbulence, kinetic en-
ergy is dominated by large length-scales. In τ–ℓ dia-
grams, we retrieve kinetic energy Ek from the square
of the inverse of τu(Ro) since:

Ek = 1

2

∫
Vo

ρ[u(r)]2 dV ∼ Mo[u(Ro)]2 = MoR2
o

τ2
u(Ro)

, (6)

where Vo is the volume of the liquid core. We use this
property to compare the amplitudes of the various
energy reservoirs when dealing with planetary cores.
Note that this applies as long as the slope of the
E(k) kinetic energy density spectrum is negative (i.e.,
slope of τu(ℓ) is less than 3/2), in order for large-scale
energy to dominate.

Key properties of τ–ℓ regime diagrams

• τ–ℓ regime diagrams gather in a simple graphical representation many of the ingredients that
control the dynamics of a turbulent fluid system.

• In τ–ℓ regime diagrams, intersections of lines τx (ℓ) and τy (ℓ) of physical phenomena x and y
occur where ℓ-scale dimensionless number Z (ℓ) = τy (ℓ)/τx (ℓ) equals 1. They mark a change
in the system’s dynamical regime.

• Usual integral-scale values of dimensionless numbers are obtained from the ratio of relevant
τx (ℓ) and τy (ℓ) times at integral scale ℓ= Ro .

• Total dissipated power can be marked along τ(ℓ) lines of dissipative phenomena.
• Energies of different types (kinetic, gravitational, magnetic) are represented by the inverse

square of corresponding τ(Ro).
• τ–ℓ regime diagrams are a useful tool to infer or test turbulence scenarios. They are not a theory

of turbulence.

3. Physical phenomena in planetary cores and
dimensionless numbers

We now turn our attention to planetary cores. Flow
within planetary cores are mostly powered by ther-
mal or thermo-compositional convection. They of-
ten produce a magnetic field. Most importantly,
these flows occur in a rotating spherical system.

In this section, we introduce the τ–ℓ lines these
physical phenomena contribute. We illustrate the
resulting τ–ℓ regime diagram template, using values
pertaining to Earth’s core, and relate the diagram to
various dimensionless numbers used to characterize
planetary core dynamics.
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Figure 1. τ–ℓ regime diagram for Kolmogorov’s
universal turbulence [Kolmogorov, 1941]. Teal
line labeled ν is viscous dissipation line τν(ℓ) =
ℓ2/ν. The thick blue line is eddy turnover time
τu(ℓ) = ϵ−1/3ℓ2/3 inferred from Kolmogorov’s
law, assuming that energy is injected at core
radius length-scale ℓ = Ro . These two lines
intersect where the ℓ-scale Reynolds number
Re(ℓ) ∼ 1, as marked by a circle. Total en-
ergy dissipation rate Pdiss can be read at this
intersection (blue arrow), using square mark-
ers drawn and labelled along the viscous line.
Markers are a factor of 103 apart, the 1 TW
marker being filled.

3.1. Physical phenomena and their τ–ℓ expres-
sions

Table 1 gives the expressions of major τ(ℓ) times per-
taining to planetary cores. τν(ℓ) and τu(ℓ) times
have been introduced in Section 2.1. Convection
adds thermal diffusion and buoyancy scales. Rota-
tion, spherical boundaries, and magnetic field con-
tribute key additional timescales.

We discuss the origin and meaning of these vari-
ous τ(ℓ) scales, and illustrate the τ–ℓ template they
provide in Earth’s core example (Figure 2), using its
properties presented in Section 3.3. We first ignore

Table 1. Notation and expression of τ(ℓ) times
of relevant physical phenomena for planetary
cores

Time Expression Phenomenon

τν(ℓ) ℓ2/ν Viscous dissipation

τκ(ℓ) ℓ2/κ Thermal diffusion

τχ(ℓ) ℓ2/χ Compositional diffusion

τη(ℓ) ℓ2/η Magnetic dissipation

tΩ 1/Ω Rotation

τRossby(ℓ) Ro/Ωℓ Rossby wave propagation

τAlfven(ℓ) ℓ
p
ρµ/B0 Alfvén wave propagation

τρ(ℓ)
√

ℓ
g

ρ
|∆ρ(ℓ)| Buoyancy (or free-fall)

τu(ℓ) ℓ/u(ℓ) Eddy turnover

τb(ℓ) ℓ
p
ρµ/b(ℓ) Alfvén wave collision

Fluid properties: density ρ; kinematic viscosity ν;
thermal and compositional diffusivities κ and χ,
respectively; magnetic diffusivity η; magnetic per-
meability µ. System properties: radius Ro ; gravity g ;
rotation rate Ω; large-scale magnetic field B0. Tur-
bulent flow properties: ∆ρ(ℓ), u(ℓ) and b(ℓ) are ℓ-
scale density anomaly, flow velocity, and magnetic
field intensity, respectively. We also write τη(Ro)
as Tη for short. Adapted from Table 1 of Chapter
8.06 of Treatise on Geophysics [Nataf and Schaeffer,
2015] with permission.

the magnetic field and build the template of Fig-
ure 2a.

3.1.1. Diffusion

Lines labeled ν, κ and χ are diffusion τ–ℓ lines.
Timescales of diffusive phenomena all share the
same form τ(ℓ) = ℓ2/D , where diffusivity D is ν, κ or
χ depending upon which field diffuses: momentum,
temperature, or composition, respectively.

3.1.2. Convection

We introduce a “buoyancy” or “free-fall” timescale
τρ(ℓ) = √

(ℓ/g )(ρ/|∆ρ(ℓ)|), which is the time it takes
for a parcel of fluid with density anomaly∆ρ(ℓ) to rise
or sink a distance ℓ in the absence of diffusion. τρ(ℓ)
relates to density anomaly∆ρ at length-scale ℓ. Den-
sity anomaly, flow velocity and magnetic field consti-
tute the three fields for which we seek an adequate
turbulent description.
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Figure 2. τ–ℓ regime diagram templates for the Earth’s core. The time-length relationships of relevant
physical phenomena, as given in Table 1, are drawn in a log–log plot of timescale versus length-scale,
using Earth core values from Table 3 presented in Section 3.3. (a) Template ignoring the magnetic field.
The steep solid lines labeled χ, ν and κ are diffusion times τχ(ℓ), τν(ℓ), and τκ(ℓ), respectively. The dash–
dot horizontal line is the rotation time tΩ. The Rossby line τRossby(ℓ) is drawn as a wavy line pinned to
tΩ. Markers along lines τν(ℓ) and τRossby(ℓ) indicate viscous power dissipation. Markers are a factor of
1000 apart, the 1 TW marker being filled. The circle labeled Ek at the intersection of the viscous τν(ℓ) and
tΩ lines mark the length-scale at which the ℓ-scale Ekman number equals 1. Same thing for the thermal
Ekman number Ekκ(ℓ). (b) Template including the magnetic field. Same as (a) with additional lines and
labels brought by the magnetic field. The steep solid red line labeled η is the magnetic diffusion line τη(ℓ).
Markers along that line indicate Ohmic power dissipation. Markers are a factor of 1000 apart, the 1 TW
marker being filled. The Alfvén line τAlfven(ℓ) is drawn as a wavy line pinned to the observed large-scale
magnetic field Alfvén time t obs

b . Circles labeled Ekη, Lu and λ at line intersections mark scales at which
the corresponding ℓ-scale dimensionless number (see Table 2) equals 1. See Sections 3.1.6 and 3.3 for
more information.

We have shown in Section 2.1 that the value of τu

at integral scale Ro measures the kinetic energy of the
flow. Similarly, gravitational energy Eg is measured
by τρ(Ro) (as long as the slope of τρ(ℓ) is less than
3/2) since:

Eg = 1

2

∫
Vo

g r∆ρ(r)dV ∼ Mo g Ro
∆ρ(Ro)

ρ
= MoR2

o

τ2
ρ(Ro)

.

(7)

3.1.3. Rotation

Rotation is a crucial ingredient of planetary core
dynamics. It adds one important time in our τ–ℓ
regime diagram: the rotation time tΩ =Ω−1, i.e., one

day divided by 2π. Physical phenomena operating
at timescales smaller than tΩ are not influenced by
planet’s spin, while those with longer timescales feel
the effect of rotation. We thus draw a horizontal line
at tΩ in the diagram of Figure 2a. The intersection
of this line with the viscous line yields Ekman layer’s
thickness ℓE =p

ν/Ω. Viscous forces are balanced by
Coriolis acceleration in these thin Ekman layers. ℓE

is the only length-scale one can build from ν and Ω
alone, and it controls friction, hence viscous dissipa-
tion, that takes place at boundaries. It turns out that
boundaries bring up new important dynamical con-
straints and scales.
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3.1.4. Rotation and spherical boundaries

We will not review here the vast literature on ro-
tating fluids in containers. The book of Greenspan
[1968] remains amazingly central. At this stage, let us
simply recall that Navier–Stokes equation reduces to
geostrophic equilibrium when Coriolis acceleration
dominates:

2ρΩ×u =−∇P, (8)

where u and P are fluid velocity and pressure, re-
spectively. Taking the curl of this equation yields
Proudman–Taylor constraint:

∂u

∂z
= 0, (9)

where z coordinate is parallel to vector Ω. Reintro-
ducing acceleration term ρ∂t u allows for the propa-
gation of inertial waves.

Proudman–Taylor constraint would inhibit all
fluid motions in a rotating fluid bounded by a solid
container. Accounting for the presence of a thin
Ekman layer that accommodates a velocity jump be-
tween the fluid bulk and the boundary, geostrophic
flows are allowed, which follow contours of equal
fluid column-height (measured in the z-direction),
i.e., azimuthal flows in a spherical container. In
most situations, Quasi-geostrophic (QG) fluid mo-
tions are also observed, which approximately satisfy
Proudman–Taylor constraint (i.e., z-invariance) in
the bulk (at least for one component, typically the
azimuthal velocity).

It is important to note that Proudman–Taylor con-
straint is established by the propagation of iner-
tial waves in the fluid, and is effective only when
they had time to reach a boundary. Thus, a local-
ized eddy of radius ℓ grows into a columnar vor-
tex at a speed equal to Ωℓ [Davidson et al., 2006].
This means that large eddies rapidly form quasi-
geostrophic columns, while it takes more time for
small eddies to form core-size columns. Time for
reaching quasi-geostrophy is thus given by:

τRossby(ℓ) = Ro

Ωℓ
, (10)

as written in Table 1. This line is drawn as a wavy line
in Figure 2a. It is pinned to time tΩ at ℓ= Ro , and we
extend it until it reaches viscous line τν(ℓ).

Note that τRossby(ℓ) also equals the time it takes
for a Rossby wave of wavelength ℓ to propagate one
wavelength (hence its name) [Nataf and Schaeffer,
2015]. The intersection of the τu(ℓ) line with the

Rossby line has ℓ =
√

u(ℓ)Ro/Ω, which defines a
Rhines scale (originally more precisely defined as ℓ=√

u/β in a thin shell, where β = 2Ωsinθ/Ro is the
northward gradient of Coriolis frequency at colati-
tude θ [Rhines, 1975], here extended to a wide gap
[Busse, 1970, Schopp and Colin de Verdière, 1997]).

Flow is quasi-geostrophic for scales above line
τRossby(ℓ). In the triangle formed by the Rossby line,
the viscous line and line tΩ, flow structures are elon-
gated parallel to the spin axis but not enough to reach
both boundaries. Flow is 3D beneath line tΩ.

3.1.5. Quasi-geostrophic dissipation

Quasi-geostrophic vortices dissipate kinetic en-
ergy by Ekman friction at no-slip boundaries of the
liquid core. We approximate energy loss rate pℓ of a
single QG vortex of radius ℓ by:

pℓ = ρν
u2(ℓ)

ℓ2
E

ℓEℓ
2, (11)

with ℓE the Ekman layer thickness. Summing con-
tributions of all ℓ-scale QG vortices filling the entire
core, we obtain the total power dissipated by Ekman
friction PQG . Dividing by the mass of the core, we
obtain the QG viscous dissipation rate per unit mass
ϵQG at scale ℓ as:

ϵQG = νu2(ℓ)

RoℓE
(12)

Ekman friction matters for QG vortices. We there-
fore draw the corresponding power markers on the
Rossby line, above which flow is quasi-geostrophic.
Time τQG for which total viscous dissipation by
Ekman friction equals PQG is then obtained from
Equation (12) as:

τQG =
[

MoRo

PQG

√
ν

Ω3

]1/4

. (13)

This provides markers drawn in Figure 2a as dia-
monds along the Rossby line, a factor of one thou-
sand apart, the TW marker being filled.

Going back to the viscous line τν(ℓ), we terminate
it at the spin-up time Ro/

p
νΩ∼ 13×103 years, which

is the time it takes for a change in the outer boundary
spinning rate to be transmitted to the entire volume
of the core.

3.1.6. A note on convection onset

We can already illustrate an interesting insight
provided by this simple τ–ℓ template, by adding the
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scales appearing at the onset of convection in this ro-
tating spherical system. This topic has a long history,
starting with the pioneer studies of Roberts [1968]
and Busse [1970], followed by Jones et al. [2000],
Dormy et al. [2004], Zhang et al. [2007]. It is found
that convection sets in as a travelling thermal Rossby
wave, forming columns aligned with the spin axis,
whose width is controlled by viscosity in the bulk of
the spherical shell. A τ–ℓ translation of the length-
scale, period, and Rayleigh number at convection on-
set is given in Appendix B.

In Figure 2a, a black triangle marks the length-
scale and period at convection onset. It lies at
the intersection of the Rossby and thermal diffusion
lines, close to the viscous diffusion line, as expected
for a viscously-controlled quasi-geostrophic thermal
Rossby wave. We read a column-width of about 100
m. Is this the typical convective length-scale in the
Earth’s core? We will get back to this question in Sec-
tion 6.3. The orange triangle at ℓ = Ro marks the
critical free-fall time T c

ρ deduced from the critical
Rayleigh number (see Appendix B).

3.1.7. Magnetic field, magnetic dissipation, magnetic
energy

Magnetic fields are often produced and sustained
by dynamo action within planetary cores. We now
add the magnetic field to build the template of Fig-
ure 2b. The red line labeled η is the magnetic diffu-
sion line τη(ℓ). Magnetic dissipation markers are la-
beled along that line, following the same rule as in
Equation (5).

The presence of a magnetic field allows the propa-
gation of magnetohydrodynamic waves called Alfvén
waves [Alfvén, 1942]. In a uniform magnetic field
B0, these waves propagate at speed VA = B0/

p
ρµ,

where µ is fluid’s magnetic permeability. Assum-
ing a large-scale magnetic field B0, we construct line
τAlfven(ℓ) = ℓ

p
ρµ/B0, the time it takes for an Alfvén

wave to propagate over a distance ℓ. It is drawn as a
red wavy line in Figure 2b.

To describe the magnetic field in the system, we
define a similar timescale, replacing B0 by ℓ-scale
magnetic field b(ℓ). Note that τb(Ro) = τAlfven(Ro)
provides the magnitude of magnetic energy Em (as
long as the slope of τb(ℓ) is less than 3/2), since:

Em = 1

2µ

∫
Vo

[b(r)]2 dV ∼ Mo

ρµ
[b(Ro)]2 = MoR2

o

τ2
b(Ro)

. (14)

3.2. Dimensionless numbers

In order to connect to the huge literature pertain-
ing to geophysical and astrophysical fluid dynam-
ics, it is important to relate our τ–ℓ regime diagrams
to widely used dimensionless numbers. Dimension-
less numbers provide the minimum number of pa-
rameters needed to describe a physical system. They
permit a comparison of widely different systems that
yield the same dimensionless numbers. These num-
bers are dimensionless combinations of properties
and field variables that appear when the equations
governing the dynamics of the system under study
are made dimensionless by normalizing their various
terms by “typical scales”.

For example, Reynolds number for a system of size
L will be written: Re =U L/ν, where U is a typical fluid
velocity, and ν kinematic viscosity. Usually, it is when
this dimensionless number is of order 1 that a change
of regime occurs. In this example: a change between
a regime where momentum diffusion dominates over
advection when Re < 1 to one where advection dom-
inates for Re > 1.

Most dimensionless numbers can be written as
the ratio of two times. In our approach, we de-
fine length-scale dependent dimensionless numbers,
constructed as the ratios of the timescales of the rel-
evant physical phenomena at that length-scale. We
thus define ℓ-scale Reynolds number as: Re(ℓ) =
τν(ℓ)/τu(ℓ), where τν(ℓ) is momentum diffusion
timescale at length-scale ℓ, while τu(ℓ) is the over-
turn time of a vortex of radius ℓ. Table 2 gives the ex-
pressions of ℓ-scale dimensionless numbers pertain-
ing to planetary liquid core dynamics.

In τ–ℓ regime diagrams, the intersection of the
τx (ℓ) and τy (ℓ) lines of physical phenomena x and y
occurs where ℓ-scale dimensionless number Z (ℓ) =
τy (ℓ)/τx (ℓ) equals 1. Each such intersection marks a
change in the system’s dynamic regime.

In Figures 2a and 2b, we have labeled several line
intersections, where specific dimensionless numbers
equal 1. The intersections of line tΩ and the ν, κ
and η lines indicate where corresponding ℓ-scale Ek-
man numbers equal 1 in the τ–ℓ plane. The inter-
section of the Alfvén and magnetic diffusion lines
defines where the ℓ-scale Lundquist number equals
1, marking a change from propagating Alfvén waves
at larger scales to damped waves at smaller scales.
Similarly, the intersection of the Alfvén and tΩ lines
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Table 2. Expressions of ℓ-scale dimensionless numbers

Number Expression Time ratio Name

Re(ℓ)
u(ℓ)ℓ

ν

τν(ℓ)

τu(ℓ)
Reynolds

Ra(ℓ)
gℓ3|∆ρ(ℓ)|/ρ

κν

τκ(ℓ)τν(ℓ)

τ2
ρ(ℓ)

Rayleigh

Ek(ℓ)
ν

Ωℓ2

tΩ
τν(ℓ)

Ekman

Ekκ(ℓ)
κ

Ωℓ2

tΩ
τκ(ℓ)

Thermal Ekman

Ekη(ℓ)
η

Ωℓ2

tΩ
τη(ℓ)

Magnetic Ekman

Ro(ℓ)
u(ℓ)

Ωℓ

tΩ
τu(ℓ)

Rossby

Roff (ℓ)

√
gℓ|∆ρ(ℓ)|/ρ

Ωℓ

tΩ
τρ(ℓ)

Free-fall Rossby

Rm(ℓ)
u(ℓ)ℓ

η

τη(ℓ)

τu(ℓ)
Magnetic Reynolds

Lu(ℓ)
ℓB0

η
p
ρµ

τη(ℓ)

τAlfven(ℓ)
Lundquist

Λd (ℓ)
b(ℓ)B0

ρµu(ℓ)Ωℓ

τu(ℓ) tΩ
τb(ℓ)τAlfven(ℓ)

Dynamical Elsasser

λ(ℓ)
B0p
ρµΩℓ

tΩ
τAlfven(ℓ)

Lehnert

These numbers are also expressed as ratios of characteristic ℓ-scale times, which are defined in Table 1.
One recovers the classical expression of these numbers at integral scale by setting ℓ = Ro . Adapted from
Table 2 of Chapter 8.06 of Treatise on Geophysics [Nataf and Schaeffer, 2015] with permission.

yieldsλ(ℓ) ∼ 1, whereλ is the Lehnert number [Lehn-
ert, 1954, Jault, 2008]. System rotation favors quasi-
geostrophic Alfvén waves at timescales above this in-
tersection.

More dimensionless numbers, such as Re, Rm, Ra,
Ro, Roff , andΛd , will appear when we plot lines τρ(ℓ),
τu(ℓ) and τb(ℓ) of the system’s density, velocity and
magnetic fields for the different turbulence scenarios
we will explore.

3.3. A word on Earth’s core properties

Core properties used to build the τ–ℓdiagrams of Fig-
ure 2 are listed in Table 3. Most are taken from Pe-
ter Olson’s review in Treatise on Geophysics [Olson,
2015]. Some of them are known with great precision
(to about 1h for core radius Ro and liquid core mass
Mo), but others are poorly constrained (to about 1

or 2 orders of magnitude for viscosity ν and com-
positional diffusivity χ). In addition, most physical
properties are expected to vary with radius. None of
these (important) subtleties are taken into account in
the “fuzzy” approach we advocate for building τ–ℓ
regime diagrams. Note that we systematically drop
all numerical prefactors, including 2π.

As noted in Section 1, the power available to drive
the dynamics of the system under study is a key in-
gredient. It largely controls the different turbulence
regimes the system will experience. Thermal evolu-
tion of the Earth has received considerable attention
(see Nimmo [2015], Landeau et al. [2022], Driscoll
and Davies [2023] for reviews). It is now well estab-
lished that the dynamics of Earth’s core today is pow-
ered by its slow cooling, enhanced by the resulting
growth of the solid inner core. As iron-nickel alloy
crystallizes at its surface, it releases latent heat and



10 Henri-Claude Nataf and Nathanaël Schaeffer

Table 3. Properties of Earth’s core

Symbol Value Unit Property

ν 10−6 m2·s−1 Kinematic viscosity

κ 5×10−6 m2·s−1 Thermal diffusivity

χ 10−9 m2·s−1 Compositional diffusivity

η 1 m2·s−1 Magnetic diffusivity

ρ 10.9×103 kg·m−3 Density

α 1.2×10−5 K−1 Thermal expansion coefficient

CP 850 J·kg−1·K−1 Specific heat capacity

Ro 3.48×106 m Core radius

Ri 1.22×106 m Inner core radius

Mo 1.835×1024 kg Outer core mass

g 8 m·s−2 Gravity

tΩ 1.38×104 s Earth’s rotation time (i.e. 1/2π day)

Pdiss 3×1012 W Available convective power

t obs
u 9×109 s Ro-scale core flow time (i.e. ≃300 years)

t obs
b 1.4×108 s Ro-scale Alfvén wave time (i.e. ≃4 years)

See Olson [2015] for details and uncertainties. Adapted from Table 3 of Chapter 8.06 of Treatise on
Geophysics [Nataf and Schaeffer, 2015] with permission.

light elements that drive convection and power the
geodynamo.

Despite uncertainties on isentropic heat flux, the
available convective power is found to be in the range
0.8–5 × 1012 W for present-day core [Nimmo, 2015,
Landeau et al., 2022]. We adopt value Pdiss = 3 TW.
This value is pointed by a blue arrow on the Rossby
line in Figure 2a, and by a red arrow on the magnetic
dissipation line in Figure 2b.

The last two rows in Table 3 are not used to build
τ–ℓ diagrams, but instead to test their relevance.
Large-scale vortex turnover time t obs

u ≃ 300 years is
retrieved from core flow inversions of magnetic secu-
lar variation [e.g., Pais and Jault, 2008]. Large-scale
Alfvén wave propagation time t obs

b ≃ 4 years is de-
duced from the discovery and analysis of “torsional
oscillations” in Earth’s core [Gillet et al., 2010].

It is also observed that the Lowes–Mauersberger
spectrum of magnetic energy is flat at the core-
mantle boundary up to harmonic degree 10 [e.g.,
Langlais et al., 2014]. This means that energy is in-
dependent of length-scale in this scale-range, which
translates into a τb(ℓ) ∝ ℓ3/2 trend at large-scale (see
Appendix A.2.1). Similarly, core flow inversions fa-
vor an almost flat harmonic spectrum of kinetic en-

ergy up to degree 10 [Roberts and King, 2013, Aubert,
2013, Gillet et al., 2015, Baerenzung et al., 2016].
These trends are sketched by colored disks labeled
t obs

u and t obs
b in Figure 2.

4. τ–ℓ regime diagrams for a non-magnetic
rotating convective core

Building a turbulence scenario for a given system,
starting from the power it dissipates, requires es-
timating the balance of forces at different length-
scales. We thus start by expressing the τ–ℓ translation
of expected relevant force balances. We then focus on
a quasi-geostrophic regime, which we illustrate with
the τ–ℓ diagram of an actual numerical simulation.
We then propose an idealized scenario of turbulent
convection in Earth’s core in the absence of a mag-
netic field.

4.1. τ–ℓ expression of force balances in rotating
convection

Let us start from the Navier–Stokes equation for de-
viations from hydrostatic equilibrium in an incom-
pressible fluid under the Boussinesq approximation:

ρ(∂t u+u ·∇u+2Ω×u) =−∇P +∆ρg+ρν∇2u, (15)
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where the symbols have their usual meaning. The ac-
celeration term on the left-hand side includes advec-
tion and Coriolis, while the right-hand side figures
pressure gradient, buoyancy, and viscous forces.

We already recalled in Section 3.1.4 that Equa-
tion (15) reduces to geostrophic equilibrium (8) when
Coriolis acceleration strongly dominates, yielding
Proudman–Taylor constraint (9). However, this equa-
tion is a diagnostic equation that can’t be used on its
own, as gets clear when Equation (15) is curled to
obtain the vorticity equation (see Jones [2015] for a
more complete treatment). Reintroducing other ac-
celerations and forces in the vorticity equation can
lead to two different situations: (i) Proudman–Taylor
constraint is broken and we get a three-term balance
between Coriolis, inertia (or viscosity) and buoyancy;
(ii) Coriolis acceleration is still dominant, and flow is
quasi-geostrophic at leading order, with a small ve-
locity gradient along the spin axis (Ω ·∇)u, scaling as
1/ℓ∥, where ℓ∥ ∼ Ro [Julien et al., 2012].

4.1.1. Coriolis-Inertia-Archimedes (CIA)

Let’s first consider the first situation, with a three-
term balance of Coriolis, inertia and Archimedean
forces. At a given length-scale ℓΩ, retaining these
forces in the curl of Equation (15) yields:

Ωu

ℓΩ
∼ u2

ℓ2
Ω

∼ ∆ρ
ρ

g

ℓΩ
. (16)

Translating in τ–ℓ language, we get:

tΩτu(ℓΩ) ∼ τ2
u(ℓΩ) ∼ τ2

ρ(ℓΩ), (17)

which implies:

τu(ℓΩ) ∼ tΩ ∼ τρ(ℓΩ). (18)

This is the regime we expect when the τu(ℓ) line
reaches the tΩ line, where Ro(ℓΩ) ∼ 1.

4.1.2. Quasi-geostrophic Coriolis-Inertia-Archimedes
(QG-CIA)

The second situation is more relevant for the
Earth’s core in the absence of a magnetic field. We
still consider a three-term balance of Coriolis, iner-
tia and Archimedean forces, but in which the Coriolis
term is reduced to its ageostrophic part:

Ωu

ℓ∥
∼ u2

ℓ2
⊥
∼ ∆ρ

ρ

g

ℓ⊥
. (19)

The first term corresponds to vortex stretching, the
second one to vorticity advection, and the last one

to vortex generation by buoyancy [Cardin and Olson,
1994, Aubert et al., 2001, Jones, 2015].

Translating in τ–ℓ language, and assuming ℓ∥ ∼
Ro , we get:

Ro

ℓ⊥
tΩτu(ℓ⊥) ∼ τ2

ρ(ℓ⊥) ∼ τ2
u(ℓ⊥). (20)

Equation (20) implies:

τu(ℓ⊥) ≃ Ro

ℓ⊥
tΩ ≡ τRossby(ℓ⊥), (21)

meaning that the τu(ℓ) of a flow in QG-CIA balance
plots on the Rossby line τRossby(ℓ) (see Table 1). Note
that where flow is quasi-geostrophic, the ℓ that we
use to describe its dynamics in τ–ℓ diagrams is the
length-scale in the equatorial plane (i.e., the width of
the columns).

4.2. τ–ℓ diagram of a remarkable numerical
simulation

We focus here on rapid rotation regimes (small
Rossby number), for which the leading order balance
is quasi-geostrophic. Important results have been
obtained for this regime by Guervilly et al. [2019],
who performed numerical simulations of ther-
mal convection at low Prandtl number (Pr = 10−2

and 10−1) in a sphere, at Ekman numbers down
to Ek(Ro) = 10−8 in 3D, and to Ek(Ro) = 10−11 in
quasi-geostrophic 2D. In this section, we build the
τ–ℓ diagram of their most extreme 3D simulation,
at Ek(Ro) = 10−8and Pr = 10−2, and discuss its im-
plications. Figure 3a displays the τ–ℓ diagram we
obtain.

We first build its “template” as in Figure 2a, us-
ing radius Ro and tΩ (spin rate’s inverse) of the ac-
tual Earth’s core as length-scale and timescale, re-
spectively, in order to compare with the Earth. Input
dimensionless parameters Ek and Pr of the simula-
tion provide values needed to build lines τν(ℓ) = ℓ2/ν
and τκ(ℓ) = ℓ2/κ. As in Figure 2a, power dissipa-
tion markers are drawn along the Rossby and vis-
cous lines, using outer core mass Mo . The simula-
tion provides the power dissipated by viscosity in the
bulk, pointed by a blue arrow on the viscous line,
and the slightly larger viscous dissipation in the Ek-
man boundary layer, pointed by a blue arrow on the
Rossby line.
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Figure 3. τ–ℓ diagrams for non-magnetic rapidly rotating convection. Refer to Figure 2a and Section 3
for a complete description of the background “template”. (a) 3D numerical simulation from Guervilly
et al. [2019]. Field variables u and ρ of the simulation are represented by blue τu(ℓ) and orange τρ(ℓ)
lines, respectively, which are τ–ℓ translations of their respective volume-averaged order m-spectra (see
Appendix A.2.3). Simulation’s viscous dissipation in the bulk can be read on line τν(ℓ) at the blue arrow,
while viscous dissipation in Ekman layers is marked by a blue arrow on the Rossby line. Additional
pale blue line labeled ur gives the τ–ℓ line of radial velocity, which gets much smaller than azimuthal
velocity at large length-scales. (b) Scenario for the Earth assuming a QG-CIA force balance. The available
convective power Pdiss ≃ 3 TW sets time τ∗ on the Rossby line (blue arrow) at which QG-CIA force balance
yields the dominant vortex radius ℓ∗ = ℓ⊥ ≃ 200 km, such that τu(ℓ⊥) = τρ(ℓ⊥) = τRossby(ℓ⊥). The QG-CIA
balance governs flow at length-scales ℓ< ℓ∗ all the way to the intersections with diffusion lines τκ(ℓ) and
τν(ℓ). At length-scales ℓ> ℓ∗, azimuthal flow velocities dominate over radial velocities (labeled ur ).

We now turn to extracting lines τu(ℓ) and τρ(ℓ)
from the simulation. Line τu(ℓ), labeled u, is ob-
tained from the conversion of the volumetric aver-
age of a snapshot’s azimuthal order m-kinetic en-
ergy spectrum, following Equation (A57) of Appen-
dix A.2.3. Note that line τu(ℓ) stays above the Rossby
line at all length-scales, implying that the flow is
quasi-geostrophic, as expected from the high degree
of z-invariance observed in this simulation [Guervilly
et al., 2019]. Remember that, in this case, length-
scale ℓhas to be understood as the flow’s length-scale
in the equatorial plane. Flow becomes anisotropic at
large length-scale, as shown by the additional τur (ℓ)
line, labeled ur , of radial velocities. The azimuthal
over radial velocity ratio increases with ℓ. Line τρ(ℓ),

labeled ρ, is obtained in a similar way, using the
conversion rule given by Equation (A59) of Appen-
dix A.2.3, with gravity given by g = Ra(Ro)Ro κν/R4

o
and Ra(Ro) = 2.5×1010.

Both τu(ℓ) and τρ(ℓ) lines display a sharp
timescale minimum, very close to the Rossby line,
defining length-scale ℓ⊥. This simulation thus
nicely illustrates the QG-CIA force balance, with
τRossby(ℓ⊥) ∼ τu(ℓ⊥) ∼ τρ(ℓ⊥), as advocated by
Guervilly et al. [2019]. Note that the same force
balance appears to apply for ℓ < ℓ⊥, as envisioned
by Rhines [1975]. Length-scale ℓ⊥ coincides with the
length-scale given by power dissipation occurring in
Ekman layers (blue arrow pinned to the Rossby line).
As expected from Equations (13) and (5), viscous
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dissipation is mostly due to flow at the minimum
τu(ℓ) time.

4.3. τ–ℓ diagram for a non-magnetic Earth core

We now have all elements to start building a τ–ℓ
scenario for rotating convection in a non-magnetic
Earth’s core, which we present in Figure 3b. The goal
is to create and draw realistic τu(ℓ) and τρ(ℓ) lines
over the background “template” of Figure 2a. We as-
sume that viscous dissipation mainly occurs in Ek-
man layers. Applying Equation (13), we obtain time
τ∗ = [(MoRo/Pdiss)

p
ν/Ω3]1/4, which yields the dis-

sipated power Pdiss that we estimate for the Earth’s
core (see Section 3.3), marked by a blue arrow in Fig-
ure 3b. We further formulate the ansatz of a QG-
CIA force balance at the “optimum” length-scale ℓ∗,
which thus lies on the Rossby line. We plot point (ℓ∗,
τ∗) in Figure 3b.

Inspired by Figure 3a, and by Rhines’ arguments,
we infer that flow obeys the QG-CIA balance for all
length-scales ℓ < ℓ∗. We thus plot τu(ℓ) and τρ(ℓ)
lines along the Rossby line all the way to their in-
tersection with dissipation τν(ℓ) and τκ(ℓ) lines, re-
spectively. It remains to draw lines τu(ℓ) and τρ(ℓ)
for ℓ larger than ℓ⊥. Flow becomes anisotropic for
ℓ > ℓ⊥, with radial velocities decreasing as ℓ in-
creases, while azimuthal velocities increase with ℓ.
For ℓ > ℓ⊥ we thus loosely prescribe τur (ℓ) ∝ ℓ2

(for a spectral energy density E(k) ∝ k), τuaz (ℓ) ≃
τu(ℓ) ∝ ℓ (for E(k) ∝ k−1), and τρ(ℓ) ∝ ℓ1/2 (for a
k−2-spectrum).

Reading the τ–ℓ diagram of Figure 3b, we see that
core flow in a non-magnetic Earth would be quasi-
geostrophic at all scales, with azimuthal velocities
reaching 3 m·s−1, much larger than present-day core
flow velocities represented by its t obs

u value and trend.
The radius of dominant columnar vortices would
be around 200 km. Ekman layer viscous dissipa-
tion would dominate over bulk viscous dissipation by
many orders of magnitude.

5. τ–ℓ regime diagrams for the Earth’s core

In this section, we examine which τ–ℓ regime dia-
grams to expect for the Earth’s core. Our goal is not
to come up with an optimal or accurate scenario, but
rather to illustrate how τ–ℓ diagrams can help in-
venting and testing such scenarios. We now consider

the presence of a magnetic field and try to document
Earth’s core τ–ℓ diagram, for which we presented a
template in Figure 2b. Our starting point is the avail-
able convective power, as in Section 4.3. Building
a turbulence scenario requires again estimating the
balance of forces at different length-scales.

5.1. τ–ℓ expression of force balances in rotating
convective dynamos

Following the approach of Section 4.1, we add the
Lorentz force in Navier–Stokes’ equation:

ρ(∂t u+u ·∇u+2Ω×u) =−∇p +∆ρg+ j×b+ρν∇2u,
(22)

where j is the electric current density. Following Au-
rnou and King [2017], Aubert [2019], Schwaiger et al.
[2019], Schwaiger [2020], we consider two different
situations: (i) Proudman–Taylor constraint is broken
by the magnetic field and we get a three-term balance
between Lorentz, buoyancy, and Coriolis (MAC force
balance); (ii) Coriolis acceleration is dominant, and
flow is quasi-geostrophic at leading order and obeys
a QG-MAC force balance.

5.1.1. Magneto-Archimedean-Coriolis (MAC)

When magnetic Lorentz force is strong enough
to break quasi-geostrophy at scale ℓ∗, one can get
a balance between Lorentz, buoyancy and Coriolis
forces, such that:

Ωu

ℓ∗
∼ b2

ρµℓ2∗
∼ ∆ρ

ρ

g

ℓ∗
, (23)

analogous to the CIA balance with fluid velocity re-
placed by Alfvén wave velocity in the advection term.
Translating in τ–ℓ language, we get:

tΩτu(ℓ∗) ∼ τ2
b(ℓ∗) ∼ τ2

ρ(ℓ∗), (24)

which implies:

Λd (ℓ∗) = tΩτu(ℓ∗)

τ2
b(ℓ∗)

∼ 1. (25)

Graphically, this means that τb(ℓ∗) and τρ(ℓ∗) both
plot at mid-distance between τu(ℓ∗) and tΩ. This is
the regime we get when the magnetic field is strong
enough [see Aurnou and King, 2017]. The dynamical
Elsasser numberΛd is of order one at scale ℓ∗.
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5.1.2. Quasi-geostrophic magneto-Archimedean-
Coriolis (QG-MAC)

When the leading order force balance is quasi-
geostrophic, the Coriolis term should only involve its
ageostrophic part, at a length-scale ℓ∥ ∼ Ro . QG-MAC
balance at lenght-scale ℓ⊥ therefore writes:

Ωu

ℓ∥
∼ b2

ρµℓ2
⊥
∼ ∆ρ

ρ

g

ℓ⊥
, (26)

analogous to the QG-CIA balance with fluid velocity
replaced by Alfvén wave velocity in the advection
term. Translating in τ–ℓ language, we get:

Ro

ℓ⊥
tΩτu(ℓ⊥) ∼ τ2

ρ(ℓ⊥) ∼ τ2
b(ℓ⊥), (27)

which can also be written:

τRossby(ℓ⊥)τu(ℓ⊥) ∼ τ2
ρ(ℓ⊥) ∼ τ2

b(ℓ⊥). (28)

Graphically, this means that τb(ℓ⊥) and τρ(ℓ⊥) both
plot at mid-distance between τu(ℓ⊥) and τRossby(ℓ⊥).

5.2. τ–ℓ diagram of a remarkable numerical
simulation

Let us start by building and discussing the τ–ℓ regime
diagram (Figure 4a) of one of the most extreme dy-
namo simulations available today: the S2 DNS of
Schaeffer et al. [2017].

We first build its “template” as in Figure 2b, using
radius Ro and tΩ of the actual Earth’s core as length-
scale and timescale, respectively, in order to compare
with the Earth. Input dimensionless parameters of
the simulation (Ek(Ro −Ri ) = 10−7, Pr = 1, Pm = 0.1)
provide values needed to build lines τν(ℓ), τκ(ℓ) and
τη(ℓ). As in Figure 2b, power dissipation markers are
drawn and labeled along the magnetic diffusion line,
and along the Rossby and viscous lines, using outer
core mass Mo . Ohmic and viscous dissipations Dη

and Dν of the simulation are obtained from Table 2
of Schaeffer et al. [2017], and scaled to Earth’s core by:
P = Dρν3/(Ro −Ri ). They are pointed by a red arrow
on the magnetic diffusion line, and a blue arrow on
the viscous line, respectively.

Next, we turn to extracting lines τu(ℓ) and τb(ℓ)
from the simulation’s spherical harmonic spectra,
applying conversion rules of Equations (A52) and
(A53) of Appendix A.2.2, respectively. The simulated
acceleration of gravity g at the top boundary is ob-
tained from:

g = Ra∗Ro κν

(Ro −Ri )4 , (29)

with Ra∗ = Ra/βRo = 2.4×1013, where Ra is the clas-
sical large-scale Rayleigh number, andβ the imposed
codensity gradient at the top boundary. We then ob-
tain line τρ(ℓ) by applying Equation (A54) to the co-
density spectrum multiplied by Pr2.

Reading the resulting τ–ℓ diagram, we see that:
magnetic energy largely dominates over kinetic en-
ergy (τb(Ro) ≪ τu(Ro)); Ohmic dissipation domi-
nates over viscous dissipation (compare dissipation
powers indicated by arrows pinned to lines τη(ℓ)
and τν(ℓ), respectively); flow should be largely quasi-
geostrophic, since the τu(ℓ) line stays above the
Rossby line down to dissipation length-scales. We
also observe that both τu(ℓ) and τb(ℓ) lines have
slopes steeper than 1 at large length-scale, while
the slope of the τρ(ℓ) line is closer to 1/2. Fi-
nally, we observe that a QG-MAC force balance seems
approximately satisfied at length-scale ℓ⊥ ≃ Ro/18,
marked by a vertical dotted line, at which we observe
(τb/tΩ)(τb/τu) ∼ Ro/ℓ⊥ and τb(ℓ⊥) ∼ τρ(ℓ⊥).

5.3. A simple MAC-balance scenario

Figure 4b proposes a first attempt to complete the
template of Figure 2b with plausible τu(ℓ), τb(ℓ) and
τρ(ℓ) lines. As in Section 4.3, our starting point is the
available convective power Pdiss ≃ 3 TW. We formu-
late the ansatz that it is dissipated by Joule heating
only, which means that line τb(ℓ) should get down
to (but not below) time τ∗ = √

Moη/Pdiss that yields
a dissipation equal to Pdiss, as pointed by the red
arrow on line τη(ℓ). However, in contrast with the
situation of Section 4.3, we cannot attach line τb(ℓ)
to this point, because we anticipate that the velocity
would be too weak at that scale to amplify the mag-
netic field.

One of the guidelines of our τ–ℓ approach is that
regime changes should occur where relevant ℓ-scale
dimensionless numbers reach 1, i.e., at the intersec-
tion of corresponding τ–ℓ lines. In a dynamo, we
expect a regime change for Rm(ℓ) ∼ 1, at the inter-
section of lines τu(ℓ) and τη(ℓ), below which mag-
netic diffusion takes precedence over induction. Fur-
thermore, if the magnetic field is strong, the inten-
sity of turbulence is strongly reduced in that low Rm
regime. We thus assume that Ohmic dissipation is
maximum at length-scale ℓ∗ where Rm(ℓ∗) = 1, im-
plying τb(ℓ∗) ≃ τ∗.
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Figure 4. τ–ℓ diagrams for rapidly rotating convective dynamo. Refer to Figure 2b and Section 3 for a
complete description of the background “template”. (a) 3D numerical simulation S2 of Schaeffer et al.
[2017], Field variables u, b and ρ of the simulation are represented by blue τu(ℓ), red τb(ℓ), and orange
τρ(ℓ) lines, respectively, which are τ–ℓ translations of their respective time- and volume-averaged degree
n-spectra (see Appendix A.2.2). Simulation’s viscous dissipation can be read on line τν(ℓ) at the blue
arrow, while Ohmic dissipation is marked by a red arrow on line τη(ℓ). The black vertical dotted line marks
the length-scale at which a QG-MAC force balance appears to be achieved. (b) Scenario for the Earth
assuming a MAC force balance. The available convective power Pdiss ≃ 3 TW sets time τ∗ on the τη(ℓ) line
(red arrow). Length-scale of maximum dissipation ℓ∗ ≃ 7 km is obtained by combining Rm(ℓ∗) = 1 and
a MAC force balance at this same length-scale. Circles labeled Re and Rm at the intersections of line τu

with lines τν(ℓ) and τη(ℓ) mark the scales at which the corresponding ℓ-scale dimensionless number (see
Table 2) equals 1. Red and blue stars on the right y-axis mark magnetic intensity and velocity amplitude,
respectively, predicted by Christensen and Aubert [2006]’s scaling laws. Blue cross from Davidson [2013]’s
velocity scaling law.

This first condition links the velocity field to the
magnetic field but is not sufficient to provide ℓ∗.
Another constraint is needed, which we get from a
force balance. As a first guess, we request that our
system obeys a MAC force balance at length-scale ℓ∗.
Recalling Equation (24), we have:

tΩτu(ℓ∗) ∼ τ2
b(ℓ∗) ∼ τ2

ρ(ℓ∗).

Together with condition Rm(ℓ∗) = 1, this sets ℓ∗ at a
position such that τu(ℓ∗) = τη(ℓ∗) = τ2∗/tΩ, and im-
plies τρ(ℓ∗) = τ∗, as drawn in Figure 4b. Graphically,

τ∗ plots at mid-distance between τu(ℓ∗) and tΩ. We
can also write:(

ℓ∗
Ro

)2

= τ∗
tΩ

τ∗
Tη

= 1

tΩT 2
η

MoR2
o

Pdiss
, (30)

where Tη ≡ τη(Ro).
The next step consists in drawing lines τu(ℓ) and

τb(ℓ) for ℓ < ℓ∗ and for ℓ > ℓ∗. For ℓ < ℓ∗, we note
that the regime of MHD turbulence in the presence
of a strong magnetic field is characterized by steep
energy density spectra: E(k) ∝ k−3 and Em(k) ∝ k−5

[Alemany et al., 1979]. Converting to τ–ℓ language
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with Equation (A44), we get τu(ℓ) ∝ ℓ0 and τb(ℓ) ∝
ℓ−1, yielding the slopes drawn in Figure 4b. Adding
rotation further reduces the intensity of turbulence
[Nataf and Gagnière, 2008, Kaplan et al., 2018], but
we lack constraints on the resulting energy spectra.

In the dynamo region, for ℓ > ℓ∗, we assume k−1

energy density spectra for both u and b (i.e., τ(ℓ) ∝
ℓ), implying that line τb(ℓ) follows the Alfvén wave
line τAlfven(ℓ). This choice is mostly for pedagogical
reasons as explained below. Finally, we rather arbi-
trarily assume τρ(ℓ) ∝ ℓ1/2 at all length-scales. This
completes the τ–ℓ diagram shown in Figure 4b.

Reading this τ–ℓ diagram, we see that our scenario
yields velocity and magnetic amplitudes that are not
too far from the observed t obs

u and t obs
b values. They

translate into a magnetic to kinetic energy ratio of
about 104, according to Equations (6) and (14). Bulk
and boundary viscous dissipations have comparable
amplitudes, both many orders of magnitude smaller
than Ohmic dissipation, as assumed. The smallest
QG vortices (on the Rossby line) are very sluggish,
with a turnover time of about 1 year and a radius of
1 km. Magnetic diffusion is largest at a length-scale
of about 10 km.

It is interesting to observe that our scenario im-
plies that the Alfvén line intersects line τη(ℓ) at time
tΩ, meaning that all three ℓ-scale dimensionless
numbers Ekη, Lu and λ equal 1 at this same scale.
This implies that τb(Ro) can be deduced from the in-
tersection of τη(ℓ) and tΩ lines. In other words, even
though our scenario has been built to achieve a given
Ohmic dissipation Pdiss, the actual value of τb(Ro)
does not depend on Pdiss. Only the kinetic energy
depends on Pdiss, as given by these scaling laws:

τu(Ro) =
(

Tητ2∗
tΩ

)1/2

=
(
ΩMoR2

o

Pdiss

)1/2

(31)

τb(Ro) = (tΩTη)1/2 = Ro√
Ωη

. (32)

5.4. A simple QG-MAC balance scenario

The simple MAC-balance scenario of the previous
section meets a problem: line τu(ℓ) plots above the
Rossby line for all length-scales ℓ > ℓ∗, and all these
scales have Λd (ℓ) < 1. This means that flow should
be quasi-geostrophic in this scale range, even though
the magnetic field is strong. Leading-order force
balance should therefore be quasi-geostrophic, with

convective motions forming columnar vortices par-
allel to the spin axis. Figure 5a shows a first plausible
alternative scenario, built as follows.

As in Section 5.3 we first obtain the minimum
magnetic time τb , which is set to τ∗ = √

Moη/Pdiss,
marked by a red arrow on line τη(ℓ), and the corre-
sponding length-scale of maximum dissipation ℓ∗ is
such that Rm(ℓ∗) = 1. This first condition links the
velocity field to the magnetic field but is not sufficient
to provide ℓ∗. Another constraint is needed, which
we get from a QG-MAC force balance. We recall that
such a balance at length-scale ℓ⊥ is given by Equa-
tion (27):

Ro

ℓ⊥
tΩτu(ℓ⊥) ∼ τ2

b(ℓ⊥) ∼ τ2
ρ(ℓ⊥).

Graphically, this means that τb(ℓ⊥) plots at mid-
distance between τu(ℓ⊥) and τRossby(ℓ⊥). One then
needs to guess at which scale ℓ⊥ this balance should
apply. In contrast with our simple MAC scenario,
one cannot choose ℓ⊥ = ℓ∗, because this would place
τu(ℓ∗) very far down, below the tΩ line, breaking
quasi-geostrophy, and yielding Ek ≫ Em in strong
disagreement with observations. And we also need
to decide how velocity and magnetic fields vary be-
tween ℓ∗ and Ro . As in Section 5.3 we assume
τu(ℓ) ∝ ℓ and τb(ℓ) ∝ ℓ. We then obtain:(

ℓ∗
Ro

)3

=
(
ℓ⊥
Ro

)2 τ∗
tΩ

τ∗
Tη

. (33)

Figure 5a displays the τ–ℓ diagram of such a QG-
MAC scenario with ℓ⊥ = Ro/10. Comparing with
Figure 4b, we see that this scenario predicts a larger
magnetic over kinetic energy ratio, with τu above the
Rossby line down to scales of a few hundred meters.
Another difference is the level of line τρ(ℓ).

5.5. A QG-MAC balance scenario à la Aubert

In the previous scenario, choosing ℓ⊥ = Ro/10 was
borrowed from Aubert et al. [2017] and Aubert [2019],
who find it in good agreement with their numeri-
cal simulation results. Following Davidson [2013],
Aubert [2019] proposes a τu(ℓ) scaling for ℓ∗ < ℓ< ℓ⊥
that differs from the one we used in Section 5.4. In
that interval, Davidson [2013] infers that vorticity is
independent of ℓ. This translates into τu(ℓ) ∝ ℓ1/2
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Figure 5. τ–ℓ diagrams of two QG-MAC force balance scenarios for the Earth core. Refer to Figure 2b
and Section 3 for a complete description of the background “template”, and to Figure 4b for more details.
Both scenarios assume that the available convective power Pdiss ≃ 3 TW is dissipated by Joule effect,
setting time τ∗ marked by a red arrow on the magnetic diffusion line, and that the flow obeys a QG-MAC
balance at a prescribed length-scale ℓ⊥ = Ro/10 indicated by a blue vertical dot-dash line. (a) a simple
QG-MAC balance scenario. It is assumed that τu(ℓ) and τb(ℓ) are proportional to ℓ between ℓ∗ and Ro

(see Section 5.4). (b) a QG-MAC balance scenario à la Aubert. This scenario assumes τu(ℓ) ∝ ℓ1/2 for
ℓ∗ < ℓ < ℓ⊥ (invariant vorticity) and τu(ℓ) ∝ ℓ3/2 for ℓ⊥ < ℓ < Ro (following the trend of observations
t obs

u ). Same trends for τb(ℓ) (see Section 5.5).

instead of τu(ℓ) ∝ ℓ. Using the same scaling for
τb(ℓ), length-scale ℓ∗ is then given by:

(
ℓ∗
Ro

)5/2

=
(
ℓ⊥
Ro

)3/2 τ∗
tΩ

τ∗
Tη

. (34)

The corresponding τ–ℓ regime diagram is shown
in Figure 5b, where we chose to follow the observed
ℓ3/2 trend for τu and τb above ℓ⊥ (blue and red disks,
respectively). This scenario provides an amazing fit
to the observed t obs

u and t obs
b values. Furthermore, we

observe that the dynamical Elsasser number Λd (ℓ) =
(tΩ/τb(ℓ))(τu(ℓ)/τb(ℓ)) remains below 1 at all length-
scales ℓ, validating our assumption of leading-order
Quasi-Geostrophy.

This scenario yields the following (ugly-looking)
scaling laws for the largest scale velocity and mag-

netic fields:

τu(Ro) =
(

Ro

ℓ⊥

)1/10
(

T 2
ητ

6∗
t 3
Ω

)1/5

(35)

τb(Ro) =
(

Ro

ℓ⊥

)13/10

(tΩTητ
3
∗)1/5. (36)

5.6. The interesting case of Venus

The internal structure of Venus is very poorly known,
but we know that it does not generate a detectable
magnetic field. This important difference from its sis-
ter planet Earth is classically explained by a different
thermal history, leading to a hot mantle convecting
beneath a rigid lid, preventing core cooling, hence
halting the convective engine of the dynamo [Steven-
son et al., 1983, Nimmo, 2002].
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Figure 6. Devil’s advocate τ–ℓ regime diagram
for the core of Venus. All relevant properties
are assumed identical to that of the Earth’s core
(see Section 3.3), except for the spin rate (ro-
tation period of 243 days). Venus “template”
is built as in Figure 2b. Value t obs

u ≃ 1012 s is
deduced from an upper bound on Venus’ un-
detected magnetic field. We speculate that the
difference in rotation period has a dramatic im-
pact on the dynamo, and Section 5.6 proposes
a tentative IMAC force balance scenario, which
results in the displayed τ–ℓ diagram.

Venus and Earth also differ by their spinning rate:
one turn in 243 days instead of one day. This dif-
ference is usually considered as unimportant since
rotation still appears overwhelming, with an Ekman
number Ek(Ro) ∼ 10−13 [Russell, 1980]. However, if
we adopt for Venus the same physical properties as
for Earth, including its available convective power
Pdiss, but update the spinning rate to the one of
Venus, we meet a problem, illustrated in Figure 6.

We first observe that Ohmic dissipation time τ∗ =√
Moη/Pdiss plots below the tΩ line. We also see that

the core of Venus would not be able to dissipate such
a power by friction in its Ekman layers, as indicated
by the markers along the Rossby line (compare with

Figure 3b). Venus does not appear to be a “fast rota-
tor”, and we should not expect the flow to be domi-
nantly Quasi-Geostrophic as in Earth’s core. It might
be more similar to the solar dynamo.

We therefore propose a very tentative “devil’s ad-
vocate” scenario, in which we assume that dissipa-
tion takes place in the bulk, with equipartioned vis-
cous and Ohmic dissipations, yielding the blue arrow
on the viscous line, and the red arrow on the mag-
netic diffusion line. In this region far below the tΩ
line, Kolmogorov energy density spectra E(k) ∝ k−5/3

seem plausible for both kinetic and magnetic ener-
gies, which translate into τu(ℓ) ∝ ℓ2/3 and τb(ℓ) ∝
ℓ2/3, as drawn in Figure 6 from their respective dis-
sipation scales up to timescale tΩ, which is met at a
length-scale ℓΩ ≃ 5 km.

The force balance we expect there is of type
Inertia-Magneto-Archimedean-Coriolis (IMAC),
given by:

tΩτu(ℓΩ) ∼ τ2
u(ℓΩ) ∼ τ2

b(ℓΩ) ∼ τ2
ρ(ℓΩ), (37)

which we use to plot τρ(ℓΩ). At length-scales larger
than ℓΩ the IMAC scenario drawn in Figure 6 as-
sumes τρ(ℓ) ∝ ℓ1/2, τu(ℓ) ∝ ℓ2/3, and τb(ℓ) ∝ ℓ2.
The unusual very large ℓ exponent for the magnetic
field, corresponding to an E(k) ∝ k magnetic energy
density spectrum, predicts an undetectable magnetic
field at the largest length-scale. Such a spectrum
is indeed observed at the surface of the Sun [Finley
and Brun, 2023], where the magnetic field is much
stronger at small length-scales than at large length-
scales.

Our exercise is very formal since we recall that
there are good reasons to believe that such a Pdiss

convective power is not available for Venus [Steven-
son et al., 1983, Nimmo, 2002]. Nevertheless, our di-
version to Venus questions the notion of “fast rotator”
and shows that for a given convective power Pdiss,
planet’s spin rate might play a more important role
than simply inferred from the low Ekman number it
delivers.

6. Discussion

In this section, we try to show how τ–ℓ diagrams
can help building a new vision on several ongoing
debates, such as the validity domain of various
scaling laws and the controversy on the dominant
length-scale in the core. We also illustrate the link
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with “path strategies” and propose extensions of this
approach.

6.1. Validity domain of dynamo regimes

One goal of our approach is to better appreciate the
validity domain of the various regimes encountered
in planetary cores. For example, no dynamo will ex-
ist if line τu(ℓ) plots too high in the diagram, yielding
Rm(Ro) ∼ 1. In Earth’s core, this would only happen
for Pdiss values several orders of magnitude smaller
than our reference value of 3 TW. Actually, very low
values (even negative) are not excluded by some ther-
mal history models, before the birth of the inner core
[e.g., Landeau et al., 2022].

At the other end, large Pdiss values can pull the dy-
namo generation domain (Rm(ℓ) > 1) partly beneath
the Rossby line. Complete columnar vortices won’t
then have time to form at length-scales below the
Rossby line, and we might have a somewhat differ-
ent turbulence regime. Davidson [2014] proposed an
original dynamo scenario that corresponds to such a
situation. Noting that inertial waves are strongly he-
lical, and that flow helicity is a key ingredient for dy-
namo action, he suggests that Earth’s dynamo might
operate this way. None of the three scenarios we
presented (Figures 4b, 5a, 5b) puts Rm(ℓ) ∼ 1 be-
low the Rossby line. However, it would only take
Pdiss ≃ 10 TW for the QG-MAC scenario à la Aubert
(Figure 5b) to qualify (remember we only consider or-
ders of magnitude).

An even more dramatic regime change should oc-
cur when τ∗ < tΩ, as in our devil’s advocate scenario
for Venus (Figure 6). Then, the object should not be
considered as a “fast rotator” anymore, and the dy-
namo regime is more of a small-scale type. This oc-
curs when Pdiss > MoηΩ

2. For the Earth’s core, this
translates into a power of 104 TW, which was never
reached in Earth’s history.

We believe that τ–ℓ diagrams could help inferring
relevant dynamo regimes for planets and stars.

6.2. Dynamo scaling laws

Christensen [2010] nicely reviews a number of scal-
ing laws proposed to infer the magnetic field inten-
sity of planets (and stars). Among the nine proposed
scaling laws he lists, five relate magnetic intensity to
planetary rotation rate Ω, with no influence of the

available convective power Pdiss, three involve both
Ω and Pdiss, and one only Pdiss. The latter one, first
proposed by Christensen and Aubert [2006], stems
from the analysis of a large corpus of numerical sim-
ulations of the geodynamo, backed by an appraisal
of the dominant terms in the governing equations. It
is the law preferred by Christensen [2010] who shows
that it is in good agreement with the measured mag-
netic intensity of planets and stars.

Translated in τ–ℓ formulation, Christensen’s pre-
ferred laws yield:

τu(Ro) = 1

cu

(
MoR2

oΩ
1/2

F̃Pdiss

)2/5

≃
(

T 2
ητ

4∗
tΩ

)1/5

(38)

τb(Ro) = 1√
2cb fohm

(
MoR2

o

F̃Pdiss

)1/3

≃ (Tητ
2
∗)1/3,

(39)

from Equations (32) and (15) of Christensen [2010].
Both large-scale flow velocity U ≡ Ro/τu(Ro) and
magnetic field B ≡ (ρµ)−1/2Ro/τb(Ro) do not depend
upon magnetic diffusivity1, and B is also indepen-
dent of spin rate Ω. These predictions are displayed
by blue and red stars on the right axis in Figure 4b.
While B-prediction agrees well with observations, U -
prediction over-estimates flow velocity.

Davidson [2013] re-examined this question and
noted that inertia is playing too strong a role in Chris-
tensen and Aubert [2006]’s simulations. He derived
a QG-MAC-balance variant and obtained a revised
flow velocity law (his Equation (15)), which translates
into:

τu(Ro) ≃Ω1/3
(

MoR2
o

Pdiss

)4/9

=
(

T 4
ητ

8∗
t 3
Ω

)1/9

, (40)

in which U is independent of magnetic diffusivity
η. Davidson’s prediction is drawn as a blue × in
Figure 4b.

Our discussion on scenario validity domain ques-
tions the obtention of universal dynamo scaling laws.
However, we have seen that such scaling laws can be
easily derived from the τ–ℓ diagram of various sce-
narios. Each scenario produces τu(Ro) and τb(Ro)
that combine τ∗ (or Tdiss), Tη and tΩ with various
powers. Equations (31) and (32) give the scaling laws

1Note that one can define a dissipation time Tdiss =
3
√

Mo R2
o /Pdiss, which makes it more explicit that Tητ2∗ = T 3

diss is

independent of magnetic diffusivity η.
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for a simple MAC scenario. Although built to dissi-
pate a given convective power Pdiss by Ohmic dissi-
pation, this scenario provides a large-scale magnetic
field B that does not depend upon Pdiss, while U is
independent of magnetic diffusivity η. The predic-
tion of our QG-MAC scenario “à la Aubert” is given
by Equations (35) and (36) for U and B , respectively.

6.3. Dominant length-scale controversy

Several recent studies have revived a debate on the
dominant length-scales to be expected in the Earth’s
core [Yan et al., 2021, Bouillaut et al., 2021, Yan and
Calkins, 2022, Cattaneo and Hughes, 2022, Nicoski
et al., 2024, Abbate and Aurnou, 2023, Hawkins et al.,
2023]. Fast rotation inhibits thermal convection, and
viscosity is needed to break the Taylor–Proudman
constraint [Chandrasekhar, 1961]. Studies on the on-
set of thermal convection in rapidly rotating plane
layers [Chandrasekhar, 1961], annulus [Busse, 1970],
and spherical shells or spheres [Busse, 1970, Jones
et al., 2000, Dormy et al., 2004] therefore all show
that, at the onset of convection, the flow consists
in columnar vortices aligned with the rotation axis,
with a width ℓc ∼ Ro[Ek(Ro)]1/3 (see Appendix B).
In the Earth’s core, such columns would be 30 m
in diameter, extending several thousand kilometers
in length. At least two effects could strongly widen
such columns: (i) the magnetic field [Chandrasekhar,
1961, Fearn, 1979, Sreenivasan and Jones, 2011, Au-
jogue et al., 2015]; (ii) non-linear flow advection
[Rhines, 1975, Ingersoll and Pollard, 1982, Gillet et al.,
2007, Jones, 2015, Guervilly et al., 2019].

The effect of the magnetic field can be studied
at the onset of convection, but only for given—
often simplistic—geometries of the magnetic field
that never occur in natural systems. These studies
show that convective cells can get as large as the
depth of the container Ro when a magnetic field is
present. Concerning planetary dynamos, one can ar-
gue that such an effect can only be invoked when
the dynamo has already produced a strong enough
magnetic field. This led Cattaneo and Hughes [2022]
to call on the Moon for help, arguing that in an un-
magnetized Earth, “convection would consist of hun-
dreds of thousands of extremely thin columns” that
would be unable to produce a magnetic field.

This view is clearly challenged by Guervilly
et al. [2019] who advocate a dominant convective

length-scale around 30 km. Their prediction rests
on the extrapolation of a QG-CIA force balance to
Earth’s core conditions, and is backed by numerical
simulations such as the one we present in Figure 3a.
Our QG-CIA scenario, shown in Figure 3b obeys
the same rules. It predicts an even larger dominant
length-scale (∼200 km) because it is built on the
available convective power Pdiss rather than on the
observed large-scale velocity, which is reduced by the
magnetic field. Interestingly, Figure 3a shows that
the simulations of Guervilly et al. [2019] remain very
close to the convection onset, which would yield a
critical length-scale ℓc close to the intersection of the
τκ(ℓ) and τRossby(ℓ) lines (see Appendix B). Yet, they
reach a turbulent QG-CIA balance because of the low
value of the Prandtl number (Pr = 10−2) that allows
for large Reynolds numbers near the onset [Aubert
et al., 2001, Kaplan et al., 2017].

Our τ–ℓ diagrams clearly emphasize the role of
Pdiss in controlling the dominant length-scale, both
with and without a magnetic field. This is particu-
larly clear in Figure 3b where the minima of curves
τu(ℓ) and τρ(ℓ) would “slide” along the Rossby line
following the Pdiss blue arrow. This diagram also sug-
gests that while viscosity in the bulk controls the con-
vective length-scale at the onset (black triangle), it
progressively looses its importance as viscous dissi-
pation in the Ekman layers takes over. To achieve a
turbulent convection regime where viscosity in the
bulk is unimportant, it is crucial to provide another
way of dissipating the convective power, like Ekman
layer friction or Ohmic dissipation, which are both
present in Earth’s core. Because you always need to
dissipate the power injected into turbulence, the pre-
vious sentence sounds rather obvious. Yet, this might
explain why several recent studies find no evidence
of a diffusion-free scaling, in which viscosity plays no
role. In the numerical simulations of Yan et al. [2021],
Yan and Calkins [2022], Nicoski et al. [2024], bound-
aries are stress-free so that no other energy sink than
viscous dissipation in the bulk can equilibrate the
convective power.

6.4. Path strategy

Our τ–ℓ approach has much in common with the
“path strategy” devised by Julien Aubert and col-
leagues [Aubert et al., 2017, Aubert and Gillet, 2021,
Aubert et al., 2022, Aubert, 2023]. Their strategy
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also targets the dynamical regime of a given object,
the Earth’s core, and aims at defining a “path” that
numerical simulations should follow to reach that
regime. As stressed by Dormy [2016], minimizing
Pm at a given Ekman number Ek(Ro) = ν/ΩR2

o is not
a good strategy, since it increases magnetic Ekman
number Ekη(Ro) = η/ΩR2

o , while Christensen et al.
[2010] show that Ekη(Ro) < 10−4 is needed for obtain-
ing Earth-like geodynamo simulations. Hence the
need for targeting a more elaborate “distinguished
limit” [Dormy, 2016].

Aubert and his colleagues stress the importance of
respecting the hierarchy of dynamic times, and pro-
pose a unidimensional path based on scaling laws
obtained by Davidson [2013] for a QG-MAC force bal-
ance. Position along the path is measured by an ϵ pa-
rameter. As exposed in Aubert [2023], the idea is to
keep the magnetic diffusion time Tη = τη(Ro) fixed
to the Earth value, and to decrease the magnetic Ek-
man number step by step, by decreasing the rotation
time tΩ from values at which appropriate numeri-
cal simulations are available (defining ϵ = 1) down
to the actual value of the Earth (ϵ = 10−7). Long-
period behaviour of the Earth’s core is well recov-
ered from ϵ = 1, while decreasing ϵ to Earth’s value
allows for the development of short-term dynam-
ics.

Figure 7 shows how τ–ℓ diagrams can help visu-
alize and extend this strategy. We show three dia-
grams, which correspond to three different values of
ϵ: 1, 10−3, and 10−7. Their “template” are built from
the values of the magnetic Ekman and Prandtl num-
bers listed for “prior PB” in Table 1 of Aubert [2023].
The values of Pdiss (red arrow), t obs

u (blue disk), and
t obs

b (red disk), are from the corresponding simula-
tion outputs given in his Table 2. We then add the
τρ(ℓ), τu(ℓ) and τb(ℓ) lines that our “à la Aubert” QG-
MAC balance scenario (see Section 5.5) predicts for
the listed Pdiss. An amazing fit of the “observed” tu

and tb is obtained, choosing ℓ⊥ = Ro/5.

A key contribution of Aubert and colleagues was
to determine how the input parameters of numeri-
cal simulations should scale with ϵ in order to follow
the path. This is where the QG-MAC scaling laws of
Davidson [2013] come in, and this is also where τ–ℓ
diagrams can help. Using the scaling laws obtained
for τu(Ro) and τb(Ro) in Section 5.5, we test two dif-
ferent paths. Note that parameter ϵ is defined such
that Ekη[ϵ] =p

ϵEkη[1], implying tΩ[ϵ] =p
ϵ tΩ[1].

Aubert and colleagues chose to keep Rm(Ro) con-
stant along the path, i.e., τu(Ro)[ϵ] = C te . Equa-
tion (35) then implies τ∗[ϵ] ∝ p

tΩ[ϵ] ∝ ϵ1/4, since
Tη does not vary with ϵ, and assuming that ℓ⊥/Ro

is constant as well. We thus get Pdiss[ϵ] ∝ ϵ−1/2

since τ∗ = √
Moη/Pdiss. Equation (36) then implies

τb(Ro)[ϵ] ∝ ϵ1/2. These scalings agree with those of
Aubert [2023], as can be seen in Figure 7.

Instead of keeping Rm(Ro) constant along the
path, one could choose to keep the dynamo-
generating domain above the Rossby line, as we
obtain for the Earth. Imposing that Rm(ℓ) = 1 oc-
curs at the intersection of lines τη(ℓ) and τRossby(ℓ)
yields τu(Ro)[ϵ] ∝ ϵ1/4, τb(Ro)[ϵ] ∝ ϵ3/8, and
Pdiss[ϵ] ∝ ϵ−11/12. It would be interesting to run
numerical simulations along such a path.

7. Limitations and perspectives

Let us first recall that our τ–ℓ approach is not a theory
of turbulence. We try to formulate plausible scenar-
ios by identifying scales at which a change in turbu-
lence regime should occur, and by patching scaling
laws appropriate for each regime. We thus entirely
depend on the availability of such laws, which can be
brought by experiments, theory, and numerical sim-
ulations.

Our approach contains a fair number of assump-
tions and approximations. How realistic are the con-
version rules we employ to “translate” force balances
and turbulent spectra in τ–ℓ language? Does the
minimum dynamic time control dissipation? What
controls length-scale ℓ⊥ that we had to guess for writ-
ing QG-MAC-type force balances?

For simplicity reasons, we have treated planetary
cores as simple full spheres. The application to actual
planets requires to at least consider spherical shells
of various thicknesses instead. An extension to giant
planets and stars also requires taking into account
compressibility and free-slip boundaries.

Our results suggest that dissipation of Quasi-
Geostrophic flows in Ekman layers takes over bulk
dissipation in rapidly rotating convection when it
gets strongly super-critical. Can it be tested? How
smooth is the transition? Our devil’s advocate sce-
nario for Venus suggests a transition to a very differ-
ent regime if dissipation is too large to be taken up by
Ekman friction. Is there evidence for such a transi-
tion? How sharp is it?
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Figure 7. τ–ℓ regime diagrams illustrating the “path strategy” devised by Aubert and colleagues. (a) 0%
of path (ϵ= 1). (b) 43% of path (ϵ= 10−3). (c) 100% of path (ϵ= 10−7). See text for explanations.

We observe that density anomaly spectra from nu-
merical simulations are rarely displayed, while they
convey valuable information. We also note that spec-
tra from laboratory experiments are scarce (but see
Madonia et al. [2023]) and too often given in “arbi-
trary units”, preventing their conversion into τ–ℓ rep-
resentation. We are lacking experimental data on tur-
bulence for rotating convection in a sphere in pres-
ence of strong magnetic fields.

τ–ℓ diagrams provide hints on how velocity and
magnetic field scale with length-scale. This might
be useful for observers who need such constraints
to tune their magnetic field and core-flow inversions
[Gillet et al., 2015, Baerenzung et al., 2016]. As a mat-
ter of fact, our analysis suggests that the flat spherical
harmonic spectra observed at low degrees n for both
flow velocity and magnetic field cannot extend much
beyond degree 10 without meeting dissipation prob-
lems.

8. Conclusion

τ–ℓ regime diagrams are a simple graphical tool that
proves useful for inventing or testing dynamic sce-
narios for planetary cores. Tradition in fluid dy-
namics is to characterize systems by dimension-
less numbers, usually based on “typical” large-scale
quantities. Past decades have seen large efforts to de-
velop a more detailed description of phenomena that

operate at different scales. This has led to the appari-
tion of even more dimensionless numbers, in which
the various scales involved do not always figure very
clearly, and to the construction of somewhat unintel-
ligible scaling laws. By defining τ timescales that de-
pend on ℓ length-scales over their entire range, we
hope to make these choices more explicit. By pro-
viding a simple graphical identity to these scales, we
wish to make their meaning more intuitive. Con-
trary to spectra in “arbitrary units”, τ–ℓ diagrams give
insight into regimes and balances which are para-
mount to rotating, magnetized and/or stratified flu-
ids, where waves can be present and significantly al-
ter the dynamics.

Because they put together most key properties
of a given object, τ–ℓ regime diagrams constitute
a nice identity card. We think this applies to nu-
merical simulations and laboratory experiments as
well. Both approaches enable extensive parameter
surveys, which are crucial for exploring and under-
standing different regimes. Being object-oriented, τ–
ℓ diagrams are not easily applied to such surveys, but
we think they would very valuably complement clas-
sical scaling law plots. The idea would be to draw τ–ℓ
diagrams for a few representative members and end-
members of the survey, which would nicely illustrate
their validity range.

Our article thus has two goals. The first goal is
to provide all ingredients for building your own τ–ℓ
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diagram, be it of a numerical simulation, a labora-
tory experiment or theory. To that end, we included
construction rules, examples, technical appendices,
and Python scripts (supplementary material). The
second goal is to demonstrate the potential of τ–ℓ
regime diagrams for suggesting and testing various
scenarios for Earth’s dynamo.

Convinced that available convective power Pdiss

is a key control parameter, and the one that can most
readily be estimated for other planets and exoplan-
ets, we have modified our original approach [Nataf
and Schaeffer, 2015] to propose and discuss a few
scenarios built upon this input data. This results in
a more challenging exercise, calling for force balance
inspection. We show that the τ–ℓ translation of rele-
vant force balances is very handy and telling.

We built several geodynamo scenarios to test MAC
(Figure 4b) and QG-MAC (Figure 5a, 5b) force bal-
ances. The validity domain of these scenarios shows
up well in τ–ℓ diagrams. A QG-MAC scenario “à
la Aubert” looks particularly appealing, and could
have applied to the Earth over its entire history. We
note that in such a scenario, flow in the dynamo-
generating region remains Quasi-Geostrophic, with a
dynamical Elsasser smaller than 1, even though the
magnetic to kinetic energy ratio is of order 104. In
contrast, Venus would have a hard time entering that
regime, because of its slow rotation (Figure 6). This
calls for a re-analysis of what is called a “fast rotator”.

τ–ℓ regime diagrams also help us addressing sev-
eral on-going debates, such as the the validity of
various scaling laws, and the question of the domi-
nant convective length-scale in the Earth’s core. We
speculate that dissipation in Ekman layers drives
non-magnetic rapidly rotating convection towards
a QG-CIA force balance when the flow is turbulent
enough, promoting dominant length-scales much
larger than the iconic Ro Ek1/3 length-scale at convec-
tion onset (Figure 3b).

We use τ–ℓ diagrams to illustrate the concept of
“path strategy” developed by Julien Aubert and col-
leagues (Figure 7), and we propose an interesting al-
ternative to their original path.
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hence the need for some conversion. This appendix
lists the different types of energy spectra that are usu-
ally obtained from observations, numerical simula-
tions and experiments, and derives recipes for con-
verting them into τ–ℓ language.

A.1. Choosing a conversion rule

We consider different expressions of total energy per
unit mass U :

U =
∫

E(k)dk or U =∑
ki

EB (ki ) or

U (r ) = 1

ρ

∑
n

Lb(n,r ). (A41)

E(k) is the classical spectral energy density intro-
duced by Kolmogorov [1941]. EB (ki ) is the discrete
equivalent of E(k) for flow “in a box” [Lesieur, 2008].
Lb(n,r ) is the spherical harmonic degree n compo-
nent at radius r of Lowes–Mauersberger spectrum
widely used in geomagnetism [Lowes, 1966]. Note
that we denote n the spherical harmonic degree, of-
ten denoted l or ℓ, in order to avoid confusion with
our length-scale ℓ.

A flow with spectral energy density E(k) ∝ k−5/3

yields the same k-exponent for its discrete energy
spectrum EB [Lesieur, 2008, Stepanov et al., 2014],
and a n−5/3 Lowes–Mauersberger spectrum. How-
ever, pre-factors may differ. More importantly, the
conversion of energy spectra into τ–ℓ equivalents
is questionable. Indeed, no exact conversion be-
tween spectral energy density and eddy velocity can
be drawn, as thoroughly discussed by Davidson and
Pearson [2005].

In Kolmogorov [1941]’s universal turbulence, an
eddy turnover time is classically derived as:

τu(ℓ) ≃ ℓ3/2[E(k)]−1/2 with ℓ≃ 1/k, (A42)

where ℓ is the “size” of the eddy. A similar result is ob-
tained using velocity increments S2(ℓ) =< [u(x +ℓ)−
u(x)]2 >= C2(ϵℓ)2/3. This approach is appealing for
Kolmogorov-type self-similar inertial range where no
length-unit other than ℓ should appear, and where
large eddies are more energetic than small eddies.
This conversion rule was used in Nataf and Schaef-
fer [2015].

In our object-oriented approach, the integral
length scale Ro plays a role, and when translating
numerical simulation energy spectra in τ–ℓ form,
we were thus tempted to simply define τu(ℓ) as

ℓ(n) [Su(n)]−1/2 where Su(n) is the degree n compo-
nent of the spherical harmonic spectrum of u2, and
ℓ(n) is given by:

ℓ(n) ≃ 1

2

πRo

n +1/2
. (A43)

It turns out that this choice is not consistent with
our τ–ℓ representation, in which the n−5 spectrum
of a system in Rhines’ equilibrium at all scales should
translate into τu(ℓ) ∝ ℓ−1 and plot along the Rossby
line.

We thus use conversion rules similar to that of
Equation (A42), such as:

τu(ℓ(n)) ≃ ℓ(n)[n Su(n)]−1/2 with ℓ(n) ≃ 1

2

πRo

n +1/2
.

(A44)

A.2. Application to various relevant spectra

We now detail the τ–ℓ conversion of spectra com-
monly obtained from observations, numerical exper-
iments and laboratory experiments.

A.2.1. Lowes–Mauersberger spectrum

In geomagnetism, the variation of magnetic en-
ergy with length-scale is usually measured by its
Lowes–Mauersberger spectrum [Lowes, 1966]. This
spectrum is expressed in terms of Gauss coefficients
g m

n and hm
n of scalar magnetic potential V , which de-

fines the internal magnetic field at any radius above
the core-mantle boundary when the mantle is con-
sidered as an electrical insulator.

Potential V (r,θ,ϕ) is then solution of Laplace
equation and can be expressed in terms of spherical
harmonics as:

V (r,θ,ϕ) = Ro

∞∑
n=1

n∑
m=0

(
Ro

r

)n+1

P m
n (cosθ)

× (g m
n cosmϕ+hm

n sinmϕ), (A45)

where P m
n are the Schmidt semi-normalized associ-

ated Legendre functions of degree n and order m.
Following Langlais et al. [2014], the Lowes–

Mauersberger spectrum at any r > Ro is then given
by the suite of Lb(n) defined by:

Lb(n,r ) = (n +1)
n∑

m=0
((g m

n )2 + (hm
n )2)

(
Ro

r

)2n+4

.

(A46)
The total magnetic energy per unit mass at radius r is
obtained as:

Um(r ) ≡ B 2(r )

2ρµ
= 1

ρ

∞∑
n=1

Lb(n,r ). (A47)
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Spherical harmonic degree n is related to our ℓ

length-scale by:

ℓ(n) ≃ 1

2

πRo

n +1/2
. (A48)

We deduce from Equations (A47) and (A48) that the
magnetic field b(ℓ,r ) at length-scale ℓ and radius r is
given by:

b(ℓ(n),r ) ≃
√

2µLb(n,r ). (A49)

We finally obtain τb(ℓ) from:

τb(ℓ(n)) ≃ ℓ(n)√
2nLb(n)/ρ

with ℓ(n) = 1

2

πRo

n +1/2
.

(A50)
A flat Lowes–Mauersberger spectrum (constant
Lb(n)), such as observed for the Earth’s magnetic
field at the core-mantle boundary, thus translates
into τb(ℓ) ∝ ℓ3/2.

A.2.2. Degree n-spectra from numerical simulations

Numerical simulations of planetary dynamos are
most often performed using a pseudo-spectral ex-
pansion in spherical harmonics Y m

n (θ,ϕ) of degree n
and order m. Degree-n or order-m spectra are thus
readily obtained for both velocity, magnetic and co-
density fields. These spectra are usually for u2, b2 and
C 2 in dimensionless units, such that the sum over all
n and m yields 2/ρ times the energy per unit mass
of that dimensionless field. Given length-scale L and
time-scale T chosen in the simulation, u and b spec-
tra should be multiplied by L2/T2 (assuming that b is
expressed in Alfvén wave velocity units).

Given these precisions, the procedure is similar to
that exposed in Appendix A.2.1. ℓ(n) is still given by:

ℓ(n) = 1

2

πRo

n +1/2
. (A51)

One should keep in mind that for a given degree n,
the corresponding length-scale varies linearly with
radius. This is ignored in our approach. If Sx (n)
is the n-element of the dimensionless x2 spectrum,
then the corresponding τx (ℓ) lines for x = u, b and ρ
are given by:

τu(ℓ(n)) ≃ T

L

ℓ(n)√
nSu(n)

, (A52)

τb(ℓ(n)) ≃ T

L

ℓ(n)√
nSb(n)

, (A53)

τρ(ℓ(n)) ≃
√

ℓ(n)

g
√

nSρ(n)
, (A54)

where gravity g (in dimensional units) is obtained
from the input Rayleigh number.

In the example of Figure 3a from Guervilly et al.
[2019], the simulated acceleration of gravity g at the
top boundary is obtained from:

g = RaRo κν

R4
o

, (A55)

with Ra = 2.5×1010.
In the example of Figure 4a from Schaeffer et al.

[2017], g is obtained from:

g = Ra∗Ro κν

(Ro −Ri )4 , (A56)

with Ra∗ = Ra/βRo = 2.4× 1013, where β is the im-
posed codensity gradient at the top boundary. We
then obtain the τρ(ℓ) line by applying Equation (A54)
to the codensity spectrum multiplied by Pr2.

A.2.3. Order m-spectra from numerical simulations

Quasi-geostrophic vortices are better character-
ized by their order-m spectra Sx (m) than by their
degree-n spectra, in particular in 2D QG simulations.
Thus Guervilly et al. [2019] display m-spectra of their
3D and QG convection simulation results. Transla-
tion into τ–ℓ is obtained as in Appendix A.2.2, replac-
ing Sx (n) by Sx (m):

τu(ℓ(m)) ≃ T

L

ℓ(m)√
mSu(m)

, (A57)

τb(ℓ(m)) ≃ T

L

ℓ(m)√
mSb(m)

, (A58)

τρ(ℓ(m)) ≃
√

ℓ(m)

g
√

mSρ(m)
, (A59)

with:

ℓ(m) = 1

2

πRo

m +1/2
. (A60)

For the simulation presented in Figure 3a, Sx (m)
and Sx (n) spectra are very similar, apart for even-
odd oscillations in the n-spectra due to equatorial
symmetry.

A.2.4. Frequency spectrum

In laboratory experiments, turbulent spectra are
more easily obtained from signal x(r, t ) measured in
the time-domain (t = 0 to T ) at a given position r.
Power spectral density (PSD) is then computed from
its Fourier transform x̂T (r, f ) as:

Ẽ(r, f ) = lim
T→∞

1

T
|x̂T (r, f )|2. (A61)
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When a mean flow U(r) is present, and when tur-
bulence is weak enough, a time record of velocity re-
flects the advection of the spatial variation of veloc-
ity [e.g., Frisch, 1995]. Extensions to intense turbu-
lence have been developed [Pinton and Labbé, 1994].
Taylor’s hypothesis [Taylor, 1938] then permits to ob-
tain a kinetic energy density wavenumber spectrum
E(r,k) from the velocity frequency power spectrum
Ẽ(r, f ):

E(r,k( f )) = U

2π
Ẽ(r, f ) with k( f ) = 2π f

U
, (A62)

where U = ∥U(r)∥. Strictly speaking, this is a k//-
spectrum, valid for wavenumber k parallel to mean
velocity vector U(r). It is the same as a k-spectrum
for isotropic turbulence. The τ–ℓ translation is then
obtained from Equation (A42).

Note that Taylor’s hypothesis cannot be applied to
magnetic spectra unless magnetic diffusion is small
enough for the frozen flux approximation to apply.

Appendix B. τ–ℓ diagram for convection onset

Although τ–ℓ regime diagrams are built to span a
large range of length- and time-scales, they pro-
vide an interesting insight on what controls single
scales appearing at the onset of convection. Here we
compare what would be the convection threshold in
Earth’s core, depending on whether it is rotating or
not. We display the results in Figure 8, using proper-
ties of the Earth’s core listed in Table 3. We extended
the figure to very long τ-values in order to include the
intersection of the viscous line and the right y-axis.

In the absence of rotation, the threshold of con-
vection is governed by a balance between buoyancy
and the combined action of momentum and ther-
mal diffusions. It takes place at the largest length-
scale ℓ = Ro (or at “scale height” H = CP /αg if it
is smaller than Ro), and for Ra(Ro) ∼ 1 (note that
the critical value Rac is in fact much larger than 1
due to several powers of 2π, which we dropped for
simplicity). Expressing ℓ-scale Rayleigh number as
Ra(ℓ) = τκ(ℓ)τν(ℓ)/τ2

ρ(ℓ) as in Table 2, we obtain crit-
ical τρ at the convection onset: T c

ρ =p
τκ(Ro)τν(Ro).

This value is plotted in Figure 8 as an orange disk on
the right y-axis, at a time half-way between τκ(Ro)
and τν(Ro).

Things get very different when the system is
rapidly rotating. Proudman–Taylor constraint in-
hibits convective flows, and viscosity is needed to

Figure 8. τ–ℓ diagram illustrating convection
onset in the Erth’s core in the absence of a mag-
netic field. In the absence of rotation, convec-
tion sets in with a cell size comparable with Ro .
Orange disk marks the value of τρ at convection
onset. It is half-way between τκ(Ro) and τν(Ro),
where Ra(Ro) ∼ 1. Rotation controls the length-
scale at which convection sets in. We compare
a Pr < 1 case with a Pr > 1 case. Black down-
triangle marks column radius ℓc and period
τc of the quasi-geostrophic vortices that form
at convection onset when considering viscosity
and thermal diffusivity (Pr < 1). Orange down-
triangle at ℓ = Ro indicates the value of τρ at
onset. Up-triangles display the same quantities
when considering viscosity and compositional
diffusivity χ (Pr > 1). Dotted lines help reading
their graphical construction.

break this geostrophic constraint [Chandrasekhar,
1961]. Convection marginal stability in rapidly rotat-
ing spheres has a long history [Chandrasekhar, 1961,
Roberts, 1968, Busse, 1970, Jones et al., 2000, Zhang
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et al., 2007]. Convective structures are found to be
quasi-geostrophic at onset, forming columnar vor-
tices with a width small enough to enable viscosity
in the bulk to alleviate Proudman–Taylor constraint,
yielding the famous Ek1/3 law. These structures can
also be viewed as thermal Rossby waves.

It is interesting to examine the graphical τ–ℓ rep-
resentation of this situation. We follow the local sta-
bility analysis of Busse [1970]. Omitting numerical
prefactors, his Equations (4.11)–(4.13) yield:

ℓc ≃ Ro(Pr−1 +1)1/3Ek1/3 (B63)

τc ≃ tΩPr1/3(1+Pr)2/3Ek−1/3 (B64)

T c
ρ ≃ tΩ(Pr−1 +1)2/3Pr1/2Ek−1/3, (B65)

where ℓc is column radius, τc time period, T c
ρ free-

fall time (for ℓ = Ro) at onset, and Pr = ν/D the
Prandtl number, where diffusivity D is either thermal
diffusivity κ or compositional diffusivity χ. Note that
Ek is here the classical large-scale Ekman number
Ek(Ro).

Figure 8 translates these results graphically. We
compare cases with Pr < 1 and Pr > 1, by selecting
diffusivity D = κ or D = χ. At convection onset, col-
umn width is at the intersection of line τRossby and
either line τν or line τD , depending on which it en-
counters first. Thermal (or compositional) diffusivity
governs period since τc ≃ τD (ℓc ) in both cases. We
also observe that T c

ρ =
√
τν(ℓc )τD (ℓc ). Graphically,

this places T c
ρ along the right y-axis (ℓ= Ro) at a time

half-way between τν(ℓc ) and τD (ℓc ) on our log–log
plots. Note that onset parameters from global stabil-
ity analysis [Jones et al., 2000, Dormy et al., 2004] dif-
fer substantially from those of the local stability anal-
ysis of Busse [1970] for Pr < 1.
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