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Abstract. Interactions between fluids and deformation are widespread in the brittle crust. As exper-
imentally shown, a high pore fluid pressure py can fracture intact rocks or reactivate pre-existing
fractures. The preference of reactivation over the formation of a new fracture depends on the ori-
entation of the pre-existing fracture with respect to the stress axes and on py. In nature, the pre-
dominant reactivation of misoriented pre-existing faults rather than the formation of new faults with
more favorable orientations suggests that pressurized fluids are present in the brittle crust. There is
a large body of evidence indicating that supra-hydrostatic p contributes to the reactivation of low-
angle thrust faults or normal faults. Conversely, supra-hydrostatic p s values are less common along
vertical or steeply dipping plate boundary transform faults or intra-continental strike-slip faults. If
these faults are severely misoriented with respect to the ambient stress field, their reactivation may
not be due to supra-hydrostatic p¢ but to other mechanisms such as shear-enhanced compaction
or thermal pressurization. Supra-hydrostatic p s also plays a role in the nucleation or propagation of
seismic ruptures in the continental or oceanic crust, and in subducting slabs in convergent margins,
as reported for aftershocks, swarms, slow earthquakes, and to a lesser extent for major earthquakes.
Lastly, increase or decrease of p¢ in depth due to human activities such as hydrocarbon extraction,
dam impoundment, gas storage or geothermal energy production result in many cases in the incep-
tion or enhancement of seismic activiy, adding clues in favor of a relationship between fluids and
earthquakes.

Keywords. Fluid, Fault, Pore fluid pressure, Earthquake, Slow earthquake, Seismic swarm, Crack-seal
vein.
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1. Introduction among many other phenomena. Fluids are also im-
portant with regard to deformation, especially brittle

Whatever their nature, chemical composition or  deformation. In the upper brittle crust, fluids can

physical state, fluids play key roles in the evolution  circulate in deforming zones, namely fracture zones

of the Earth’s lithosphere, particularly regarding sed-  or fault zones, and can chemically or mechanically

iment diagenesis, volcanic activity, hydrothermal interact with host rocks. Such interactions are also

alteration, metamorphism, ore deposit formation,  conceivable in subduction zones, where the upper
part of the subducting plate keeps a brittle behavior
down to hundreds of kms of depth.
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The role that fluids exert on rock deformation is of
paramount importance for human societies. Indeed,
fluid extraction (e.g., hydrocarbon industry) or fluid
injection (geothermal energy, waste water disposal,
gas storage) trigger or enhance seismic activities in
otherwise aseismic or moderately active regions.

This review aims at bridging the gap between the
mechanical interactions between fluids and rocks on
one hand and the structural analysis of deformed
rocks from the scale of the hand sample to that of the
deforming plate boundaries. For space reasons, the
chemical effects of fluids, although of considerable
importance, will not be addressed here.

2. The mechanical interaction between fluids
and rocks

2.1. The development of abnormally high pore
fluid pressures in the upper crust

Production of fluid in depth, for instance by mag-
matic activity or by metamorphic or metasomatic re-
actions, can result in an influx of fluids. If there
is a permeability barrier that prevents or hinders
fluid escape, then the pore fluid pressure p¢ will in-
crease. This increase can also be generated by pore
volume reduction in low-permeability rocks. For in-
stance, elastic crack relaxation following an earth-
quake (seismic pumping, see below Section 2.6) or
inelastic pore compaction controlled by the applied
shear stress (shear-enhanced compaction, see be-
low Section 2.7) are two important mechanisms re-
sponsible for pore volume decrease. Beside such
earthquake-related mechanisms, pore compaction
can also be achieved during diagenesis [Walder and
Nur, 1984, Wang et al., 2022]. As attested by measure-
ments in deep boreholes, supra-hydrostatic py val-
ues actually develop below impermeable barriers or
seals, and can reach the value of the lithostatic stress
or even exceed it [Yerkes et al., 1985, Powley, 1990,
Neuzil, 1995, Zencher et al., 2006].

2.2. Intact rock fracturing, stress corrosion,
hydrofracturing

Classical rupture criteria for intact rocks in the upper
crust are inspired by experimental rock mechanics
and state that, as long as the stress tensor (whose
components are 01, 02, and o3, with the convention

01 > 03 > 03) acting on the rock does not satisfy any
criterion, no fracture will form. To the contrary, once
the stress tensor satisfies the criterion, microscopic
fractures will propagate through the rock, eventually
leading to the formation of a macroscopic fracture or
fault.

Two rupture criteria are commonly used in the
analysis of intact rock failure. The simplest is the
linear Mohr—-Coulomb criterion, which postules that
the propagation of macroscopic fractures happens
when

T=ujo,+C

with 7 being the tangential stress acting along the
fracture, o, the normal stress acting on the fracture,
u; and C being respectively the intrinsic coefficient of
friction and the intrinsic cohesion, both depending
on rock type. The more elaborated parabolic Griffith
failure criterion can be expressed as

72 +4To, =477

where T is the tensile strength of the intact rock,
counted positive. Both Mohr—Coulomb and Griffith
criteria can be combined in a composite criterion for
which the parabolic criterion will apply to negative
normal stress values and the linear criterion will ap-
ply for the positive normal stress values [Sibson and
Scott, 1998; Figure 1].

In the absence of pore fluid in the rock, the con-
vergence between the tensor and the criterion can
be achieved only by increasing the differential (devi-
atoric) stress op = 01 — 013, that is, either by decreas-
ing 03, by increasing o1, or by acting on both o3 and
o1. If a fluid is present inside the rock (so-called pore
fluid), then two processes can lead to the formation
of macroscopic fractures. In the first process, called
stress corrosion, the fluid will chemically react at the
atomic scale with the rock at the tip of a pre-existing
loaded crack, so that the critical stress intensity factor
at this location gets lower and lower. When the stress
intensity factor at the tip of the crack reaches the frac-
ture toughness of the altered rock, the fracture will
propagate. This phenomenon is called sub-critical
crack growth [Anderson and Grew, 1977, Atkinson,
1984, Brantut et al., 2013]. The second process re-
quires that the pore fluid is elevated at a pressure py.
If so, the components o; of the tensor will then be
changed into effective components o; = 0; — pf, and
the rupture criterion is assessed using effective stress.
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Figure 1. The role of pore fluid pressure in
fracturing intact rocks as representated in
the Mohr space. The intact rock rupture
criterion is composite, that is, it consists of
the Griffith criterion for the negative normal
stresses, and of the linear Mohr—Coulomb
criterion for the positive normal stresses. o’,:
effective normal stress acting on the surface
(0}, = 0n—py). (@) A pore fluid pressure ps;
decreases the normal stresses and shifts the
Mohr circle until it tangents the failure en-
velope. The orientation of the newly formed
fracture with respect to the stress axes is op-
timal. (b) Due to a lower differential stress,
a pore fluid pressure py, displaces the Mohr
circle until it tangents the failure envelope
in the parabolic part, resulting in the forma-
tion of hybrid shear-extensional fractures.

Figure 1. (cont.) (c) Due to a still lower differ-
ential stress, a pore fluid pressure p r3 displaces
the Mohr circle until it tangents the failure en-
velope at 7 = 0, resulting in the formation of
pure dilatant fractures.

If py is increased enough, the effective stress ten-
sor will satisfy the rupture criteron (Figures 1 and 2).
Note that, unlike the o; components of the tensor,
op is not modified by any variation of py. A failure
mode diagram [Cox, 2010] allows to estimate op and
pr required for rock failure (Figure 3). In this dia-
gram, py is expressed by the pore fluid factor (also
called pore fluid pressure ratio) A = pr/pgz, where
pgzisthe lithostatic stress, p the mean density of the
rock column from the surface to depth z, and g the
gravity acceleration. The values of A are between 0.3—
0.4 (hydrostatic p¢) and 1 (lithostatic p¢). In a Mohr—
Coulomb diagram, if the tangent point between the
Mohr circle and the envelope is located in positive
o, values, the rupture is said to be of shear failure
type. This is illustrated in the failure mode diagram
by the blue line on the failure envelope (Figures 1a
and 3). If 0'; = —T, T being the tensile strength of the
intact rock, counted positive, the rupture is purely ex-
tensional (dilatant), and is illustrated in the failure
mode diagram by the red line on the failure enve-
lope (Figures 1c and 3). It is important to note that
the use of extension here does not reflect an exten-
sional tectonic regime (for which oy = o}, oy be-
ing the principal vertical stress component, in an An-
dersonian framework). Intermediate locations corre-
spond to hybrid extensional-shear failures illustrated
in the failure mode diagram by the green line on the
failure envelope (Figures 1b and 3).

Dilatant breccias form when the three effective
principal stresses are negative (0; < 05 < o] < 0),
while pure dilatant breccias, that is, breccias with-
out any preferred orientation of dilatancy (Figure 4),
form when the stress tensor is hydrostatic, the com-
mon stress magnitude being the opposite of the ten-
sile strength of the rock: 67 = 05 = 05 = —T [hydro-
static stress state; Cosgrove, 1995].

Mineralized  extensional joints  (tension
gashes) are typical and widespread geological struc-
tures resulting from failure of intact rocks by pure
extension (Figure 1c). Pure extension is achieved by
the condition o5 = —T, that is, py = 03 + T [Hubbert
and Willis, 1957, Secor, 1965, Hancock, 1985]. The
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Figure 2. Competition between reactivation of
pre-existing fractures and formation of a new
fracture [after Handin, 1969, Sibson, 1985]. The
failure envelope for intact rock follows a com-
posite Griffith-Mohr—Coulomb criterion. The
reactivation envelope is linear, and its cohesion is
neglected. ¢',: effective normal stress acting on
the surface (0, = 0, — py). (a) The pre-existing
fracture (black dot on the circle) is favorably
oriented with respect to the o stress axis. The
pore fluid pressure py is large enough to allow
its reactivation. (b) The pre-existing fracture is
unfavorably oriented with respect to the o stress
axis, but the misorientation is moderate. The pore
fluid pressure py», larger than py;, is necessary
to allow its reactivation. (c) The pre-existing frac-
ture is unfavorably oriented with respect to the
0 stress axis, and the misorientation is severe.

Figure 2. (cont.) Due to an increasing pore fluid
pressure, the Mohr circle shifts towards smaller
normal stresses. It eventually tangents the intact
rock failure envelope (grey dot) before the pre-
existing fracture (black dot) can be reactivated.
In this case, a new fracture (grey dot) with a favor-
able orientation is formed for a pore fluid pres-
sure p 3.
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Figure 3. Failure mode diagram for reverse and
normal faulting based on the Mohr—Coulomb
theory. Red, green and blue lines corre-
spond respectively to pure extensional (dila-
tant) veins, hybrid veins and shear fractures.
Oblique black lines correspond to the reactiva-
tion conditions for a favorably oriented fracture
or a severely misoriented fracture. The diagram
is drawn for a depth z of 7 km, a rock density p
of 2.7, a friction coefficient p of 0.75 and a ten-
sile strength T of 5 MPa. See text for explana-
tion of points A, B and C.

regular and symmetrical layering of the minerals fill-
ing extension joints suggests a cyclical process with
incremental opening stages alternating through time
with fluid ingression and crystallization [Ramsay,
1980]. This so-called crack-seal mechanism, remi-
niscent of the cyclical nature of earthquakes, is often
considered as a geological expression of the seismic
cycle [see below and Raimbourg et al., 2021, 2022].
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Figure 5. Calcite-filled mode I and hybrid min-
eralized fractures associated with conjugate
faults (arrows). The fractures are perpendicu-
lar to the steeply dipping bedding surface. Cre-
taceous limestones, Pyrenean foreland, Cor-
bieres, France (height of photograph: 2 m).

Figure 4. Purely dilatant breccias (hydraulic
breccias) suggesting a hydrostatic stress state
(] = 0, =03 = -T). (A) Saw-cut hand
sample showing dark green serpentinite frag-
ments cemented by white calcite along a
paleo-detachment fault, Schistes Lustrés Zone,
Queyras serpentinite, French Alps. Width of
photograph: 25 cm. (B) River bed exposure
of a dilatant breccia composed of low-porosity
sandstone fragments (grey color) cemented by
quartz (white color) along a vertical fault (white
arrows), Oligocene Hyuga Group, Shimanto ac-
cretionary prism, Japan. (C) Saw-cut sandstone
hand sample from nearby (B) exposure. Width
of photograph: 15 cm.

Figure 6. Mode I quartz-filled fracture in low-
porosity Oligocene sandstones, Shimanto ac-
cretionary prism, Japan. The quartz fibers show
an S shape, suggesting a component of dis-
placement parallel to the fracture. Thickness of
the vein: 15 mm.

Shear fractures result from a combination of ex- ure 5), where the long axis of the mineral fibers
tension and shear (hybrid failure). They classically  indicates the combination of extension and shear
form conjugate systems of en échelon fractures (Fig- (Figure 6).
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2.3. Fracture reactivation vs. fracture
neoformation

Unlike in laboratory experiments, rock masses in the
brittle crust are fractured. Therefore, it is not the
intact rock strength that will dictate the stability of
rock masses, but rather the strength of discontinuity
(fault or fracture) surfaces [Byerlee, 1978]. Intact rock
rupture criteria are replaced by more realistic reacti-
vation criteria. The simplest and most widely used
criterion is the Mohr-Coulomb reactivation criterion
[Handin, 1969], quite similar to the Mohr-Coulomb
criterion for the intact rock, and which can be writ-
ten as
T=po,+C.

The criterion postulates that the stability of fractured
rock masses in the brittle crust is controlled by two
basic parameters that can act in concert: (1) the co-
efficient of friction u of the rock in contact or of the
material filling the space between the two slipping
surface walls, if any (e.g., fault gouge); (2) the normal
stress component o, acting perpendicularly to the
discontinuity surface. The cohesion C is usually as-
sumed to be equal to zero, given its negligible value
for most rocks. Handin [1969] showed experimen-
tally that if a pre-existing fracture is unfavorably ori-
ented with respect to the principal stress axes, a new
fracture with a more favorable orientation will form,
leaving the pre-existing one unreactivated. This can
be illustrated by a construction in the Mohr diagram
(Figure 2c) where the Mohr circle tangents the intact
rock failure envelope before the point corresponding
to the pre-existing fracture reaches the reactivation
envelope.

2.4. The reactivation of moderately to severely
misoriented fault surfaces

In the brittle crust, the experimentally demonstrated
preference of fracture neoformation over preexisting
misoriented fracture reactivation does not seems to
be a general rule. Indeed, in many instances, mod-
erately to severely misoriented fault surfaces are re-
activated, while no propagation of new surfaces is
observed. Several mechanisms are proposed to solve
this paradox, among which the most frequently in-
voked are as follows.

(1) The fault zone consists of a continuous layer
of weak rocks, for instance rocks whose rheology can

be regarded as plastic, visco-elastic, or elasto-plastic.
This is the case with clay-rich or evaporite-rich strata
(so-called décollement layers). Such a weak and con-
tinuous décollement layer will allow the displace-
ment of allochton units over significant distances
whatever the orientation of the fault zone with re-
spect to the stress axes is favorable or not [Davis and
Engelder, 1985, Weijermars et al., 1993, Costa and
Vendeville, 2002, Vendeville et al., 2017].

(2) The fault surface is coated by low-friction
(4 < 0.2) material such as low-friction clay (e.g.,
montmorillonite) or talc [Morrow et al., 1992, 2017,
Moore and Lockner, 2011, Boutareaud et al., 2012,
Chen et al.,, 2017]. Leaving aside the stress corro-
sion process mentioned above, which concerns the
nucleation of a mesoscopic fracture rather than re-
activation of a macroscopic fracture or fault, fluids
can weaken a fault by chemically reacting with the
rocks or minerals along the damage zones or core
zones of the fault. The chemically produced minerals
can be frictionally weaker (so-called reaction soften-
ing). Examples of chemical weakening of fault rocks
are described by White and Knipe [1978], Evans and
Chester [1995], Wintsch et al. [1995], Gueydan et al.
[2003], Collettini and Holdsworth [2004], Matsuda
et al. [2004], Jefferies et al. [2006], Moore and Rymer
[2007], Collettini et al. [2009b]. As indicated above,
this reaction-softening effect will not be developed
here.

(3) Along long-lived mature faults, damaged rocks
inside the fault zone get their mechanical constants,
such as their Young moduli or Poisson ratios, modi-
fied [Faulkner et al., 2006]. These modifications lead
to a rotation of the stress axes in the vicinity of the
fault [Healy, 2008]. The angle between o, and the
fault surface can thus be decreased and a very unfa-
vorably oriented fault can become favorably oriented
for reactivation. The studies of Provost and Houston
[2001], Hardebeck and Michael [2004], Famin et al.
[2014] suggest that vertical or steeply dipping strike-
slip faults such as the San Andreas fault in California
or the Median Tectonic Line in Japan can be reacti-
vated following a rotation of the horizontal o axis to
a more favorable value.

(4) The last mechanism, which is the main pur-
pose of this paper, calls for the development of ab-
normally high py, which will decrease the normal
stress 0, to the effective o), [Hubbert and Rubey,
1959, Chapple, 1978]. The analysis of Sibson [1985],
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which considers only the role of abnormally high pg,
without taking into account the role of the three other
mechanisms, distinguishes three classes of fractures:
(1) surfaces favorably oriented with respect to the
stress axes, which can be reactivated with a hydro-
static py for given differential stresses (see oblique
dashed black lines and point A, Figure 3); (2) surfaces
moderately misoriented with respect to the stress axes
that will require large differential stresses or supra-
hydrostatic p¢ to be reactivated; (3) severely misori-
ented surfaces that will require, to be reactivated, p r
values larger than in cases (1) or (2), with o5 <0 (see
oblique black lines on Figure 3). The maximum dif-
ferential stress allowing reactivation of severely mis-
oriented surfaces is limited by the failure envelope. If
the differential stress gets too high, a new and more
favorably oriented shear surface or a vein will form
instead of reactivating the severely misoriented sur-
face (points B and C on Figure 3). In all cases, for
a given value of differential stress, the py value re-
quired to reactivate a severely misoriented surface is
higher than that necessary for reactivation of a favor-
ably oriented surface. The tectonic regime also has
an impact on the A values for reactivation and vein
formation. Indeed, reverse tectonic regimes gener-
ally require higher py than normal stress regimes do
(Figure 3).

2.5. The fault valve model

The fault-valve model, which is a consequence of the
stress analysis of Sibson [1985], is based on the ex-
istence, in faulted regions, of fault planes moderately
or severely misoriented with respect to the stress axes
at the time of the fault activity [Sibson et al., 1988, Sib-
son, 1989, 1990]. The model is based on the following
assumptions: (1) the coeflicient of friction on the pre-
existing (misoriented) fault is of “Byerlee” type, that
is, its value is between 0.6 and 0.85; (2) the cohesion
C of the surface is neglected; (3) the fluid does not
chemically react with the rock, that is, only the fluid
pressure p plays a role.

The typical fault-valve behavior of a fault or fault
system involves cyclical variations of pr. A cycle con-
sists of four stages: (1) py increases up to supra-
hydrostatic values below a hydraulic barrier, (2) rup-
ture of the fault plane following a Mohr—Coulomb
type criterion [Sibson, 1985], (3) fluid escape (up-
ward or sideward) following increase of the rock

permeability by fracturing and cataclasis associated
with fault and hydraulic barrier ruptures, (4) fracture
or pore sealing by mineral precipitation due to the
sudden decrease of pr down to hydrostatic values.
This last stage eventually results in a restauration of
the former seal, thus bringing back the faulted rock
mass to a state before stage (1), allowing a repetition
of the cycle. Following the initial discovery of this
mechanism in mesothermal gold-quartz deposits by
Sibson et al. [1988], this behavior was recognized in
ancient fault systems [Cox, 1995, Robert et al., 1995,
Hacker, 1997, Nguyen et al., 1998, Sibson and Scott,
1998, Faleiros et al., 2007]. The extensive damage to
the rocks adjacent to the faults suggests that reacti-
vation might have been seismogenic. The fault-valve
model is proposed to account for present-day seis-
mic reactivation of unfavourably oriented faults (see
Section 4).

2.6. The seismic pumping mechanism

Seismic pumping provides a mechanism of forma-
tion of zoned mineralized veins along faults in the
brittle crust by calling for fluid flow during earth-
quakes [Sibson et al., 1975, Kerrich et al., 1987]. The
mineral zonation is interpreted as the result of re-
peated arrivals of fluids, each arrival leaving an im-
print in the vein. In the pre-seismic stage, due to tec-
tonic loading along the fault, dilatant structures such
as tension cracks will create voids along and near the
fault, aspirating nearby fluids. In the post-seismic
stage, fluids will be expelled upwards or sidewards,
before the cycle starts again. In itself, the seismic
pumping mechanism does not increase directly the
py value, but contributes to it by injecting volumes of
fluids from remote areas towards active fault zones.
It can also be active during diagenesis in faulted sed-
imentary basins [Wood and Boles, 1991].

2.7. Shear stress-enhanced compaction

In most cases, the central part, or core, of a fault
zone is constituted by a weak material (clayey gouge,
poorly consolidated breccia and so on). When tec-
tonically loaded, a core material may undergo more
compaction than the stronger surrounding rocks
(damage zone, country rocks). If the core zone is
(i) saturated by fluids and (ii) sealed (i.e., the fluid



8 Olivier Fabbri et al.

cannot escape), then tectonic load-induced com-
paction will increase py [Byerlee, 1990, Blanpied
et al., 1992, Sleep and Blanpied, 1992]. The p ¢ in-
crease will then decrease the effective normal stress
o}, therefore allowing or favoring fault slip. Note that
this mechanism does not require any temperature
increase.

2.8. Thermal pressurization

Thermal pressurization, also called “dynamic” pres-
surization, concerns thin (a few millimeters to a few
centimeters) fault core zones which are the site of
coseismic slip along faults in the upper crust [Sib-
son, 1973, Lachenbruch, 1980, Mase and Smith, 1987,
Wibberley and Shimamoto, 2005]. The phenome-
non is based on a contrast between the thermal ex-
pansion of aqueous fluids trapped in the very-low-
permeability fault core rock (clayey gouge in most
cases) and the thermal expansion of the fault core
rock matrix itself. During co-seismic, slip, the fluid-
saturated rock will thermally expand due to shear
heating, but fluids will expand in larger proportions
than the pores. As long as the rock permeability re-
mains low (e.g., in the absence of fracturing), the fluid
cannot escape from the core zone and, following ex-
pansion, its pressure will increase drastically, result-
ing in a decrease of the normal stress acting on the
surface.

The recognition of thermal pressurization pro-
cesses during earthquakes or in the geological record
is a challenge and, in addition to observations of nat-
ural microstructures [Ujiie et al., 2007, 2010, Boul-
lier et al., 2009, Boullier, 2011], must rely on experi-
mental reproduction of seismic slip and on numeri-
cal modeling [Noda and Shimamoto, 2003, Segall and
Rice, 2006, Ujiie et al., 2011, Boutareaud et al., 2008,
Ferri et al.,, 2010, Kitajima et al., 2011, Viesca and
Garagash, 2015]. In addition to thermal pressuriza-
tion strictly speaking, frictional heating can also lead
to thermal decomposition of minerals such as phyl-
losilicates or carbonates (calcite, siderite), resulting
in the release of fluids (H,O,CO,) that can then be
pressurized [Brantut et al., 2008, 2010, Hirono et al.,
2008, Ferri et al., 2010, Jeanne et al., 2014]. Frictional
melting of the fault surface during co-seismic slip in
carbonate-rich rocks can also result in a release of
large amounts of CO; following volatile exsolution
from the melt [Famin et al., 2008]. In the thermal

decomposition or exsolution processes, the released
fluids are considered to be pressurized and can con-
sequently decrease the normal stress acting on the
faults. Some authors contend that so-called in-
jected cataclasites or injected gouges may result from
co-seismic thermal pressurization [Lin et al., 2013,
Lin, 2019].

3. Role of abnormally high p in crustal
tectonics

3.1. Role of abnormally high p¢ in thrust
tectonics

In areas dominated by thin-skinned tectonics, thrust
faults can accommodate significant (>10 km) hor-
izontal displacements. To overcome the mechani-
cal resistance of the allochtonous units to displace-
ment, two mechanisms among the ones described
above are frequently called for. The first mechanism
(the translation made possible by weak ductile dé-
collement layers) allows to account for the forma-
tion of several foreland thrust-and-fold belts such as
the French-Swiss Jura belt or the Iranian Zagros belt
[Jordan, 1992, Sherkati et al., 2006, Sommaruga et al.,
2017, Lacombe and Mouthereau, 2002].

The other mechanism, that is, the translation
of thrust sheets triggered or favored by supra-
hydrostatic py, is inferred or ascertained in vari-
ous tectonic settings. Table 1 provides examples of
studies that call for supra-hydrostatic py to account
for horizontal displacements along thrusts in col-
lision belts or foreland fold-and-thrust belts. The
supra-hydrostatic py lowers oy, thereby reducing
the frictional resistance to motion and allowing a
smooth displacement of the allochton units over
their relative autochthonous basement. Evidence for
supra-hydrostatic py either come from direct meth-
ods, namely py measurements in exploration bore-
holes, or from indirect methods, such as analyses of
geological structures (e.g., dilatant crack-seal veins or
implosion breccias) or modeling (critical Coulomb
wedge, Coulomb stress change). Fluid inclusions
preserved in mineralized veins can provide estimates
of p at the time of vein formation. As such, they are
a powerful and reliable method for p; estimates.

The role of supra-hydrostatic py build-up ap-
pears critical or ubiquitous in accretionary prisms,
whatever active or inactive [Moore and Vrolijk, 1992].
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Table 1. Examples of geological or geophysical evidence for displacement along low-angle reverse faults
triggered or favored by supra-hydrostatic pore fluid pressures py inside or near fault zones in collision
belts or foreland fold-and-thrust belts, with pore fluid ratio A estimates where available

Area Name of structure Evidence
Central Alps Glarus thrust Fracturing, veining, brecciation alternating with
ductile deformation (A > 1)1
Western Alps Helvetic Diablerets nappe Large amounts of connate and metamorphic waters
basal thrust expelled upward, as indicated by §'80, §'3C and 6D in
calcite or quartz veins, possibly overpressured by rapid
tectonic burial®®
Sub-Alpine frontal thrust zone py measurements in exploration boreholes!®!
(Chartreuse and Vercors) and
foreland (Valence basin)
Pyrenees Gavarnie thrust and splay Fluid inclusions in quartz veins indicate fluctuations of
faults Pr between lithostatic (~500 MPa) and hydrostatic
(~200 MPa)”; combination of shear reactivation and
extension vein opening (A = 0.77-0.89)®
Himalaya Himalayan Main Central Critical Coulomb wedge modeling suggests
Thrust A =0.8-0.9" Coulomb stress change modeling
suggests A = 0.3-0.911%
Apennines Apenninic basal thrust zone, Fluid inclusions in quartz veins indicate
Apenninic foreland near-lithostatic p at the time of the emplacement of
the Liguride nappes!!; calcite-cemented implosion
breccias filling dilational jogs (py > 0'3)!"?
Taiwan Taiwan fold-and-thrust belt py measurements in exploration boreholes
basal decollement fault, (A ~0.7)13 critical Coulomb wedge modeling!!4-115];
Chelungpu fault discrete hydraulic fractures!'®/
Western Coast Ranges and western py measurements in exploration boreholes!!"118!
California Great Valley

References: W Burkhard et al. [1992], ®'Badertscher and Burkhard [2000], ®'Badertscher et al. [2002],
I Hiirzeler and Abart [2008], mCrespo-Blanc et al. [1995], [®'Deville [2021], P"Henderson and McCaig
[1996], BlLacroix et al. [2013], *'Mugnier et al. [1994], 1% Cattin and Avouac [2000], "!Mullis [1988],
(12lVannucchi et al. [2010], '3'Suppe and Wittke [1977], '/ Davis et al. [1983], '%'Barr and Dahlen [1990],
181 Bgullier [2011], '7'Melchiorre et al. [1999], 18 Unruh et al. [1992].

Table 2 provides examples of various continental
margins or paleo-margins in which displacement
along past or present (first-order) décollement faults
or second-order faults (also referred to as splay
faults) branching on décollements was or is possible
due to supra-hydrostatic py. Similarly to what is
inferred along large-displacement thrusts, the supra-
hydrostatic py lowers o}, thereby reducing the fric-
tional resistance to motion and allowing a smooth

displacement of the overriding plate oceanwards, at
least in the shallowest parts of the plate interface, be-
fore pressure and temperature increases lead to de-
hydration and expulsion of fluids. Direct evidence for
supra-hydrostatic py along the basal décollements
of accretionary prisms come form p; measure-
ments in Deep-Sea Drilling Project (DSDP), Ocean
Drilling Program (ODP) or Integrated Ocean Drilling
Program (IODP) boreholes. Porosity measurements
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and various mechanical tests (e.g., consolidation
tests) on DSDP/ODP/IODP cores further testify for
under-compaction of sediments or rocks along the
décollements, accounted for by the assumption of
supra-hydrostatic to nearly lithostatic ps. The pres-
ence of hydrofractures along as well as above or be-
low décollements is also direct evidence [Table 2; see
also Behrmann, 1991]. Indirect evidence come from
seismic reflection imaging, with characteristic nega-
tive polarity reflections along décollement surfaces.
Lastly, the weakening role of supra-hydrostatically
pressurized fluids along the basal décollement of ac-
cretionary prisms can be reproduced by analog mod-
elling [Cobbold et al., 2001, Mourgues and Cobbold,
2003].

3.2. Role of abnormally high py in extensional
tectonics

Large displacement along low-angle normal faults,
also referred to as detachments, is mechanically
paradoxical. The different mechanisms mentioned
above to account for the displacement along mis-
oriented fault surfaces apply to low-angle normal
faults [Reynolds and Lister, 1987, Yin, 1989, Axen,
1992, Westaway, 1999, Abers, 2009, Collettini, 2011].
Table 3 provides examples of studies which suggest
or demonstrate that reactivation of low-angle nor-
mal faults was possible because of supra-hydrostatic
to lithostatic py values. Regarding inactive detach-
ments, structural evidence for high pf come from
textures of precipitated minerals in breccia cements
(so-called cockade structures) or in flat-lying crack-
seal dilatant veins. Fluid inclusions in the precipi-
tated minerals also provide indications. Lastly, me-
chanical modeling also accounts for overpressured-
fluid-aided displacements along low-angle faults.
Regarding active detachments, evidence consist of
vein or breccia cement texture analyses (including
fluid inclusions), mechanical modeling, p  measure-
ments in boreholes, geophysical investigations (body
wave velocity anomalies).

The other mechanisms listed above may also fa-
cilitate large displacement along low-angle normal
faults. In particular, analog modeling suggests that
extension can take place above continuous low-
strength layers such as evaporites [Vendeville and
Jackson, 1992a,b]. Regarding the reorientation of
the stress axes in the vicinity of the fault, Lecomte

et al. [2011] propose to explain reactivation of mis-
oriented low-angle normal faults by calling for an
elasto-plastic frictional gouge instead of the classical
frictional fault gouge. Plastic strain can initiate the
displacement despite the misorientation. Following
the initiation, stress axes near the fault zone rotate to
a more favorable orientation with respect to the fault
surface, allowing further displacement.

3.3. Role of abnormally high p in strike-slip
tectonics

The activity of steeply dipping to vertical plate-
boundary transform or intra-plate strike-slip faults
moderately to severely misoriented with respect
to the principal stress axes constitutes a challenge
since the discovery of nearlyperpendicular normal
stresses acting along the San Andreas fault [Mount
and Suppe, 1987, Zoback et al., 1987]. As such, the
San Andreas faults appears as a weak fault, and ex-
planations for it have been extensively looked for.
The models and mechanical analyses of Byerlee
[1990, 1993] and Rice [1992] attempt to show that
supra-hydrostatic py could account for the weak-
ness of the fault. Experimental measurement of clay
permeabilities [e.g., Faulkner and Rutter, 2001] pro-
vide a mechanism for the maintenance of excess py
in strike-slip fault zones. However, drilling across
the fault zone during the SAFOD (San Andreas Fault
Observatory at Depth) program at ~3 km depth did
not reveal any supra-hydrostatic py, prompting re-
searchers to propose other mechanisms that could
explain the weakness: fault rocks with extremely
low friction coefficients such as talc [Moore and
Rymer, 2007] or clays [Schleicher et al., 2009a,b, Car-
penter et al., 2011, Holdsworth et al., 2011], stress
axes reorientations to more favorable attitudes at
short distances from the fault [Provost and Hous-
ton, 2001, Hardebeck and Michael, 2004, Healy,
2008]. It seems clear that pressurized fluids do not
weaken the San Andreas fault in its upper part (be-
tween the surface and a ~3 km depth), except per-
haps for micro-earthquake activity [Mittempergher
et al.,, 2011]. Hydro-mechanical modeling [e.g., Ful-
ton and Saffer, 2009, Beeler et al., 2013] suggests
that supra-hydrostatic p¢ could play a role in the
weakening at depths larger than the SAFOD drilling.
Conversely, hydro-mechanical modeling by Fulton
et al. [2009] suggest that supra-hydrostatic p r cannot
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Table 3. Examples of geological or geophysical evidence for displacement along low-angle normal faults
(detachment faults) triggered or favored by supra-hydrostatic pore fluid pressures p inside or near the

fault zone

Type of low-angle
normal fault

Name of structure, area

Evidence

Inactive intra-
continental

Active intra-
continental

Inactive
intra-oceanic
or intra-OCT

Active
intra-oceanic

Western US Basin and Range
(Southern Mountains MCC
deformed zones, Arizona;
Whipple detachment,
California; Siever Desert
detachment, Utah)

Central Alps (Brenner, Simplon
and Grimsel faults)

Gulf of Corinth LANE Greece

North Apennines LANFs,
including Alto Tiberina and
Tellaro detachments

Detachment surfaces exposed
in Alpine ophiolites

Mid-Atlantic ridge Atlantis
massif, mid-Atlantic ridge
13°-15° N
South Pacific
Woodlark-D’Entrecasteaux
ridge Moresby detachment

Flat-lying dilatant veins suggest pr > O'gl] ; fluid
inclusions in quartz veins suggest p ¢ = 120 MPa/?"13l;
critical Coulomb wedge analysis suggests ps ~ 0.6 olt

Fluid inclusions in veins suggest supra-hydrostatic

p}sl; mylonitic zone embrittlement suggests episodic

supra-hydrostatic p?]'m; textural characteristics of
cockade structures in a fault breccia and
mechano-chemical calculations allow to reconstruct
py fluctuations related to different stages of the
seismic cycle!®

Limit Analysis (maximum strength theorem analysis)

suggests pr = 0.57-0.77 UE?]

Limit Analysis (maximum strength thorem analysis)
suggests that py = 0.57-0.77 o pr~0.850,in
exploration boreholes'%; brittle tensile structures and
fluid inclusions in calcite veins suggest episodic
supra-hydrostatic p}l” ; Vp positive anomaly, Vp/ Vs

negative anomaly!'?!

Calcite-cemented breccias (ophicalcites)13114; gouge

veins injected in cataclasite suggest transient

supra-hydrostatic p}ls]

Fluid inclusions!'"[17!; hydraulic breccias!'®

Low Vp and high porosity values in the fault zone
suggest supra-hydrostatic p}lg]; dilatant crak-seal veins
suggest episodic near-lithostatic pr and
hydrofracturing!?®2!l; calcite veins parallel to foliation

suggest supra-lithostatic p?Z]

13

References: 'Reynolds and Lister [1987], !Smith et al. [1991], B/Selverstone et al. [2012], ¥ Yuan et al. [2018],
BlSelverstone et al. [1995], (! Axen et al. [1995], /) Axen et al. [2001], ®'Berger and Herwegh [2019], ®'Yuan et al.
[2020], L9 Collettini et al. [2008], Y Clementzi et al. [2015], 12 Moretti et al. [2009], 13 Friih-Green et al. [1990],
14 pjcazo et al. [2013], 1! Manatschal [1999], 18 Escartin et al. [2003], 17 Castelain et al. [2014], 18/ Picazo et al.

[2012], "9Floyd et al. [2001], Y Roller et al. [2001], ?UKopf et al. [2003], (> Famin and Nakashima [2005].
MCC: metamorphic core complex. OCT: ocean-continent transition.

o, principal vertical stress axis.

LANF: low-angle normal fault.
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be maintained along the San Andreas fault at shallow
(<3 km) depth, and that other mechanisms such as
shear-enhanced compaction or thermal pressuriza-
tion inside the fault zone have to be invoked.

Table 4 provides examples of transform or strike-
slip faults along which supra-hydrostatic py could
play or could have played a role in the past or present
fault activity. Direct evidence for abnormally high p
can be found in shallow boreholes drilled across the
New Zealand Alpine fault, but no data from depths
larger than a few hundred meters are available. In-
direct evidence consist either in rare hydraulic frac-
tures or in more frequently observed geophysical
(electrical conductivity or seismic velocity) anom-
alies. In this last case, even if the anomalies can
be interpreted as caused by the presence of fluids at
depth, they do not bring undisputable evidence for
pressurized fluids. The apparent scarcity of abnor-
mally high py ascertained along transform or strike-
slip fault zones may be due to the lack or scarcity of
efficient seals. Indeed, fault zones, especially their
damage zones if any, crossing the entire crust may
appear as conduits rather than barriers or seals.

3.4. Conclusions

A review of the literature dealing with the role of
abnormally high p along faults in the brittle crust
allows to draw the following key ideas.

(1) Undebatable evidence for supra-hydrostatic
ps come from pressure measurements in oil in-
dustry or scientific boreholes (DSDP, OPD, I0DP).
Near-horizontal dilatant veins found along low-angle
faults also constitute a strong evidence, especially
when fluid inclusions preserved in these veins indi-
cate supra-hydrostatic p at the time of fluid entrap-
ment. Geophysical anomalies, either electrical (con-
ductivities) or seismological (seismic velocities), are
interpreted as caused by abnormally high p ¢ at depth
along fault zones.

(2) Evidence, whatever direct or indirect, for
supra-hydrostatic py appear common along low-
angle normal faults (detachments) or reverse faults
(including décollements) (Tables 1-3). Fluids ap-
pear to be efficiently trapped beneath flat-lying or
gently dipping allochtons that can act as impervi-
ous or low-permeability lids. Conversely, conclusive
evidence for supra-hydrostatic py along transform
or strike-slip faults are scarcer than along low-angle

normal or reverse faults (Table 4), possibly because
such vertical or steeplydipping fault zones lack tight
and laterally continuous seals that could prevent
fluids from leaking upward to the surface.

(3) Along with fracturing and comminution linked
with displacement along faults, fluid circulation and
associated fluid-rock interactions quite often result
in alteration of minerals, resulting in weaker miner-
als such as clays, talc and other minerals whose fric-
tional properties are much weaker than primary min-
erals. This chemical effect of fluids is clearly a se-
rious competitor with the pressurization of fluids to
account for fault weakening.

(4) Mechanisms such as shear stress-enhanced
compaction, thermal pressurization, or stress reori-
entation near fault zones certainly play roles in the
reactivation of misoriented faults, but they are diffi-
cult to be recognized in the geological record.

4. Fluids and natural earthquakes

4.1. Intra-plate earthquakes, earthquake
sequences, background seismicity,
subduction earthquakes

Table 5 presents examples of studies that attempt
to relate major intra-continental earthquakes, earth-
quake sequences, background seismicity, subduc-
tion earthquakes and aftershock sequences to abnor-
mally high p;. Some of these examples were already
introduced in the previous section, but without any
specific mention to the seismogenic activity of the
relevant faults.

Except rare examples of direct measurements in
boreholes, evidence for supra-hydrostatic py trigger-
ing or favoring intra-plate earthquakes are mostly
indirect. Body-wave velocity anomalies detected
by two-dimensional or three-dimensional tomogra-
phy suggest that pressurized fluids are present in
hypocentral regions of many earthquakes. Most au-
thors agree that fluids are trapped at depth and that
their accumulation results in abnormally high p ¢ val-
ues which in turn weaken the faults.

Evidence for abnormally high p that could ei-
ther trigger or favor the propagation of subduction
zone earthquakes mainly comes from body wave ve-
locity anomalies revealed by tomography (Table 5).
Other indirect evidence come from mechanical anal-
yses based on the reactivation of misoriented fault
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Table 4. Examples of geological or geophysical evidence for displacement along transform faults or
strike-slip faults triggered or favored by supra-hydrostatic pore fluid pressures py inside or near fault

zones

Area, name of structure

Evidence

California, San
Andreas fault

Turkey, North
Anatolian Fault

New Zealand,
Alpine Fault

Japan, Atotsugawa
fault

Japan, Nojima fault
Central Alps,
Adamello pluton

Southeastern Brazil,
Ribeira Shear Zone

Very low resistivity, low Vp, and high a Vp/ Vs ratio suggest
supra-hydrostatic p[fl]; calcite and anhydrite-filled mode I veins in SAFOD
cores suggest that transient increases of supra-hydrostatic (possibly
supra-lithostatic) pr occurred during fault activity and may constitute a
triggering mechanism for some micro-earthquakes recorded at depth near
SAFOD drilling site!?!; frictional sliding and stress-driven DMT
microstructures suggest that deformation in the active shear zones is
displacement-weakening, possibly due to local and transient high p ¢
build-ups along creeping segments!®’; microstructural and geochemical
data from SAFOD samples indicate that transient co-seismic fluid

overpressure events overprint aseismic creep along the fault!!

Fluid inclusions in subhorizontal extension veins suggest supra-hydrostatic
[5].

p 7o continuous ascent of deep crustal or mantle fluid (CO,, CH,4 or He)

could result in near-lithostatic or supra-lithostatic p[6]; low electrical
resistivity (measured by magnetotelluric methods) and low Vp (measured
by 2-D seismic velocity tomography) suggest high p¢ at 5-15 km
depthm'[g]’[g]

Slug tests in shallow (150 m deep) boreholes suggest that the near-surface
Alpine fault zone may be site of high ps gradient!'”; pressure measurement
during drilling reveals a slight (9%) supra-hydrostatic pf in shallow
(~900 m deep) borehole!'); tremors appear to be located at 25-45 km
depth, in a region of high P-wave attenuation that could be the site of

supra-hydrostatic p?z]

High pf could account for creep along some parts of the fault!13

Discrete hydraulic fractures!'

Reactivation of the severely misoriented inactive Gole Larghe fault!!!

Fluid inclusions in foliation-parallel or extensional quartz veins along the
shear zone indicate py fluctuations that are interpreted as the result of a
fault-valve behavior!!®!

References: ['Eberhart-Phillips and Michael [1993], ?'Mittempergher et al. [2011], ¥/Hadizadeh et al.
[2012], W Hadizadeh et al. [2024], P'Janssen et al. [1997], ©1Pfister et al. [2000], ['Karabulut et al. [2003],
Bl Tank et al. [2005], [9]Kara§ etal. [2020], 19 Sutherland et al. [2012], 1 Sutherland et al. [2017], 12Wallace
[2020], '¥Kato et al. [2007], " Boullier [2011], '¥'Mittempergher et al. [2009], ¢! Faleiros et al. [2007].
SAFOD: San Andreas Fault Observatory at Depth. DMT: diffusive mass transfert.
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planes [e.g., Sibson, 2013]. The analysis of Seno
[2009], based on the construction of the differen-
tial stress profiles across several subduction zones,
shows that the pore fluid pressure ratio A accounts
for much of the interplate coupling.

4.2. Aftershocks

4.2.1. Present-day aftershocks

In many cases, aftershocks following large magni-
tude events typically migrate both in space and time.
This was first noticed by Nur and Booker [1972] fol-
lowing the fortuitous or induced seismic sequences
at Denver and Rangely [Healy et al., 1968, Raleigh
et al., 1976]. Since then, precise hypocenter reloca-
tions show that the temporal and spatial migration
follows laws of diffusion of pressure fronts in porous
media, suggesting that pressurized fluids contribute
to trigger aftershocks (Table 5). The theoretical anal-
ysis of Miller [2020], based on the modeling of per-
meability fluctuations with time during the seismic
cycle, further shows that major events not character-
ized by co-seismic or post-seismic releases of large
amounts of fluids are followed by very few after-
shocks, whereas those characterized by the release
of significant amounts of co- or post-seismic flu-
ids will be followed by large aftershock populations.
Even if other mechanisms such as loading of faults
by Coulomb stress transfer can influence the trigger-
ing or the propagation of aftershocks [Nostro et al.,
2005], the role of supra-hydrostatic py appears sig-
nificant in many cases.

4.2.2. Aftershocks in the geological record

Because of their small magnitudes, aftershocks
related to past earthquakes are uneasy to recog-
nize in the geological record. However, a specific
type of aftershocks, called “golden” aftershocks, is
presumably recognized in Archean rocks (Yilgarn
craton, western Australia) where mechanical analy-
ses based on Coulomb stress transfer following ma-
jor earthquakes suggest that transiently abnormally
high py triggered ruptures on secondary faults af-
ter main events [Cox and Ruming, 2004, Mickleth-
waite, 2008]. Indeed, the Yilgarn craton gold deposits
hosted in secondary low-displacement hectometric
faults and shear zones do not show a random spa-
tial distribution, but are clustered in rock volumes

near terminations of primary plurikilometric strike-
slip fault segments. Mechanical analyses of the stress
transfer following major earthquakes along any of the
fault segments show that specific rock volumes are
stress-loaded ahead of the segment terminations [so-
called “loaded” lobes, inside which the stress state
acting on pre-existing fractures makes them close to
failure; King et al., 1994]. Pressurized fluid expelled
from the main shock hypocentral volume then per-
colates through the fracture network in the loaded
lobes, triggering eventual ruptures and allowing, by
pressure drop, deposition of gold-bearing mineral-
ization. The repetition of main shocks and after-
shocks eventually results in deposits of economical
interest.

4.3. Subducting slab intermediate-depth
earthquakes

4.3.1. Seismological evidence for supra-hydrostatic
pr in currently subducting slabs

In subduction zones, intermediate-depth earth-
quakes, that is, earthquakes with hypocentral depths
between ~50 and 300 km, are no longer localized
along the plate interface, but inside the subduct-
ing slab. Various mechanisms have been proposed
to account for nucleation or propagation of this
intermediate-depth seismicity [Frohlich, 2006, Hous-
ton, 2015]: (1) dehydration embrittlement, in which
locally abnormally high pf allows a transition from
a viscous regime of deformation to brittle faulting,
(2) thermal instabilities, or (self-localizing) thermal
runaway, in which incipient ductile shear zones de-
velop as rheological instabilities along which brittle
failure can nucleate; (3) “anticrack faulting”, triggered
by mineral phase change reactions. Among these
mechanisms, which can act in concert, the first one
is of peculiar interest here. As summarized in Table 6,
evidence or suspicion for supra-hydrostatic py come
from three-dimensional seismic tomography across
subducting slabs currently in their post-seismic stage
or in their inter-seismic stage.

4.3.2. Evidence for excess p r atintermediate depths in
the geological record

Table 6 further provides examples of structures
(crack-seal veins, mineral overgrowths) reported
from high-pressure metamorphic terranes which
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can be interpreted as resulting from overpressured
fluids during intermediate-depth seismic activity.
Brittle dilatant veins crossing ductilely deformed
high-pressure rocks are one convincing piece of evi-
dence for abnormally high p . Similarly, finely zoned
rims around garnets in eclogitic rocks can be inter-
preted as repeated growths of thin garnet layers fol-
lowing cyclical arrivals of co-seismic fluids. In these
cases, the sharpness of the boundaries between the
domains with distinct element concentrations are
sharp, whereas they should be irregular or diffuse
in the case of intracystalline high-temperature solid
diffusion, confirming the fluid pulse hypothesis.
Through a detailed analysis of such zoned garnet
overgrowths, Viete et al. [2018] estimate that at least
four overpressured fluid pulses occurred in less than
300,000 years.

4.4. Seismic swarms

Whatever they are related to volcanic systems or not,
many seismic swarms appear to be triggered or fa-
vored by pressurized fluids (Table 7). The most con-
vincing argument for the role of py lies in the fact
that, like for aftershock sequences, the spatial and
temporal migration of hypocentres follows diffusion
laws of pressure front propagation in porous me-
dia. Several authors however propose that other
mechanisms can also play a role, in combination
with py wave propagation. A frequently invoked
additional mechanism is Coulomb stress transfer
[Aoyama et al., 2002, Hainzl, 2004, Yukutake et al.,
2011, Fischer et al., 2014]. In particular, studying
a swarm developed near the Hakone volcano, cen-
tral Japan, Yukutake et al. [2011] were able to show
that the hypocenters of a first earthquake sequence
were aligned along fault-like planar surfaces, while
those of a subsequent sequence were located in com-
pressive lobes associated with the planar surfaces,
demonstrating the sequence fluid-triggered events
followed by Coulomb stress transfer-triggered events.
Besides, Aoyama et al. [2002] call for stress corrosion
as an additional mechanism in the triggering of seis-
mic swarms.

4.5. Fluid overpressures and slow earthquakes

Slow earthquakes, a collective name including slow-
slip events, low- or very-low-frequency earthquakes,

low-frequency tremors, non-volcanic tremors, and
episodic tremor-and-slip events, are in many cases
suspected to be triggered or favored by supra-
hydrostatic pr. Table 8 is a non-exhaustive com-
pilation of studies that relate slow earthquakes (in
the broad sense) with evidence for supra-hydrostatic
ps. With the exception of one study pertaining to
the San Andreas fault, all other studies deal with slow
earthquakes in subduction zones. Direct evidence
come from measurements in ODP or IODP boreholes
equipped with pressure or fluid flow sensors [Brown
et al., 2005, Araki et al., 2017]. Indirect evidence are
provided by geophysical methods (seismic tomog-
raphy or magneto-tellurics) that show that domains
characterized by seismic velocity anomalies or by
low resistivities, which are explained by the presence
of possibly overpressured fluids, overlap zones of
nucleation of slow events. Besides, laboratory exper-
iments carried out on oceanic crust rocks (gabbros,
serpentinites) and numerical modeling further sup-
port the interplay between supra-hydrostatic pf and
slow earthquakes [Peacock, 2009, Katayama et al.,
2012, Kitajima and Saffer, 2012, Beeler et al., 2013,
Saffer and Wallace, 2015, Bernaudin and Gueydan,
2018, Condit et al., 2020, Dal Zilio and Gerya, 2022,
Eberhard et al., 2022].

4.5.1. Evidence in the geological record

Tracking slow earthquake phenomena in the ge-
ological record is not easy, since rocks only exhibit
frozen structures, for which strain rates are difficult
to estimate. However, several studies contend that
past slow slip events left tracks in surface-exhumed
fault rocks (Table 8). Most of such studies pertain
to ancient subduction interface-related slow events
triggered or facilitated by near-lithostatic py. These
studies are based on scenarii that are compatible
with cyclic fracturing and fluid arrival in the frac-
tured zones. One key issue in the slow-earthquake
interpretation is the estimated duration of events.
Based on silica diffusion from wall rock to quartz
crak-seal veins found along a shear zone adjacent to
a paleo-décollement in the Kodiak accretionary com-
plex, Fisher and Brantley [2014] could estimate the
time necessary to precipitate quartz for one crak-seal
band as less than 10 days, which could correspond
to the duration of some slow events in subduction
zones. Similarly, based on a kinematic model of
the growth of microscopic quartz bands following
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Table 7. Examples of geophysical evidence for seismic swarms or seismic swarm-like sequences trig-
gered or favored by abnormally high pore fluid pressures p¢ in or around fault zones

Area and/or events

Evidence

Central and northern
Japan (Matsushiro,
Tohoku, Hida mountains,
Hakone volcano)

Dobi graben seismic
sequence, Afar rift,
Djibouti
East African Rift, Uganda,
Rwenzori region

Central Europe (West
Bohemia/Vogtland),

Western Europe (Vosges
mountains)

Western Alps (Ubaye
region and vicinity)

Corinth rift
Southern Italy, Mt Pollino
region

Southern California
(including Long Valley
caldera)

Space-time evolution of seismicity fits with p diffusion laws!! 2181
pressurized fluid diffusion accounts for space-time evolution of seismicity
along with Coulomb stress transfert and stress corrosion!; pressurized fluid
diffusion and Coulomb stress transfert account for space-time evolution of
seismicity®

Space-time evolution of seismicity fits with p diffusion laws!®

Spatial overlap in the middle crust between intense volatile and CO,
circulation and swarm hypocentral regions!”

Space-time evolution of seismicity fits with p diffusion laws!® P but static
and dynamic Coulomb stress changes also play a role!!%[111112]: at about
9 km depth, A ~0.98 (p = 244 MPa, that is 5 MPa below 7 ,)!"*!

Space-time evolution of seismicity fits with p ¢ diffusion laws!!*
Space-time evolution of seismicity fits with p diffusion laws! 15101610171,
supra-hydrostatic p are necessary for reactivation of misoriented faults
(A =0.41-0.51)'¥; time-space evolution of seismicity and development of
excess py (between 35 and 55 MPa) explained by creep compaction';
space-time evolution of seismicity fits with p diffusion laws, but co-seismic
stress transfer explains the seismicity close to the mainshock source!??!

Space-time evolution of seismicity fits with p diffusion laws?!22]

Space-time evolution of seismicity fits with p ¢ diffusion laws'®!

Space-time evolution of seismicity fits with p diffusion laws?*25], possibly
combined with episodic aseismic slip/?®/

References: 'Nur [1974], ?/Cappa et al. [2009], ¥ Yoshida et al. [2016], ¥/ Aoyama et al. [2002], ) Yukutake
et al. [2011], ®Noir et al. [1997], ' Lindenfeld et al. [2012], ®'Parotidis et al. [2003], '"Hainzl [2004],
(19 Hainzl and Fischer [2002], '/ Fischer and Horélek [2005], ['?'Fischer et al. [2014], !3IVavry¢uk [2002],
(14 Audin et al. [2002], 1¥Jenatton et al. [2007], '8/Godano et al. [2013], 1"/ Baques et al. [2021], '8 Leclere
etal. [2012], M9 Leclere et al. [2013], ?Y'De Barros et al. [2019], ?!Duverger et al. [2015], ?? De Barros et al.
[2020], ' De Matteis et al. [2021], " Prejean et al. [2003], *>/Shelly et al. [2016], *®'Vidale and Shearer

[2006].

cyclical pore fluid ingression in crack-seal veins
from the Shimanto accretionary prism, Ujiie et al.
[2018] could estimate the minimum duration of
precipitation between two successive fluid pulses
as less than 5 years. Such a duration is too low for
standard earthquake rupture, but could correspond

to episodic tremor and slip. Overall, the recognition
of slow earthquakes in the geological record is still
speculative, but quantification of duration of var-
ious inter-seismic or co-seismic phenomena such
as mineral precipitation could validate the inferred
geological signature of slow events.
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4.6. Fluids and man-made earthquakes

Several man-made earthquakes show that fluids can
trigger seismic ruptures. One emblematic piece of
evidence for this triggering role is the earthquake ac-
tivity that occurred in Colorado following waste wa-
ter disposal at depth [Healy et al., 1968]. Experi-
mental water injection at depth at Rangely [Colorado,
Raleigh et al., 1976] confirmed than fluids could trig-
ger earthquakes. Since then, the artifical trigger-
ing of earthquakes has been ascertained in a large
variety of human activities: hydrocarbon extraction
[Wiprut and Zoback, 2000, Amos et al., 2014, Bourne
et al., 2014, Van Wees et al., 2014], dam reservoir im-
poundment [Rastogi et al., 1997, Gupta, 2002, McGarr
et al., 2002, Zhang et al., 2019], industrial waste wa-
ter repository [Horton, 2012, Yeck et al., 2016], carbon
dioxide storage projects [Zoback and Gorelick, 2012],
and water injection in deep boreholes to produce
geothermal energy [Deichmann and Giardini, 2009,
Terakawa et al., 2012, McGarr et al., 2015]. Fluid-
injection-experiments at the KTB borehole in Ger-
many have shown that even small pressure variations
(<1 MPa) could trigger numerous microearthquakes
at a depth of 9 km [Zoback and Harjes, 1997]. In most
case studies, the p¢ build-up in the vicinity of criti-
cally loaded faults is responsible for failure. However,
abnormally high p r may also act indirectly by trigger-
ing aseismic slip which in turn leads to an earthquake
[Wei et al., 2015]. Lastly, stress perturbations by
Coulomb stress transfer can also contribute to man-
induced seismic ruptures [De Matteis et al., 2024].

4.7. Conclusions

The interactions between fluids and seismic rup-
tures in the brittle crust or in subducting slabs are
more and more recognized or suspected (Tables 5-
8). The role of overpressured fluids in the trigger-
ing or propagation of small-magnitude events such
as aftershocks, swarms and, to a lesser extent, slow
earthquakes, seems to be well established. Regarding
large-magnitude events, the role of excess pore fluid
pressures is more difficult to ascertain. However,
a large body of evidence suggests that seismic rup-
tures, especially those along plate interfaces in sub-
duction zones, take place in crustal volumes where
seismic tomography indicates body wave velocity
anomalies that are interpreted as the consequence of

the presence of overpressured fluids. The present re-
view of literature further shows that abnormally high
pore fluid pressures may not be the only mechanism.
Indeed, stress perturbations can act in concert with
abnormally high p; and the inferred decrease of o ,.

5. Conclusions

A review of the literature shows that fluids physically
interact everywhere and at all scales with deforma-
tion in the brittle crust and in subducting slabs. Since
they are more permeable than most intact rocks,
fractures, faults and shear zones in the brittle or
brittle-ductile crust and in the subducting slabs ap-
pear as efficient paths for fluid circulation. Provided
that impervious seals develop transiently or perma-
nently, fluids can accumulate and their pressure can
increase. Where faults are critically stressed, only a
minor overpressure value (a few MPa above the hy-
drostatic pressure) can trigger or favor rupture or dis-
placement. Where faults are not critically stressed,
for instance where they are severely misoriented with
respect to the active stress tensor, larger excess py
values are needed for reactivation. Fluid overpres-
sures can be estimated by using chemical data or
fluid inclusion data in exhumed rocks. Estimated val-
ues are as follows: 25-135 MPa at seismogenic depths
[ca. 5 to 10 km, Shimanto paleo-accretionary prism,
Raimbourg et al., 2022, Kodiak paleo-accretionary
prism, Vrolijk, 1987], 50-150 MPa at 8-9 km [Apen-
nines, Mullis, 1988], 110 MPa at ca. 20 km [Central
Alps, Berger and Herwegh, 2019], 200-350 MPa at 8-
10 km or deeper [Val d’Or district, Canada, Robert
etal., 1995], 100-350 MPa at 30-70 km in an exhumed
subducted lithosphere [Viete et al., 2018].

The influence of abnormally high ps is of ut-
most importance in the triggering or in the propa-
gation of seismic ruptures. The py effect appears
to be common in small to moderate magnitude
(M < 5 ~ 6) events such as aftershocks or swarm
sequences. The role of high py is less obvious for
large magnitude (M > 6 or higher) events. However,
the precursor mechanisms preceding large magni-
tude events may be partly controlled by p; build-
up. Future researches will concentrate on this as-
pect of the seismic cycle. In particular, a critical is-
sue is to try to determine whether a p increase is the
triggering (causal) mechanism for a seismic rupture
propagation or is a consequence of a propagating
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rupture triggered by a mechanism that would not
be related to py. In their spatio-temporal monitor-
ing of Vp and Vg variations during the 1997 Umbria-
Marche sequence, central Italy (Table 5), Chiarabba
et al. [2009a] suggest that the p; propagation pre-
cedes the seismic ruptures. A similar conclusion is
reached by Yoshida et al. [2023] in their study of a
swarm sequence resulting in a M,, 6.2 event in NE
Japan. Besides, the in-situ experiments of Guglielmi
et al. [2015] and Cappa et al. [2022] show that a pf
increase triggers aseismic slip that eventually turns
into a seismic displacement. From their field study
of intermediate-depth earthquakes frozen in an an-
cient oceanic crust, John and Schenk [2006] conclude
that seismic rupture was not preceded but rather ac-
companied and followed by fluid ingression in the
hypocentral volume (Table 6). Further experimen-
tal or in situ works along with detailed geological or
geophysical analyses are obviously needed before the
complex interrelationships between p ¢ variation and
inception or propagation of brittle fracture or slip
along faults can be fully understood.

High py values also play a role in the trigger-
ing or maintenance of slow slip earthquakes and
related phenomena along several subduction inter-
faces or along transform faults. Since these tran-
sient phenomena can in turn influence or control
large-magnitude seismic ruptures, a careful analy-
sis or monitoring of py build-up is an important di-
rection of future research. The precursory results of
Brown et al. [2005], Mikada et al. [2006], Fulton and
Brodsky [2016] or Ariyoshi et al. [2021] are examples
of such a promising monitoring.
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